
Virtunoid: A KVM Guest → Host privilege

escalation exploit

Nelson Elhage

Black Hat USA 2011

1 Introduction

KVM, the Linux Kernel-based Virtual Machine, is a virtualization solution for
Linux designed to be tightly integrated with upstream kernel development.
While still a relatively recent player on the landscape, KVM seems destined
to become the new standard for open-source virtualization, with both Ubuntu
and Red Hat Enterprise Linux adopting it as the basis of their standard virtu-
alization offerings.

This paper discusses the development of a guest-to-host VM escape exploit
for KVM. As the first public example of such an exploit, we hope to provide a
case study demonstrating some of the difficulties and techniques that come into
play when constructing such an exploit. Our attack demonstrates a successful
bypass of both ASLR and non-executable pages against KVM.

2 KVM structure and attack surface

KVM, like most virtualization tools, is separated into a userspace and a kernel-
mode component. The kernel component, implemented in the kvm.ko and one
of the kvm-intel.ko or kvm-amd.ko modules, deals with low-level CPU and
memory emulation, using either the Intel VMX or AMD SVM hardware virtu-
alization extensions. The userspace program, qemu-kvm, is based on the vener-
able QEMU [1] CPU emulator. qemu-kvm provides the basic user interface for
launching and controlling VMs, and provides the main framework for running
VMs. qemu-kvm handles essentially all hardware emulation – when the emulated
machine performs an IO instruction (such as an operation on x86 IO ports), the
kernel module returns to userspace, where qemu-kvm emulates the operation
and then makes a ioctl to resume execution. (For performance reasons, a few
devices are actually emulated directly in-kernel, but that detail is not relevant
to this work).

The KVM kernel module must be considered a tempting target for an at-
tacker, as a compromise there has the potential to yield privileged ring 0 execu-
tion on the host, obviating the need for further privilege escalation once inside

1



typedef struct RTCState {
uint8 t cmos data[128];
...
/* second update */
int64 t next second time;
...
QEMUTimer *second timer;
QEMUTimer *second timer2;
} RTCState;

Figure 1: The definition of qemu-kvm’s struct RTCState.

the host. However, the kernel module contains an order of magnitude less code
than the userspace component, and much of that is not directly attackable from
the guest. Thus, we expect that the majority of potentially-interesting KVM
bugs will be located in the qemu-kvm component, and it is that component this
paper will discuss attacking.

3 The bug

The bug we chose to exploit, CVE-2011-1751, is a result of a missing check
in KVM’s emulation of PCI device hotplugging. In particular, KVM failed to
ignore untplug requests from the guest hardware for devices that did not support
being unplugged. Such devices, when unplugged, may fail to adequately clean
up and disconnect themselves, leaving behind corrupt state or dangling pointers.

The particular device we chose to unplug was the emulated Intel PIIX4 chip,
including the PCI-to-ISA bridge. Unplugging this chip unplugs all emulated ISA
devices, including the emulated real-time clock. The real-time clock, as part of
normal operation, registers timer callbacks with qemu-kvm’s internal run loop.
When it is destroyed and freed, these timers are not cleaned up, resulting in an
exploitable use-after-free condition.

Triggering this condition is as simple as writing the value 2 out the x86 IO
port number 0xae08 (“PCI_EJ_BASE” in the qemu-kvm source).

4 Use-after-free

The qemu-kvm emulated MC146818 real-time-clock is implemented in the file
hw/mc146818rtc.c. The emulated state is stored in a struct RTCState, whose
definition is shown in Figure 1.

A QEMUTimer is used to register timer callbacks with qemu-kvm run loop.
Under normal operation, the RTC emulation uses second_timer and second_-

timer2 to implement the once-per-second update of the real-time clock. next_-
second_time keeps track of the time that the next RTC update is scheduled.

2



#include <sys/io.h>

int main (void) {
iopl(3);
outl(2, 0xae08);
return 0;

}

Figure 2: Simple program to demonstrate the RTC use-after-free bug.

static void rtc update second(void *opaque)
{

RTCState *s = opaque;
int64 t delay;

/* if the oscillator is not in normal operation, we do not update */
if ((s−>cmos data[RTC REG A] & 0x70) != 0x20) {

s−>next second time += get ticks per sec();
qemu mod timer(s−>second timer, s−>next second time);

} else {
/* Arm s−>second timer2 */
...
}

}

Figure 3: rtc_update_second, showing the conditional re-arming of second_-
timer2

The RTC arranges the timers such that at that time, second_timer fires, trig-
gering a call to rtc_update_second. rtc_update_second updates the RTC
state to indicate that an update is in-progress, and then arranges for second_-
timer2 to fire one-hundredth of a second later, calling rtc_update_second2,
which completes the update, advances next_second_time, and re-schedules
rtc_update_second.

