
Apple iOS 4 Security Evaluation

Dino A. Dai Zovi
Principal
Trail of Bits LLC

Version: 1.0

Trail of Bits

Table of Contents

ASLR 1

Overview 1

Assessment 3

Code Signing 4

Mandatory Code Signing 4

Code Signing Enforcement 11

AppleMobileFileIntegrity 11

Dynamic Code Signing 13

Assessment 14

Sandboxing 15

Introduction 15

Application Containers 15

Sandbox Profiles 15

Assessment 22

Data Encryption 24

Overview 24

Hardware Encryption 24

Trail of Bits

Apple iOS Security Evaluation i

Data Protection API 25

Filesystem Encryption 25

iOS Passcodes 26

Data Protection API Coverage 27

Assessment 29

Trail of Bits

Apple iOS Security Evaluation ii

ASLR

Overview
Address Space Layout Randomization (ASLR) is an important protection that makes the remote exploitation of memory
corruption vulnerabilities significantly more difficult. In particular, when it is fully applied, it usually requires that attackers
find and exploit one or more memory disclosure vulnerabilities in order to enable the exploitation of a memory corruption
vulnerability. On many operating systems, however, the implementation of ASLR may be incomplete and attackers can
make often make use of executable or writable memory regions at fixed or predictable locations.

ASLR was introduced in iOS 4.3 and there are two levels of completeness of ASLR in iOS 4.3, depending on whether the
application was compiled with support for Position Independent Executables (PIE). If the application was compiled
without PIE support, it will run with limited ASLR. Specifically, the main executable binary (including its code and data
sections) and the dynamic linker (dyld) will be loaded at fixed locations. The main thread’s stack will also always begin at
the same location in memory. This is presumably to maintain compatibility with existing iOS applications. If the application
is compiled with PIE support, then the application will be able to make full use of ASLR and all memory regions will be
randomized. In iOS 4.3, all built-in applications are compatible with full ASLR. The table below summarizes which
segments of memory will be found at randomized locations depending on whether the application was compiled with or
without PIE support.

Memory Region Randomization by Deployment Target Version

PIE Executable Data Heap Stack Libraries Linker
No Fixed Fixed Randomized

per execution
Fixed Randomized

per device boot
Fixed

Yes Randomized
per execution

Randomized
per execution

Randomized
per execution
(more entropy)

Randomized
per execution

Randomized
per device boot

Randomized
per execution

Trail of Bits

Apple iOS Security Evaluation 1

Observing ASLR
In order to detect which memory regions are loaded at randomized locations and how often that location changes, a
small command-line executable1 was written to observe and output a memory address within those regions. The
program captures the memory addresses of the executable’s main function, a variable in its initialized data segment, a
variable in its uninitialized data segment, a single heap allocation, a variable on the stack, the address of a function in a
loaded shared library, and the load address of the dynamic linker (dyld). This program was used to observe memory
addresses for five invocations before rebooting the device and gathering data from five more invocations. This was
performed for the executable compiled with and without support for Position Independent Executables (PIE). The results
of these tests are shown in the table below.

Observed Memory Addresses

Main Executable Heap Stack Libraries Linker
0x2e88 0x15ea70 0x2fdff2c0 0x36adadd1 0x2fe00000
0x2e88 0x11cc60 0x2fdff2c0 0x36adadd1 0x2fe00000
0x2e88 0x14e190 0x2fdff2c0 0x36adadd1 0x2fe00000
0x2e88 0x145860 0x2fdff2c0 0x36adadd1 0x2fe00000
0x2e88 0x134440 0x2fdff2c0 0x36adadd1 0x2fe00000

RebootRebootRebootRebootReboot
0x2e88 0x174980 0x2fdff2c0 0x35e3edd1 0x2fe00000
0x2e88 0x13ca60 0x2fdff2c0 0x35e3edd1 0x2fe00000
0x2e88 0x163540 0x2fdff2c0 0x35e3edd1 0x2fe00000
0x2e88 0x136970 0x2fdff2c0 0x35e3edd1 0x2fe00000
0x2e88 0x177e30 0x2fdff2c0 0x35e3edd1 0x2fe00000

Compile with -fPIECompile with -fPIECompile with -fPIECompile with -fPIECompile with -fPIE
0xd2e48 0x1cd76660 0x2fecf2a8 0x35e3edd1 0x2fed0000
0xaae48 0x1ed68950 0x2fea72a8 0x35e3edd1 0x2fea8000
0xbbe48 0x1cd09370 0x2feb82a8 0x35e3edd1 0x2feb9000
0x46e48 0x1fd36b80 0x2fe432a8 0x35e3edd1 0x2fe44000
0xc1e48 0x1dd81970 0x2febe2a8 0x35e3edd1 0x2febf000

RebootRebootRebootRebootReboot
0x14e48 0x1dd26640 0x2fe112a8 0x36146dd1 0x2fe12000
0x62e48 0x1dd49240 0x2fe112a8 0x36146dd1 0x2fe60000
0x9ee48 0x1d577490 0x2fe9b2a8 0x36146dd1 0x2fe9c000
0xa0e48 0x1e506130 0x2fe9d2a8 0x36146dd1 0x2fe9e000
0xcde48 0x1fd1d130 0x2feca2a8 0x36146dd1 0x2fecb000

The memory addresses shown in the table above clearly show which memory regions are randomized and how often for
both non-PIE and PIE executables. It also shows that the amount of entropy in heap memory randomization is greater for
PIE executables than for non-PIE executables. In this way, the PIE compatibility of an executable can be used to
determine its level of ASLR compatibility in iOS 4.3: limited or full.

Trail of Bits

Apple iOS Security Evaluation 2

1 Included in the supplementary materials as src/aslr/aslr.c

Third-Party Applications
In order to determine the prevalence of PIE support in third-party applications, the top ten free applications as of the time
of this writing were downloaded and examined. As summarized in the table below, none of these applications were
compiled with PIE support.

PIE Support in Top Ten Free Applications

Application Version Post Date PIE
Songify 1.0.1 June 29, 2011 No
Happy Theme Park 1.0 June 29, 2011 No
Cave Bowling 1.10 June 21, 2011 No
Movie-Quiz Lite 1.3.2 May 31, 2011 No
Spotify 0.4.14 July 6, 2011 No
Make-Up Girls 1.0 July 5, 2011 No
Racing Penguin, Flying Free 1.2 July 6, 2011 No
ICEE Maker 1.01 June 28, 2011 No
Cracked Screen 1.0 June 24, 2011 No
Facebook 3.4.3 June 29, 2011 No

Xcode Automatic Deployment Target
In Xcode, the “iOS Deployment Target” application setting is the lowest version of iOS that the application will run on. The
default setting is “Compiler Default”, indicating that Xcode will automatically choose the minimum version of iOS based
on the APIs that are used by the application. This may cause more applications to automatically support PIE if they use
an API that is only available in iOS 4.3 or later. More likely, however, is that applications that make use of new APIs
introduced in the upcoming release of iOS 5 will automatically be compiled with PIE support.

Assessment
In order to preserve application compatibility, applications compiled without PIE support do not run with full ASLR on iOS
4.3. This leaves both the application and dynamic linker text segments at fixed known locations. The presence of known
code sequences at known locations facilities the use of code reuse techniques such as return-oriented programming in
the exploitation of memory corruption vulnerabilities. The most likely targets for remote exploits, however, are the built-in
MobileSafari and MobileMail applications, which are both compiled with PIE support and make use of full ASLR in iOS
4.3.