When the emulated RTC clock is unplugged, the backing RTCState is freed,
but neither time is freed or unregistered from the main loop. Since the free()

implementation in glibc overwrites the final word of the freed area for book-
keeping purposes, and since second_timer2 is the final element of the RTCState
structure, this will result in a segmentation fault the next time rtc_update_-

second runs and attempts to re-arm it. Figure 2 contains a minimal C program
that, when run as root from within a Linux guest, should result in such a crash.

If we examine rtc_update_second (Figure 3), we discover that the RTC only
arms second_timer2 if the emulated RTC is in certain configurations, namely
when (s->cmos_data[RTC_REG_A] & 0x70) == 0x20. This, if we write, say,

3



0x70 into CMOS address 10 (RTC_REG_AS), rtc_update_second will simply
continue to fire every second, using s->second_timer. Since freeing the RTCState
will not clobber that pointer, this behavior will continue even after the free(),
giving us a relatively wide window during which we can force a controlled allo-
cation over the freed RTCState, allowing us to hijack the second_timer pointer
and begin taking control.

5 Forcing controlled allocations

In order to take control of the freed RTCState struct, we need to force an allo-
cation of the same size as the freed structure, with mostly-controlled contents.

For the purposes of this case study, we chose to use a feature of the qemu-kvm
user-mode networking stack.

5.1 The QEMU/KVM user-mode network stack

qemu-kvm implements a user-mode network backend as the default setting for
providing network access to a virtual machine. The user-mode network stack
implements an entire VLAN inside the qemu-kvm process, including a DHCP
server and a NAT gateway that allows the virtual machine to access the outside
network.

5.2 The NetQueue abstraction

One of the key abstractions of the user-mode network stack is the NetQueue

struct, which implements a unidirectional packet queue. A NetQueue has a
callback to be invoked on new packets, and a queue of pending packets. A packet
can be enqueued on a NetQueue using the qemu_net_queue_send function, as
shown in Figures 4 and 5.

The relevant detail here is that, qemu_net_queue_send will normally deliver
an incoming packet synchronously without queuing, but to limit recursing, if a
second packet is delivered while a first packet is still being processed, that second
packet will be enqueued for later processing, using qemu_malloc to allocate
space. That allocation will consist of a NetPacket header, plus the packet data,
and so, if we can control the packet, we have a large degree of control over the
allocation.

5.3 ICMP ping

However, as mentioned, this queueing behavior only takes place if a packet is
delivered recursively as a result of processing a first packet. And so, we need
one more piece in order to cause a controlled allocation: Some service on the
qemu-kvm virtual network that will synchronously generate packets in response
to packets the guest sends, in a controllable manner.

4



ssize t qemu net queue send(NetQueue *queue,
VLANClientState *sender,
unsigned flags,
const uint8 t *data,
size t size,
NetPacketSent *sent cb)

{
ssize t ret;

if (queue−>delivering) {
return qemu net queue append(queue, sender, flags, data, size, NULL);

}

ret = qemu net queue deliver(queue, sender, flags, data, size);
if (ret == 0) {

qemu net queue append(queue, sender, flags, data, size, sent cb);
return 0;

}

qemu net queue flush(queue);

return ret;
}

Figure 4: The qemu_net_queue_send function, used to send a packet across the
user-mode VLAN.

5



static ssize t qemu net queue append(NetQueue *queue,
VLANClientState *sender,
unsigned flags,
const uint8 t *buf,
size t size,
NetPacketSent *sent cb)

{
NetPacket *packet;

packet = qemu malloc(sizeof(NetPacket) + size);
packet−>sender = sender;
packet−>flags = flags;
packet−>size = size;
packet−>sent cb = sent cb;
memcpy(packet−>data, buf, size);

QTAILQ INSERT TAIL(&queue−>packets, packet, entry);

return size;
}

static ssize t qemu net queue deliver(NetQueue *queue,
VLANClientState *sender,
unsigned flags,
const uint8 t *data,
size t size)

{
ssize t ret = −1;

queue−>delivering = 1;
ret = queue−>deliver(sender, flags, data, size, queue−>opaque);
queue−>delivering = 0;

return ret;
}

Figure 5: Relevant helpers for qemu_net_queue_send

6



In fact, it turns out that there is a very common service that matches that
description exactly: ICMP ping responses. And, in fact, the qemu-kvm user-
mode virtual gateway does respond to ICMP ping requests, reflecting back the
payload of the packet (after the ICMP headers) unchanged.

Using this scheme, we can’t fully control the initial bytes of the packet –
there will be some ICMP and IP headers, as well as the NetPacket header, but
fortunately, the fields we need to control in the RTCState structure are near the
end of a 400+-byte allocation, and so this technique gives us sufficient control.