Scriptable applications such as MobileSafari, provide more opportunities for an attacker to identify and exploit memory
disclosure vulnerabilities that may be used to weaken or defeat the randomization provided by ASLR. Other applications
that do not provide malicious content as many opportunities to inspect their runtime environment and adapt to it are
significantly more difficult to remotely exploit. The presence of full ASLR, especially in combination with the other runtime
protections described in this document such as Code Signing Enforcement and Sandboxing, makes the remote
exploitation of memory corruption vulnerabilities in iOS applications significantly more difficult than on other mobile or
desktop platforms.

Trail of Bits

Apple iOS Security Evaluation 3

Code Signing

Mandatory Code Signing
In order to verify the authenticity of all executable code running on the device, iOS requires that all native code
(command-line executables and graphical applications) is signed by a known and trusted certificate. This protection is
referred to as Mandatory Code Signing. The Mandatory Code Signing system also forms the basis of the code signing
security model in iOS whereby particular developers or software may be granted specific additional privileges.

There are several important components to the code signing security model:

• Developer Certificates

• Provisioning Profiles

• Signed Applications

• Entitlements

We will describe what these components are and how they interact in turn.

Developer Certificates
Any developer may freely download Apple’s Xcode developer tools and test their applications within the included iOS
Simulator. The iOS Simulator runs on the developer’s Mac and allows them to interact with their application by simulating
touch events and other device hardware features using the mouse and keyboard. While this allows basic development
and testing, it may not be sufficient for many applications that need to ensure they run fast enough on actual hardware
(i.e. games) or interact properly with location-based services, the digital compass, or accelerometer. In order to run
custom applications on an actual iOS device, even just for testing, the developer must be granted a Developer Certificate
from Apple by being an approved member of Apple’s iOS Developer Program2.

Developers may apply for this program as an individual, company, enterprise, or university. Depending on how the
developer applies, they may enroll in either the Standard, Enterprise, or University Programs and they each have separate
verification requirements and developer privileges, including how and whether developers may distribute their
applications. An individual or company enrollment for the Standard Program is typically used to publish free or paid
applications on Apple’s App Store. The Enterprise Program is for larger companies and organizations to develop and
distribute custom in-house applications. Finally, the University Program is designed to facilitate educational institutions
teaching iOS development and it only permits on-device testing (no application distribution is permitted).

Trail of Bits

Apple iOS Security Evaluation 4

2 http://developer.apple.com/programs/ios/

http://developer.apple.com/programs/ios/
http://developer.apple.com/programs/ios/

Developer Program Device Testing Ad Hoc App Store In-House
Apple Developer No No No No
University Program Yes No No No
Standard Program Yes Yes Yes No
Enterprise Program Yes Yes No Yes

All of the developer programs require verification of the individual developer’s or developer organization’s real-world
identity. For an individual, the use of a credit card to pay for the yearly membership fee is sufficient verification. In order to
apply as a company, the developer must submit the Articles of Incorporation or Business License. An Enterprise must
submit their DUNS Number3 and pay a higher yearly membership fee. The University program is only open to qualified,
degree granting, higher education institutions. For the purposes of this paper, we will use the term “developer” to refer to
an individual or organizational member of Apple’s iOS Developer Program and only specify which type of developer when
it is significant.

Provisioning Profiles
A Provisioning Profile is an XML plist4 file signed by Apple that configures the iOS device to permit the execution of code
signed by the embedded developer certificate. It also lists the entitlements that the developer is permitted to grant to
applications signed by their certificate. The provisioning profile may also include a list of the Unique Device Identifiers
(UDIDs) of the devices that the profile may provision. For on-device testing, the provisioning profile will only list the
developer’s testing device that they have configured via the iOS Developer Portal. For Ad-Hoc Distribution, an Ad-Hoc
Distribution Provisioning Profile may list up to 100 devices for wider application testing. Enterprise Provisioning Profiles
are significantly more powerful since they are not restricted to a list of devices in the provisioning profile.

An example Development Provisioning Profile for on-device developer testing is shown in Figure 1. All provisioning
profiles are stored on the filesystem in the directory /var/MobileDevice/ProvisioningProfiles/. The provisioning profile
validation is performed by the MISProvisioningProfileCheckValidity function in /usr/lib/libmis.dylib. If the provisioning
profile is properly validated, then it will be displayed in the System Preferences application and usable for verifying signed
applications. In order to be considered valid, all of the following conditions must hold:

• The signing certificate must be issued by the built-in “Apple iPhone Certification Authority” certificate

• The signing certificate must be named “Apple iPhone OS Provisioning Profile Signing”

• The certificate signing chain must be no longer than three links long

• The root certificate (referred to as the “Apple CA”) must have a particular SHA1 hash

• The provisioning profile version number must be 1

• The provisioning profile must contain the UDID of this device or the profile must contain the key
“ProvisionsAllDevices”

• The current time is before the expiration date of the profile

Trail of Bits

Apple iOS Security Evaluation 5

3 DUNS numbers are issued by Dun and Bradstreet, a business credit reporting firm

4 A plist file is a standard Apple XML file format for storing property lists (nested key-value pairs)

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE plist PUBLIC "-//Apple Computer//DTD PLIST 1.0//EN" "http://www.apple.com/DTDs/
PropertyList-1.0.dtd">
<plist version="1.0">
<dict>
 <key>ApplicationIdentifierPrefix</key>
 <array>
 <string>9ZJJSS7EFV</string>
 </array>
 <key>CreationDate</key>
 <date>2010-08-20T02:55:55Z</date>
 <key>DeveloperCertificates</key>
 <array>
 <data>...</data>
 </array>
 <key>Entitlements</key>
 <dict>
 <key>application-identifier</key>
 <string>9ZJJSS7EFV.*</string>
 <key>get-task-allow</key>
 <true/>
 <key>keychain-access-groups</key>
 <array>
 <string>9ZJJSS7EFV.*</string>
 </array>
 </dict>
 <key>ExpirationDate</key>
 <date>2010-11-18T02:55:55Z</date>
 <key>Name</key>
 <string>Development</string>
 <key>ProvisionedDevices</key>
 <array>
 <string>e757cfc725783fa29e8b368d2e193577ec67bc91</string>
 </array>
 <key>TimeToLive</key>
 <integer>90</integer>
 <key>UUID</key>
 <string>BDE2CA16-499D-4827-BB70-73886F52D30D</string>
 <key>Version</key>
 <integer>1</integer>
</dict>
</plist>

Figure 1: Sample Provisioning Profile

Signed Applications
All iOS executable binaries and applications must be signed by a trusted certificate. While Apple’s certificates are
inherently trusted, any other certificates must be installed via a properly signed Provisioning Profile, as described above.
Command-line executables may contain either an ad-hoc signature, as shown for an iOS binary in Figure 2 or a
traditional signature as shown for a Mac OS X built-in executable in Figure 3.

Trail of Bits

Apple iOS Security Evaluation 6

http://www.apple.com/DTDs/PropertyList-1.0.dtd
http://www.apple.com/DTDs/PropertyList-1.0.dtd
http://www.apple.com/DTDs/PropertyList-1.0.dtd
http://www.apple.com/DTDs/PropertyList-1.0.dtd

% codesign -dvvv debugserver
Executable=/Developer/usr/bin/debugserver
Identifier=com.apple.debugserver
Format=Mach-O universal (armv6 armv7)
CodeDirectory v=20100 size=1070 flags=0x2(adhoc) hashes=45+5 location=embedded
CDHash=6a2a1549829f4bff9797a69a1e483951721ebcbd
Signature=adhoc
Info.plist=not bound
Sealed Resources=none
Internal requirements count=1 size=152

Figure 2: Ad-hoc code signed executable

% codesign -dvvv iBooks
Executable=/.../9D3A8D85-7EDE-417A-9221-1482D60A40B7/iBooks.app/iBooks
Identifier=com.apple.iBooks
Format=bundle with Mach-O universal (armv6 armv7)
CodeDirectory v=20100 size=14585 flags=0x0(none) hashes=721+5 location=embedded
Hash type=sha1 size=20
CDHash=ac93a95bd6594f04c209fb6bf317d148b99ac4d7
Signature size=3582
Authority=Apple iPhone OS Application Signing
Authority=Apple iPhone Certification Authority
Authority=Apple Root CA
Signed Time=Jun 7, 2011 11:30:58 AM
Info.plist entries=36
Sealed Resources rules=13 files=753
Internal requirements count=2 size=344

Figure 3: Normal code signed executable

An ad-hoc signature does not contain an actual certificate and is typically only seen on Apple-supplied command-line
executables for iOS. These ad-hoc signatures are validated by searching for its code directory hash (CDHash) in the trust
cache. The kernel contains a static set of known CDHashes for all iOS built-in executables and applications that we refer
to as the static trust cache. The kernel also maintains a linked list of the CDHashes for all applications and executables
that have the passed full certificate validation before their first execution. We call this data structure the dynamic trust
cache. The dynamic trust cache contains all the unique executables or applications that have been executed since boot.
There does not appear to be any garbage collection or pruning of this linked list.

Trail of Bits

Apple iOS Security Evaluation 7

Figure 4: Warning message on first launch of a custom application

The first time that a new custom application (i.e. not one signed by Apple and downloaded from the App Store) is run,
iOS will prompt the user whether they are sure that they would like to run the application. The warning box, as shown in
Figure 4, displays both the application name and the name of the Developer Certificate that it is signed with.

Entitlements
Signed executable binaries and applications may also contain an XML plist file specifying a set of entitlements to grant
the application. This plist file contains a dictionary of keys with each representing a special privilege to be granted to the
application. This mechanism allows Apple to make some processes more privileged than others, even if they are all
running as the same Unix user id (i.e. user mobile).

The entitlements that may be granted to a particular application depend on which entitlements have been granted to the
signing developer’s certificate in its associated provisioning profile. Since Apple signs every provisioning profile, this
allows them to carefully control which entitlements they will allow other developers to grant to that developer’s custom
applications. The provisioning profile shown above in Figure 1 has an entitlements dictionary with three keys: application-
identifier, get-task-allow, and keychain-access-groups. The application-identifier entitlement specifies a unique prefix for
applications they develop. The Application Identifiers in iOS are used to uniquely refer to particular applications. While
third-party developers are assigned unique prefixes, Apple has reserved com.apple.* for themselves. The get-task-allow
entitlement permits applications signed with the embedded developer certificate to be debugged, indicating that this
provisioning profile is intended to permit on-device custom application testing. Applications that are built for distribution
(ad-hoc, App Store, or in-house) must omit this key in their entitlements as the associated distribution provisioning

Trail of Bits

Apple iOS Security Evaluation 8

profiles will not permit the key to be in applications signed by the certificate in the profile. The third entitlement, keychain-
access-groups, defines a list of the iOS Keychain namespaces that the developer may permit their applications to
access. Note that this list is set to only include the developer’s Application Identifier prefix. This allows all of their apps to
share iOS Keychain items if the developer wishes. The developer may also subdivide this namespace between their
applications in order to prevent different applications that they develop from accessing the same items in the iOS
Keychain.

As another example of how entitlements are specified, consider the Entitlements plist for the Apple-provided debugserver
as shown in Figure 5. This entitlements dictionary contains three entitlements: com.apple.springboard.debugapplications,
run-unsigned-code, and seatbelt-profiles. The first entitlement is an application-specific entitlement that informs
Springboard that debugserver should be permitted to debug applications. The second entitlement, run-unsigned-code,
appears to indicate that the debugserver should be allowed to run unsigned code. This does not appear, however, to be
sufficient to allow debugserver to run arbitrary unsigned code, as the authorization checks performed by
AppleMobileFileIntegrity (described below) to run with an invalid code signature require additional entitlements. The
seatbelt-profiles entitlement lists which built-in sandbox profile to apply to the process (the iOS sandbox is described in
detail in a later chapter).

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE plist PUBLIC "-//Apple//DTD PLIST 1.0//EN" "http://www.apple.com/DTDs/
PropertyList-1.0.dtd">
<plist version="1.0">
<dict>
 <key>com.apple.springboard.debugapplications</key>
 <true/>
 <key>run-unsigned-code</key>
 <true/>
 <key>seatbelt-profiles</key>
 <array>
 <string>debugserver</string>
 </array>
</dict>
</plist>

Figure 5: Entitlements plist for debugserver

Application Distribution Models

Device Testing
The simplest form of application distribution is on-device testing using a Development Provisioning Profile. The
Development Provisioning Profile created for the developer through the iOS Developer Portal or automatically by Xcode
provisions a single device to run software signed by that developer’s certificate. This provisioning profile must be installed
onto the device before any of the developer’s applications will run on it. The first time that a particular custom application
is run using the developer’s certificate, the user will be warned with the dialog box shown in Figure 4. This model is
intended to allow the developer to continually test their applications on their devices as they are developing them.

Ad-Hoc Distribution
In the later stages of testing, the developer may wish to beta test their application on a wider range of devices and by a
wider range of users. The ad-hoc distribution model is designed for this scenario and allows a developer to distribute
their application for testing to up to 100 users. This distribution model requires that the developer create a separate Ad-
Hoc Provisioning Profile. In order to do so, the developer must collect the UDIDs from all of their testers devices. The
developer must then enter these UDIDs into the iOS Developer Portal and create an Ad-Hoc Provisioning Profile that

Trail of Bits

Apple iOS Security Evaluation 9

http://www.apple.com/DTDs/PropertyList-1.0.dtd
http://www.apple.com/DTDs/PropertyList-1.0.dtd
http://www.apple.com/DTDs/PropertyList-1.0.dtd
http://www.apple.com/DTDs/PropertyList-1.0.dtd

includes all of them in the ProvisionedDevices array. Finally, the developer must send each tester the provisioning profile
and an iOS application as an .ipa file signed with the developer’s Distribution Certificate. The testers may then drag both
of these files into iTunes in order to install the application on their device.

App Store Distribution
In order to submit an application to Apple’s App Store, the developer must build the application for distribution and sign it
with their Distribution Certificate. They may then upload it through iTunes Connect for Apple’s review. After the application
is approved, Apple will re-sign the application with an Apple signing certificate and make the application available for
download on the App Store. Since the application is now signed with an Apple certificate, users do not need to install the
original developer’s provisioning profile in order to run the application.

In-House Distribution
Enterprise developers may take advantage of a special distribution model that bypasses Apple’s App Store review
process and permits installation of the applications on devices without configuring their UDIDs in the provisioning profile.
This model, In-House Distribution, is designed for large organizations to distribute their own custom applications to their
employees.

The Enterprise Provisioning Profile may be preloaded on users’ devices when they install their organization’s iOS
Configuration Profile or configure their device to use their organization’s Mobile Device Management (MDM) server.
Alternatively, the provisioning profile may be installed manually just as is done with Ad-Hoc Distribution. The custom
application may be pushed out to user’s devices through MDM or sent to individual users via Over-the-Air (OTA)
Distribution.