6 RIP control

In order to get %rip control, we will look at the QEMUTimer struct, as defined
in qemu-timer.c in qemu-kvm 0.14.0. This definition is included as Figure 6 for
reference.

typedef void QEMUTimerCB(void *opaque);

struct QEMUClock {
int type;
int enabled;

};

struct QEMUTimer {
QEMUClock *clock;
int64 t expire time;
QEMUTimerCB *cb;
void *opaque;
struct QEMUTimer *next;

};

Figure 6: The QEMUTimer structure.

Recall that we have arranged the RTC state such that rtc_update_second(s)
will be called once per second. Since rtc_update_second arranges for s->second_-
timer to be called on the next second, if we cause the newly-allocated RTCState

to point to a fake QEMUTimer object, on the next second boundary, the fake
timer’s ->cb() member will be invoked, causing the qemu-kvm process to jump
to an address of our choice.

6.1 The qemu-kvm physical memory map

In order to inject dummy structures into the qemy-kvm address space, we’ll
make use of a convenient fact about how qemu-kvm manages the guest virtual
machine’s memory.

7



The guest’s physical memory in qemu-kvm is backed by a single mmap’d region
inside the qemu-kvm address space; qemu-kvm communicates this address to the
kernel module using a KVM-specific ioctl, but also accesses it directly when
emulation DMA operations or other IO accesses.

Thus, if we know the base address of this mapping, and we know the phys-
ical address of an allocation in the guest, we know the virtual address of the
allocation inside qemu-kvm. Thus, we can make allocations in the guest, do a
little arithmetic, and refer to them inside the host qemu-kvm process.

On Linux, we can find the physical frame number (“pfn”) corresponding to
any page of virtual memory in a process using /proc/pid /pagemap. In general,
the address of the physical memory map will be subject to ASLR and potentially
unpredictable; For the moment, however, we will assume a qemu-kvm process
running without ASLR, and then demonstrate a way around this restriction in
a later section.

6.2 Putting it together

So, to achieve %rip control in the qemu-kvm process, we need to allocated a
QEMUClock structure in the guest, as well as a QEMUTimer, with clock pointing
at the HVAof our dummy clock, expire_time being some small value, and cb

pointing at the desired %rip. We then hotploug the ISA bridge, and spam
ping packets at the VLAN gateway, with contents constructed such that, when
appropriate headers are added, the result is the same size as a RTCState with
second_timer pointing at the HVAof our dummy timer.

7 Chaining to shellcode

Note that the guest physical-address region is mapped non-executable inside
the qemu-kvm process, so we cannot yet trivially inject our own shellcode.

With control over %rip and the ability to inject data into the guest, we
could easily perform a standard ROP pivot, use that to mmap or mprotect an
executable region, and inject shellcode in that way.

However, we opted to pursue a slightly different strategy, which allows for
slightly easier portability between different versions of qemu-kvm, and easier
cleanup and continuation of execution after the exploit completes.

7.1 Chaining timers

Looking at QEMUTimer, we notice the next member. Timers are stored on a
sorted singly linked list; Every time the qemu-kvm main loop wakes up, each
list is walked as long as t->expire_time < current time , and the timers
encountered are invoked by calling t->cb(t->opaque), and then unlinked.

In particular, this means that by controlling the next field of our injected
timer, we can cause qemu-kvm to execute multiple sequential function calls, with
a fully-controlled first argument.

8



And so, instead of a traditional ROP attack, we can chain fragments of code
by constructing and chaining multiple timer objects. We do need to be careful
about register usage, because the timer run loop will clobber several registers
between sequential calls. However, of note, on every version of qemu-kvm exam-
ined, this dispatch loop does not make use of %rsi, which, on the amd64 SysV
ABI, is used for passing integer argument 2. This allows us to call one function
to set up %rsi, and then chain to a second, which can now control the first two
arguments to t->cb.

7.2 Getting to mprotect

In this way, we can chain together calls to set up state and then call mprotect on
a page inside the physical address region to mark that page as executable, and
then jump into it to execute arbitrary shellcode. That code can then mprotect

more pages, or otherwise bootstrap arbitrarily. Furthermore, once that code
returns, the timer loop will continue executing as normal, making continued
execution a comparatively simple manner of patching up any other problems
resulting from the missing ISA bridge.

To call mprotect, which is a three-argument function, we make use of the
ioport_readl_thunk qemu-kvm function, shown in Figure 7. By constructing
a dummy IORange structure with a dummy IORangeOps method in ops, we
can call mprotect(ioport, LEN, 4);. The constant 4 is conveniently equal to
PROT_EXEC, so this suffices to mark the page containing the IORange as exe-
cutable. We can then jump into there.

static uint32 t ioport readl thunk(void *opaque, uint32 t addr)
{

IORange *ioport = opaque;
uint64 t data;

ioport−>ops−>read(ioport, addr − ioport−>base, 4, &data);
return data;

}

Figure 7: The ioportl_readl_thunk function, used by our exploit to indirectly
call mprotect.