Over-the-Air (OTA) Distribution
OTA Distribution is designed to allow Enterprise Developers to send applications to individual users in their organization
through e-mail or by hosting the application on a web server. The link to the application can be sent to the users via e-
mail, SMS, or linked to from another web page. Although it was not designed for it, this method can also be used to
facilitate Ad-Hoc Distribution5. This is done by simply packaging up the Ad-Hoc Provisioning Profile with the application
instead of an Enterprise Provisioning Profile.

While OTA Distribution greatly facilitates sending software to enterprise users and beta testers, it does create a potential
avenue for social-engineering based attacks that may convince users to install undesirable applications. If an attacker is
able to obtain an Enterprise Distribution Certificate (perhaps fraudulently), they may use this to build a malicious
application that will not be reviewed by Apple. They can then proceed to attempt to convince users to install this
application through SMS, e-mail, or other web pages linking to it.

As a partial mitigation against malicious use of this feature, iOS prompts the user before installing the application with
“<Developer> would like to install <Application>: Cancel / Install”. If the enterprise organization is a trusted name and the
application name seems plausible the user will likely install it. The second mitigation against this is Apple’s purposed “kill-
switch” that can remove malicious applications from all iOS devices globally6. The exact functioning of this mechanism
has not yet been identified.

Trail of Bits

Apple iOS Security Evaluation 10

5 “Distribute Ad Hoc Applications Over the Air (OTA)”,
http://iphonedevelopertips.com/xcode/distribute-ad-hoc-applications-over-the-air-ota.html

6 “Apple iPhone ‘Kill Switch’ Discovered”,
http://www.telegraph.co.uk/technology/3358115/Apple-iPhone-kill-switch-discovered.html

http://iphonedevelopertips.com/xcode/distribute-ad-hoc-applications-over-the-air-ota.html
http://iphonedevelopertips.com/xcode/distribute-ad-hoc-applications-over-the-air-ota.html
http://www.telegraph.co.uk/technology/3358115/Apple-iPhone-kill-switch-discovered.html
http://www.telegraph.co.uk/technology/3358115/Apple-iPhone-kill-switch-discovered.html

Code Signing Enforcement
In order to prevent the introduction of new executable code at runtime, iOS implements a security protection called Code
Signing Enforcement (CSE). This prevents applications from loading unsigned libraries, downloading new code at
runtime, and using self-modifying code. It is also a strong protection against remote attacks that inject new native code
into the application (i.e. classic buffer overflow and many other memory corruption attacks). It is, however, significantly
stronger than protections such as Data Execution Prevention (DEP) found on Microsoft Windows and non-executable
memory protections found on other operating systems. With these systems, an attacker can repurpose already loaded
application code in order to enable the execution of an injected native code payload. With iOS CSE, the attacker must
use already-loaded code in order to achieve all of their objectives, significantly raising the cost of attack development.

CSE is built into the iOS kernel’s virtual memory system and most of its implementation is visible in Apple’s open source
xnu kernel7, which is shared between iOS and Mac OS X. In essence, the virtual memory system tracks the validity of
executable memory pages and the process as a whole using the “dirty” bit used to implement Copy-on-Write (COW)
semantics and virtual memory page-ins. When an executable memory page is paged-in and is marked as being “dirty”,
its signature may have been invalidated and it must be reverified. New executable memory pages are always “dirty”. If a
single memory page is found to be invalid, then the entire process’ code signing validity is also set to be invalid.

The code signing validity of the process is tracked with the CS_VALID flag in the csflags member of the kernel’s proc
structure for that process. If the executable’s code signing signature has been validated prior to it being executed, the
process begins execution with the CS_VALID flag set. If the process becomes invalid, then this flag will be cleared. What
happens next depends on the CS_KILL flag. If this flag is set, the kernel will forcibly kill the process once it becomes
invalid. On Mac OS X, the default is to not set this flag so that processes created from signed binaries may become
invalid. On iOS, however, this flag is set by default so the process is killed once it becomes invalid. The flags defined for
this field and a system call (csops) for getting and setting them from user space are documented in bsd/sys/codesign.h.
The defined flags are also summarized in the table below:

Flag Name Value Description
CS_VALID 0x00001 Process is dynamically valid
CS_HARD 0x00100 Process shouldn’t load invalid pages
CS_KILL 0x00200 Process should be killed if it becomes dynamically invalid
CS_EXEC_SET_HARD 0x01000 Process should set CS_HARD on any exec’d child
CS_EXEC_SET_KILL 0x02000 Process should set CS_KILL on any exec’d child
CS_KILLED 0x10000 The process was killed by the kernel for being dynamically invalid

AppleMobileFileIntegrity
The AppleMobileFileIntegrity kernel extension uses the Mandatory Access Control Framework (MACF) to implement the
security protections related to Code Signing. It does so by installing MAC policy hook functions to check the signatures
on executed binaries, set default code signing-related process flags, and add extra authorization checks to the
task_for_pid, execve, and mmap system calls.

For each function, a summary of its purpose and usage by AMFI are given in the table below (the MAC label lifecycle
management functions have been omitted for brevity).

Trail of Bits

Apple iOS Security Evaluation 11

7 http://www.opensource.apple.com/source/xnu/

http://www.opensource.apple.com/source/xnu/
http://www.opensource.apple.com/source/xnu/

AppleMobileFileIntegrity MAC Policy Hooks

MAC Policy Hook API Description AMFI Usage
mpo_vnode_check_signature Determine whether the given code

signature or code directory SHA1
hash are valid.

Checks for the given CDHash in the
static and dynamic trust caches. If it is
not found, the full signature is
validated by performing an RPC call to
the userspace amfid daemon. If a
particular global flag is set
(amfi_get_out_of_my_way), then any
signature is allowed.

mpo_vnode_check_exec Determine whether the subject
identified by the credential can
execute the passed vnode.

Sets the code signing CS_HARD and
CS_KILL flags, indicating that the
process shouldn’t load invalid pages
and that the process should be killed if
it becomes invalid.

mpo_proc_check_get_task Determine whether the subject
identified by the credential can get the
passed process's task control port.

Allows task port access if the target
process has the get-task-allow
entitlement and the calling task has
the task_for_pid-allow entitlement.

mpo_proc_check_run_cs_invalid Determine whether the process may
execute even though the system
determined that it is untrusted
(unidentified or modified code)

Allow execution if the process has the
get-task-allow, run-invalid-allow, or
run-unsigned-code entitlements or an
RPC call to amfid returns indicating
that unrestricted debugging should be
allowed.

mpo_proc_check_map_anon Determine whether the subject
identified by the credential should be
allowed to obtain anonymous
memory with the specified flags and
protections.

Allows the process to allocate
anonymous memory if and only if the
process has the dynamic-codesigning
entitlement.

mpo_cred_check_label_update_execve Indicate desire to change the process
label at exec time

Returns true (non-zero) to indicate that
AMFI needs to update credentials at
exec time.

mpo_cred_label_update_execve Update credential at exec time Updates the credential with the
entitlements of the newly executed
binary or Application.

Trail of Bits

Apple iOS Security Evaluation 12

In order to implement some more expensive operations outside of the kernel, the AMFI kernel extension communicates
with a userspace daemon, amfid, over Mach RPC. The amfid RPC interface is simply two routines, as shown in the table
below.

AMFI Daemon Mach RPC Interface

Message ID Subroutine Description
1000 verify_code_directory Verifies the given code directory hash and signature for the

executable at the given path. This checks whether the signature
is valid and that it should be trusted based on the built-in Apple
certificates and installed provisioning profiles (if any).

1001 permit_unrestricted_debugging Enumerates the installed provisioning profiles and checks for a
special Apple-internal provisioning profile with the UDID of the
current device that enables unrestricted debugging on it.

Signature Validation
The AppleMobileFileIntegrity mpo_vnode_check_signature MAC hook is responsible for determining whether the
signature on a given executable should be trusted or not. The hook determines this by consulting the static and dynamic
trust caches, a most-recently-used (MRU) trust cache, and the amfid daemon. The process for doing so is depicted in
the flow chart in Figure 6.

vnode_check_signature Is CDHash in static
trust cache?

Is CDHash in
dynamic trust cache?

Is CDHash in MRU
trust cache?

Move CDHash
entry to front of
MRU linked list

Add CDHash
entry to front of
MRU linked list

No

Yes

No

RPC call to amfid
verify_code_directory

Failure

Yes

Success

Is
amfi_get_out_of_my_

way true?

Is
amfi_allow_any_signature

true?

No

Deny

Allow

Yes

No

Yes

Yes
No

Figure 6: Flow chart of vnode_check_signature

Dynamic Code Signing
In order to support the “Nitro” native Just-in-Time (JIT) compilation JavaScript engine, MobileSafari possesses the
dynamic-codesigning entitlement. This allows it to loosen the default Code Signing Enforcement mechanism and allow it

Trail of Bits

Apple iOS Security Evaluation 13

to generate native executable code at runtime. Without this entitlement, the MobileSafari process would not be permitted
to create new executable memory pages. On iOS 4.2 and earlier, MobileSafari was restricted to using an interpreted
bytecode JIT JavaScript engine, which has much poorer performance than a native code JIT. With the release of iOS 4.3,
however, MobileSafari began using the Nitro native code JavaScript JIT engine for increased performance.

Assessment
The Mandatory Code Signing and Code Signing Enforcement security protections are a stronger defense against the
execution of unauthorized native code than the protections found on other common desktop and mobile operating
systems. In particular, the runtime Code Signing Enforcement mechanism is a unique feature that is not found on these
other systems. It is a significantly stronger protection against the execution of injected native code than Microsoft’s Data
Execution Prevention (DEP) and similar non-executable data memory protections in Linux and Mac OS X. In addition,
these desktop operating systems do not have any similar features to Mandatory Code Signing and, by design, permit the
execution of unsigned binaries and applications. Code Signing Enforcement makes remotely executing native code on
iOS significantly more difficult than on desktop operating systems and Mandatory Code Signing similarly makes installing
unauthorized software on iOS-based devices significantly more difficult than doing so on a desktop operating system.

While Google’s Android and RIM’s BlackBerry OS mobile operating systems implement similar features to the Mandatory
Code Signing found in iOS, neither of them implement any non-executable data memory protections. Again, this makes
remote injection and execution of native code easier on these platforms than on Apple’s iOS. In addition, it should be
noted that all three platforms include mobile web browsers based on the same open-source WebKit HTML rendering
engine. This means that all three platforms will likely be affected by any vulnerabilities identified in this component and, in
fact, many such vulnerabilities have been identified over the last several years8.

With iOS 4.3 and presumably later versions, the dynamic-codesigning entitlement in MobileSafari that is required to
permit native code JavaScript JIT compilation also allows remote browser-based exploits to inject and execute native
code. On previous versions of iOS and within applications that do not posses this entitlement, an attacker may only
repurpose already-loaded native code in their attack. While this has been shown to be Turing-complete and therefore
equivalent to arbitrary native code execution9, it is significantly more work and not as reusable across target versions or
applications as native code. In addition, the introduction of Address Space Layout Randomization in iOS 4.3 significantly
complicates code-reuse attacks as well as any taking advantage of Dynamic Code Signing by requiring the attacker to
also discover and exploit a memory disclosure vulnerability.

Trail of Bits

Apple iOS Security Evaluation 14

8 http://osvdb.org/search?search%5Bvuln_title%5D=WebKit

9 Shacham, Hovav. “The Geometry of Innocent Flesh on the Bone”, Proceedings of CCS 2007, ACM Press.

http://osvdb.org/search?search%5Bvuln_title%5D=WebKit
http://osvdb.org/search?search%5Bvuln_title%5D=WebKit

Sandboxing

Introduction
The iOS application-based security model requires that applications and their data are isolated from other applications.
The iOS Sandbox is designed to enforce this application separation as well as protect the underlying operating system
from modification by a potentially malicious application. It does so by assigning each installed application a private area of
the filesystem for its own storage and applying fine-grained process-level runtime security policies. These security
policies enforce file and system access restrictions on the application.

The iOS sandboxing mechanism used for built-in applications, background processes, and third-party applications. In
this paper, however, we only concern ourselves with the security policy applied to third-party applications in order to
assess the risk posed by installing and running potentially malicious third-party applications.

Application Containers
Third-party applications on iOS are each assigned their own Application Home Directory or container on the device
filesystem. These containers are stored within /var/mobile/Applications/UUID and the Application UUID is randomly
generated dynamically when the application is installed. If an application is deleted and the re-installed, the old container
will be deleted entirely and the application will be assigned a brand new random UUID when it is re-installed. In general,
the application may only read and write files within their container, but there are a number of exceptions allowed by the
runtime sandbox (described later in this chapter). There are several pre-defined subdirectories within the application’s
container with the intended purposes described in the table below.

Container Subdirectories

Container Subdirectory Description
<AppName>.app/ The signed bundle containing the application code and static data
Documents/ Application-specific user-created data files that may be shared with the user’s desktop

through iTunes’s iOS Application “File Sharing” features
Library/ Application support files
Library/Preferences/ Application-specific preference files
Library/Caches/ Application-specific data that should persist across successive launches of the

application, but does not need to be backed up
tmp/ Temporary files that do not need to persist across successive launches of the application

Sandbox Profiles
Since all applications on iOS run as the same Unix user (mobile), the normal Unix-based security model is not able to
provide sufficient application isolation and system protection. Instead, iOS uses the Sandbox kernel extension to enforce

Trail of Bits

Apple iOS Security Evaluation 15

more customized security policies. The Sandbox kernel module does this using the MAC Framework to install MAC
policy hooks that apply a finer-grained security policy for accessing system objects and resources. These hooks make
their access determination by evaluating the per-process security policy (referred to as its “profile”).

When an application is launched, its sandbox profile (if any) is determined by the value of its seatbelt-profiles entitlement.
iOS includes 35 built-in profiles usually named for the single application that uses them. For example, the MobileSafari
profile is only used by the MobileSafari application. The built-in profiles include profiles for graphical applications such as
MobileSafari, MobileSMS, and MobileMail as well as non-graphical background processes such as apsd, ntpd, and ptpd.

The precise internals of Apple’s sandbox implementation have been well documented by other public research10 and will
only be covered at a basic level here. Instead we will focus on the sandbox profile applied to third-party applications
(called “container”). All of the sandbox profiles in iOS have been extracted from the kernel and converted into a more
human-readable from using Dion Blazakis’ XNUSandbox tools11 with some updates and modifications. These converted
sandbox profiles from iOS are included in the supplementary materials.

Sandboxed Operations
The sandboxed system operations are listed in the table beginning on the next page. This list of operations was
extracted from the iOS kernel and the purpose of each is described to the best of our knowledge. The purpose of the
operations were derived from their names, descriptions of similarly named kernel system calls, the xnu kernel source
code, and sandbox profile source files found in Mac OS X.