This work does not aim to comment on the development of possible payloads
once code execution is achieved. However, it is worth noting briefly that the
guest physical memory potentially provides an extremely convenient pathway
for code in the guest and code in the now-compromised host to communicate, in
order to e.g. implement a command interpreter, as demoed in the “Cloudburst”
exploit for VMware [2].

9



8 Bypassing ASLR

So far, we have assumed that the target qemu-kvm process is running without
ASLR, and addresses of both code and data in the target program are pre-
dictable. We now turn to the problem of attacking a target that has been
hardened with ASLR, making some or all addresses unpredictable.

8.1 PIE and non-PIE executables

On Linux, enabling ASLR normally only randomizes the location of shared li-
braries (which must, in general, already contain position-independent code),
and both the heap (The values returned by brk and mmap) and the stack.
However, since executable programs are not normally compiled to be position-
independent, the main executable must be loaded at exactly the address re-
quested in the ELF binary, for both executable and data segments.

It is possible to explicitly compile an executable ELF binary as a so-called
“position-independent executable”, or “PIE”, in which case their contents can
be loaded at a random address. However, doing so requires using an additional
register to keep track of addresses, and can have significant performance impact
on some platforms. As such, compiling binaries as PIE is not the norm, and
most distributions tend to compile, at most, a small set of “security-critical”
programs as PIE (See, e.g. [3]).

As of this writing, no major distribution investigated builds qemu-kvm as
PIE, which means that we can continue to rely on code addresses within the
main qemu-kvm binary, as well as any data loaded directly from the qemu-kvm

binary. Thus, in order to continue to execute the previous attack, we need only
discover the address of the physical memory map inside the qemu-kvm process’
address space.

8.2 qemu-kvm firmware emulation

qemu-kvm implements an interface for the built-in PC BIOS to read and write
configuration firmware for certain emulated devices. Using IO ports 0x510 and
0x511, the BIOS can read tables such as the emulated RAM size, the e820 map,
ACPI tables, and other low-level system information. In addition, the qemu-kvm
code includes support to allow certain firmware items to be writable from the
guest. However, as of this writing, this feature appears to be unused in KVM
head.

However, a missing check in the fw_cfg_check function in hw/fw_cfg.c

allows the guest to write into any firmware configuration item, even ones that
are not intended to be writable. And while writing the complete contents of a
firmware configuration method will result in a segfault – due to calling a NULL

callback – the guest can write any prefix of an item, and then toggle the firmware
configuration address register to reset the write state, and repeat this operation
as many times as desired.

10



Furthermore, at least of the firmware configuration items in a standard
qemu-kvm “PC” hardware model are backed directly by statically-allocated
structures in the qemu-kvm ELF binary.

Thus, by overwriting these items using the provided IO port interface, a
guest can inject small amounts of data at a known address. We can this write
our dummy QEMUTimer objects and other objects into this space.

8.3 Chaining timers even more

However, we cannot use these areas for the complete original attack. mprotect
requires a page-aligned address in order to work, and the IORange trick we used
required a writable object at the address we want to mprotect. Both writable
firmware areas, however, are too small for it to be likely that either will straddle
a page boundary in the appropriate way.

Instead, our strategy will be to use the firmware regions to construct a read4

primitive, use this primitive to extract the base address of the physical memory
map, and then procede with the original attack. Constructing a read primitive
is easy – we just find a code fragment or function that reads a value at a known
offset from %rdi and writes it to %rsi, and one that writes %rsi to the memory
at address %rdi.

However, we now need to chain multiple series of timers, interspersed with
logic in the guest program to compute appropriate offsets. The trick we use
here is that, instead of terminating our fake timer chain in our shellcode, we
terminate it with a timer that will call rtc_update_second, along with an
appropriate fake RTCState object.

Thus, after our timer chain has been executed, we can return the host to
executing a dummy timer we control once a second. We can then read the
firmware area back out, process the bytes we read, and create a new timer chain
to inject to execute the next round of code.

9 Conclusion

We have presented the design and construction of Virtunoid, a functional guest-
to-host privilege escalation exploit for KVM. We have discussed some features of
the design and implementation of KVM that are useful in constructing such an
exploit, and shown how we chain them together to go from a use-after-free bug
to reliable code execution, even in the presence of ASLR and non-executable
data pages.

References

[1] http://wiki.qemu.org/Main_Page

[2] Kostya Kortchinsky, Black Hat USA 2009, “Cloudburst: A VMware Guest
to Host Escape Story ”

11



[3] https://wiki.ubuntu.com/Security/Features#pie

12