For each operation, the sandbox profile in effect defines an ordered sequence of rules that are evaluated by the MAC
policy hook installed on that event. The list of sandbox operations is somewhat symmetrical to the list of defined MAC
policy “check” hooks like mpo_file_check_create, mpo_file_check_fcntl12, etc. The MAC policy hooks are more specific
than the list of sandbox operations, so several related MAC policy hooks are often folded into a single sandbox
operation. Unfortunately, many of the iOS-specific sandbox operations are not documented in the Mac OS X header files
and use “reserved” members in the mac_policy_ops structure.

Each sandbox operation rule may contain a boolean filter to determine whether the defined result (allow or deny) applies.
The first rule with a matching filter determines the result for the requested operation and there is often a final default rule
with a filter that always evaluates to true. These filter functions are statically defined in the kernel and they perform regular
expression and string matches against resource names or specific resource type comparisons (i.e. socket type).

Trail of Bits

Apple iOS Security Evaluation 16

10 Blazakis, Dionysus. “The Apple Sandbox”. The BlackHat Briefings DC 2011

11 https://github.com/dionthegod/XNUSandbox

12 See /usr/share/security/mac_policy.h

https://github.com/dionthegod/XNUSandbox
https://github.com/dionthegod/XNUSandbox

Operation Description
default Evaluated if there are no rules defined for the specific operation
appleevent-send Send an Apple Event
file* Wildcard operation for all defined file operations below
file-chroot Change the root directory of the current process to the given directory
file-ioctl Control a device through an open device special file
file-issue-extension* Unknown
file-issue-extension-read Unknown
file-issue-extension-write Unknown
file-mknod Make a special file node (i.e. device file)
file-read* Wildcard operation for all file read operations
file-read-data Read data from a particular file
file-read-metadata Read the metadata (owner, permissions, size, etc) associated with a file
file-read-xattr Read the extended attributes on a file
file-revoke Invalidate open file descriptors for the file at the given path
file-search Search a file system volume quickly
file-write* Wildcard operation for all file write operations
file-write-create Create a new file
file-write-data Write data to a file
file-write-flags Change the flags for a file
file-write-mode Change the file’s permissions
file-write-mount Mount a filesystem
file-write-owner Change the ownership of a file
file-write-setugid Set set-user-id or set-group-id bits on a file
file-write-times Change the file’s access times
file-write-unlink Delete a file
file-write-unmount Unmount a filesystem
file-write-xattr Write to the file’s extended attributes
iokit* Wildcard operation for IOKit operations
iokit-open Open a connection to an IOKit User Client
iokit-set-properties Set properties on an IOKit object
ipc* Wildcard operation for IPC operations
ipc-posix* Wildcard operation for POSIX IPC
ipc-posix-sem Access POSIX semaphores
ipc-posix-shm Access POSIX shared memory
ipc-sysv* Wildcard for SysV IPC operations
ipc-sysv-msg Access SysV messages
ipc-sysv-sem Access SysV semaphores
ipc-sysv-shm Access SysV shared memory
job-creation Create a new job in launchd

Trail of Bits

Apple iOS Security Evaluation 17

Operation Description
mach* Wildcard operation for Mach operations
mach-bootstrap Access mach bootstrap port
mach-lookup Lookup a particular Mach RPC server over the bootstrap port
mach-priv* Wildcard operation for Mach privileged operations
mach-priv-host-port Access the Mach host port for the current host
mach-priv-task-port Access the Mach task port for the current task
mach-task-name Access the Mach task name port for the current task
network* Wildcard operation for network operations
network-inbound Accept an inbound network connection
network-bind Bind a network or local socket
network-outbound Establish an outbound network connection
priv* Wildcard operation for privileged operations
priv-adjtime Adjust the system time
priv-netinet* Wildcard operation for privileged network operations
priv-netinet-reservedport Listen for connections on a reserved network port (< 1024)
process* Wildcard operation for process operations
process-exec Execute a binary via execve() or posix_spawn()
process-fork Create a new process
signal Send a Unix signal
sysctl* Wildcard operation for sysctl operations
sysctl-read Read kernel state variable
sysctl-write Write kernel state variable
system* Wildcard operation for system operations
system-acct Enable or disable process accounting
system-audit Submit a BSM audit record to the system audit log
system-chud Access the CHUD (Computer Hardware Understanding Development) Tools system call
system-fsctl Control filesystems
system-lcid Access login context
system-mac-label Access MAC labels
system-nfssvc Access NFS services system calls
system-reboot Reboot the system
system-sched Unknown
system-set-time Set the system time
system-socket Create a socket
system-suspend-resume Suspend or resume the system
system-swap Manipulate system swap files?
system-write-bootstrap Write boot blocks to a disk?
mach-per-user-lookup Lookup per-user Mach RPC servers

Trail of Bits

Apple iOS Security Evaluation 18

Container Sandbox Profile
The “container” sandbox profile is the profile that gets applied to all third-party applications. The profile, in general,
restricts file access to the application’s container, some necessary system files, and the user’s address book. The
applications are generally allowed to read the user’s media (photos and music), but not write to them. In addition, the
application is allowed to read and delete files from the container Documents/Inbox directory, but not write to them. There
are a few IOKit User Clients that the applications may interact with. All outbound network connections, except for
connecting to launchd’s unix domain sockets, are allowed. Applications are also allowed to execute binaries from within
their application bundle directory and send signals to themselves. The applications are also allowed to create sockets to
receive kernel events and the system routing table. Finally, the profile does not restrict actions related to POSIX
semaphores, shared memory, file IOCTLs, Mach bootstrap servers, network socket binding and accepting inbound
connections, certain classes of privileged actions, and reading kernel state information through the kernel sysctl interface.

We have made an attempt to simplify and present the sandbox profile without sacrificing any accuracy in the table below.
In reading the table, keep in mind that rules are evaluated in order. In that case, the first matching rule for a particular
operation will determine the result of the security policy: allow or deny. If there are no rules defined for a particular
operation, the rules for the related operation wildcard may be evaluated instead. If there are no rules for the applicable
wildcard operations, then the rules for the “default” operation will be evaluated.

Many of the rules use regular expressions to specify applicable resource names. If the rule applies to all resources, we
denote this with a ‘*’ in the table. If the rule only supports matching exact strings, the exact string argument is listed
rather than a regular expression representing an exact string match.

Trail of Bits

Apple iOS Security Evaluation 19

Action Resource Result
default * Deny
ipc-posix-sem * Allow
ipc-posix-shm *

Allow

file-ioctl *

Allow

mach-bootstrap *

Allow

mach-lookup *

Allow

network* *

Allow

network-inbound *

Allow

network-bind *

Allow

priv* *

Allow

priv-adjtime *

Allow

priv-netinet* *

Allow

priv-netinet-reservedport *

Allow

sysctl-read *

Allow

file-read*, file-write* ^/private/var/mobile/Library/AddressBook(/|$) Allowfile-read*, file-write*
^/private/var/ea/ea([.0-9])+(out|in)$

Allowfile-read*, file-write*

^/dev/null$

Allowfile-read*, file-write*

^/dev/dtracehelper$

Allowfile-read*, file-write*

^/dev/(ttys[0-9][0-9][0-9]|ptmx)$

Allowfile-read*, file-write*

^/dev/(ptyp[0-9a-f]|ttyp[0-9a-f])$

Allowfile-read*, file-write*

^/dev/(sha1_0|aes_0)$

Allowfile-read*, file-write*

^/dev/(urandom|random)$

Allowfile-read*, file-write*

^/dev/zero$

Allowfile-read*, file-write*

^/dev/(.)*$ Deny
file-read* ^/System/Library/Carrier Bundles/(.)*.png$ Allowfile-read*

^/private/var/mobile/Library/Carrier Bundles/(.)*/carrier.plist$
Allowfile-read*

^/System/Library/Carrier Bundles/(.)*/carrier.plist$

Allowfile-read*

^/private/var/mobile/Media/iTunes_Control/Artwork($|/)

Allowfile-read*

^/private/var/mobile/Media/iTunes_Control/iTunes($|/)

Allowfile-read*

^/private/var/mobile/Library/ConfigurationProfiles/PublicInfo($|/)

Allowfile-read*

^/private/var/mobile/Library/Preferences/com.apple.carrier.plist

Allowfile-read*

^/private/var/mobile/Library/Carrier Bundles/(.)*.png$

Allowfile-read*

^/private/var/logs(/|$) Deny

file-read*

^/private/var/mobile/Library/Carrier Bundles($|/)
Deny

file-read*

^/System/Library/Carrier Bundles($|/)

Deny

file-read*

^/private/var/mobile/Media/Photos/Thumbs$ Allow

file-read*

^/private/var/mobile/Library/Caches/MapTiles(/|$)
Allow

file-read*

^/private/var/mobile/Library/Caches/com.apple.IconsCache(/|$)

Allow

file-read*

^/private/var/mobile/Media/Photos/Thumbs/([^/])+.ithmb$)

Allow

Trail of Bits

Apple iOS Security Evaluation 20

Action Resource Result
^/private/var/mobile/Media/Photos/Videos($|/) Deny
^/private/var/mobile/Media/Photos/Thumbs($|/)

Deny

^/private/var/mobile/Media/Photos/com.apple.iPhoto.plist$

Deny

^/private/var/mobile/Media/com.apple.itdbprep.postprocess.lock$ Allow
^/private/var/mobile/Media/(PhotoData|Photos|PhotoStreamsData)(/|$)

Allow

^/private/var/mobile/Media/com.apple.itunes.lock_sync$

Allow

^/private/var/mobile/Library/Preferences/com.apple.(books|commcenter|itunessto
red|springboard|youtube|AppStore|MobileStore).plist

Deny

^/private/var/mobile/Library/FairPlay(/|$)

Deny

^/usr/sbin/fairplayd$

Deny

^/private/var/mobile/Media/

Deny

^/private/var/mobile/Library/Caches/com.apple.keyboards(/|$) Allow
^/private/var/mobile/Library/Preferences(/|$)

Allow

^/private/var/mobile/Library/Keyboard(/|$)

Allow

^/private/var/mobile/Library/ Deny
^/private/var/mobile/Applications/(([-0-9A-Z])*)($|/) Allow
^/private/var/mnt/ Deny
^/private/var/tmp(/|$)

Deny

^/private/var/mobile/Applications/(.)*$

Deny

file-write* ^/private/var/mobile/Media(/|$) Denyfile-write*
/private/var/mobile/Library/Preferences/com.apple.Preferences.plist.[0-9A-Za-z][0
-9A-Za-z][0-9A-Za-z][0-9A-Za-z][0-9A-Za-z][0-9A-Za-z][0-9A-Za-z]$

Allow
file-write*

^/private/var/mobile/Library/Preferences/com.apple.Preferences.plist$

Allow
file-write*

^/private/var/mobile/Library/Keyboard/

Allow
file-write*

/private/var/mobile/Applications/(([-0-9A-Z])*)/Library/Preferences/.GlobalPreferen
ces.plist$

Deny

file-write*

^/private/var/mobile/Applications/(([-0-9A-Z])*)/Library/Preferences/com.apple.Pe
oplePicker.plist$

Deny

file-write*

^/private/var/mobile/Applications/(([-0-9A-Z])*)/Documents/Inbox/

Deny

file-write*

^/private/var/mobile/Applications/(([-0-9A-Z])*)/(tmp|Library|Documents)(/|$) Allow

file-write*

^/private/var/mobile/Applications/(.)*$ Deny
file-write-unlink ^/private/var/mobile/Applications/(([-0-9A-Z])*)/Documents/Inbox/ Allow
iokit-open AppleKeyStoreUserClient Allowiokit-open

AppleMBXShared
Allowiokit-open

IMGSGXShared_A0

Allowiokit-open

IMGSGXGLContext

Allowiokit-open

IMGSGXDevice

Allowiokit-open

IOMobileFramebufferUserClient

Allowiokit-open

IOSurfaceRootUserClient

Allow

Trail of Bits

Apple iOS Security Evaluation 21

Action Resource Result
IOSurfaceSendRight
IMGSGXShared
IMGSGXGLContext_A0
AppleJPEGDriverUserClient
AppleM2ScalerCSCDriverUserClient
AppleMBXDevice
AppleMBXUserClient

network-outbound ^/private/tmp/launchd-([0-9])+.([^/])+/sock$ Denynetwork-outbound
^/private/var/tmp/launchd/sock$

Deny

process-exec ^/private/var/mobile/Applications/(([-0-9A-Z])*)/([^/])*.app($|/) Allow
signal self

Allow

system-socket PF_SYSTEM, SYSPROTO_CONTROL

Allow

PF_SYSTEM

Allow

PF_ROUTE

Allow

* Deny

Assessment
The sandbox profiles for third-party applications and applications that handle potentially untrusted data (MobileSafari and
MobileMail) enforce tight restrictions on which files the applications may read or write. Very little sensitive data on the
device is directly accessible on the filesystem from within the sandbox. The most sensitive files on the filesystem that are
accessible through the sandbox are the SQLite file containing the user’s address book contacts, the user’s photo library,
and iTunes library.

The container profile allows unrestricted access to local Mach RPC servers over the bootstrap port. There are currently
141 accessible bootstrap services, each providing an interface of one or more subroutines. These local RPC servers are
used to implement a number of features, but documenting each one and all of their interfaces is a significant task and
beyond the scope of this paper. The large number of Mach RPC services accessible from within the sandbox is a
relatively large attack surface. If an attacker is able to exploit a memory corruption vulnerability in the implementation of
any of these RPC interfaces, they may be able to inject a return-oriented payload into a process with a less restrictive
sandbox environment or a process running without a sandbox. While the locations of most memory segments in the
remote service process will be different than in the current process due to ASLR, the memory locations of the system
libraries will be the same. This may aid the attacker in constructing their exploit and return-oriented payload. This is still a
significantly more complex attack than exploiting a memory corruption vulnerability in the iOS kernel or an accessible
IOKit User Client. The more likely risk is that these RPC interfaces may contain insufficient authorization checks and this
may allow malicious third-party applications to perform undesirable actions on the user’s device.

The most likely attack surface to be used in a sandbox escape is the iOS kernel, including the IOKit User Clients that are
allowed by the sandbox profile. In fact, IOKit User Client vulnerabilities were exploited by both JailbreakMe 2.013
(IOSurface) and JailbreakMe 3.0 (IOMobileFramebuffer) in order to escape the MobileSafari sandbox. The kernel
interfaces accessible from within the sandbox are likely to remain the most attractive target for a sandbox escape due to
the fully unrestricted privileges yielded by obtaining kernel code execution.

Trail of Bits

Apple iOS Security Evaluation 22

13 https://github.com/comex/star/

https://github.com/comex/star/
https://github.com/comex/star/

Finally, most other system-level actions are well restricted. Applications cannot use the fork system call to create a
background process, but they can use posix_spawn to execute a binary from their application bundle directory. Any such
binary, however, is part of the signed application bundle and cannot be written to at runtime (this is prevented by the
sandbox profile).

Trail of Bits

Apple iOS Security Evaluation 23

Data Encryption

Overview
Mobile devices face an increased risk of sensitive data compromise through a lost or stolen device than is faced by
traditional desktop workstations. While traditional workstations and laptops may be protected by Full Disk Encryption
with pre-boot authentication, most mobile platforms cannot perform any pre-boot authentication. The data encryption
facilities provided by the mobile platform, if any, are only available after the device has booted up. The limited data input
possibilities on a touch screen or mobile device keyboard also make entering long passphrases infeasible. All of this
makes data protection on mobile devices more challenging.

Apple’s iOS 4 uses a system called Data Protection in order to protect the user’s sensitive data in files on the filesystem
and items in the Keychain. Data Protection uses the user’s passcode and device-specific hardware encryption keys to
derive encryption keys for designated protected data. This is done in order to hamper an attacker’s efforts to recover the
protected data from a lost or stolen device.

The iOS Data Protection internals were documented in precise detail by researchers at Sogeti and presented at the Hack
in the Box Amsterdam conference in May 201114. Since it has been publicly described in detail elsewhere, this chapter
will only provide an overview of the data encryption facilities and limitations in iOS. In particular, users should be aware of
the currently very limited coverage of the Data Protection API and the ease with which the default simple four-digit
passcodes can be guessed on a lost or stolen device.

Hardware Encryption
The iPhone 3GS and later devices include a hardware AES cryptographic accelerator. This crypto accelerator is used for
realtime filesystem encryption and various other encryption tasks by iOS. In addition to providing high-performance data
encryption and decryption capabilities, it also provides many security services through its use of hardware-protected AES
keys.

The AES accelerator includes both a unique per-device key (referred to as the UID Key) and a globally shared key
(referred to as the GID Key) that are not accessible to the CPU. They may only be used for encryption or decryption
through the AES accelerator itself. The GID Key is primarily used to decrypt iOS firmware images provided by Apple. The
UID Key is used to derive a number of device-specific AES keys that are used to encrypt the filesystem metadata, files,
and Keychain items.

Trail of Bits

Apple iOS Security Evaluation 24

14 “iPhone Data Protection in Depth”,
http://esec-lab.sogeti.com/dotclear/public/publications/11-hitbamsterdam-iphonedataprotection.pdf

http://esec-lab.sogeti.com/dotclear/public/publications/11-hitbamsterdam-iphonedataprotection.pdf
http://esec-lab.sogeti.com/dotclear/public/publications/11-hitbamsterdam-iphonedataprotection.pdf

Data Protection API
The Data Protection API is designed to let applications declare when files on the filesystem and items in the keychain
should be decrypted and made accessible by passing newly defined protection class flags to existing APIs. The
protection class instructs the underlying system when to automatically decrypt the indicated file or keychain item.

In order to use enable Data Protection for files, the application must set a value for the NSFileProtectionKey attribute
using the NSFileManager class. The supported values and what they indicate are described in the table below. By
default, all files have the protection class NSFileProtectionNone, indicating that they may be read or written at any time.

File Protection Classes

Protection Class Description
NSFileProtectionNone The file does not need to be protected and can be read from or written to at any time
NSFileProtectionComplete The file is to be encrypted using a key derived, in part, from the user’s passcode and

should only be made available for reading and writing while the device is unlocked.

The protection class of items in the Keychain are similarly indicated by specifying the protection class to the SecItemAdd
or SecItemUpdate functions. Compared with files where the protection is either non-existent or complete, the Keychain
item protection classes offer somewhat more control. Keychain items can be accessible at any time, after the device has
been first unlocked after boot, or anytime that the device is unlocked. In addition, the application may specify whether
the Keychain item can be migrated onto other devices or not. If one of the “ThisDeviceOnly” protection classes are used,
then the Keychain item will be encrypted with a key derived from the Device Key. This ensures that only the device that
created the Keychain item can decrypt it. By default, all Keychain items are created with a protection class of
kSecAttrAccessibleAlways, indicating that they can be decrypted at any time and migrated onto other devices.

Keychain Item Protection Classes

Protection Class Description
kSecAttrAccessibleAlways The keychain item is accessible at any time
kSecAttrAccessibleAfterFirstUnlock The keychain item may be accessed anytime after the

device is unlocked for the first time after being powered
on.

kSecAttrAccessibleWhenUnlocked The keychain item may only be accessed while the device
is unlocked.

kSecAttrAccessibleAlwaysThisDeviceOnly The keychain item is accessible at any time, but it may
not be migrated onto another device.

kSecAttrAccessibleAfterFirstUnlockThisDeviceOnly The keychain item may be accessed anytime after the
device is unlocked for the first time after being powered
on and may not be migrated onto another device.

kSecAttrAccessibleWhenUnlockedThisDeviceOnly The keychain item may be accessed while the device is
unlocked and may not be migrated onto another device.

Filesystem Encryption
The iPhone 3GS and later devices use the embedded encryption accelerators to perform block-level encryption on both
the System and Data partitions. This is primarily to support a quick remote wipe operation. On earlier versions of iOS, the
remote wipe command would force the device to overwrite each block of the flash storage, which could take hours to

Trail of Bits

Apple iOS Security Evaluation 25

complete. Now, the entire filesystem can be rendered unreadable by simply wiping a single encryption key (referred to
here as the File System Key).

This level of filesystem encryption does not prevent the recovery of data from a lost device. If the remote wipe command
is not received, an attacker may boot the device using a custom RAM disk and use the device itself to decrypt the
encrypted partitions. This was demonstrated against the iPhone 3GS running iOS 3 by using iPhone jailbreak utilities to
exploit the Boot ROM and boot a custom RAM disk enabling remote SSH access to the device15. This same style of
attack can be used against iOS 4, but it will only give access to the filesystem metadata (directory structure, file names,
permissions, owners, file sizes, etc) and files protected using the NSProtectionNone protection class.

If the raw filesystem is forensically copied off the device by directly accessing the device file, however, only the filesystem
metadata will be accessible. The file contents, even files protected with NSProtectionNone, are encrypted using keys
derived from the Device Key and are not readable off of the original device unless the NSProtectionNone protection class
key (referred to as the “Class D Key”) has also been recovered from the device. This Class D Key is stored on the device
flash storage but encrypted using the Device Key, which is in turn derived from the device-specific UID Key. The UID Key
is only usable through the encryption accelerator and is not directly accessible by the CPU. Even with this key, however,
files protected with NSProtectionComplete will not be accessible without the User Passcode Key.

File Protection
All files are encrypted with a unique File Key stored in an extended attribute of the file. Since this is stored within the
filesystem metadata, it is effectively protected by the File System Key. The File Key itself is protected by the Class Key,
this Class Key is protected by the Device Key for NSProtectionNone and is protected by both the Device Key and the
User Passcode Key for NSProtectionComplete. The FIle Key is stored in the com.apple.system.cprotect extended
attribute with the format described in the table below.

com.apple.system.cprotect Extended Attribute Format

Type Name Description
uint32_t xattr_version Version 2
uint32_t unknown Appears unused
uint32_t persistent_class Protection Class A-E (1-5)
uint32_t key_and_integrity_length Always 40 bytes
uint8_t persistent_key[32] 256-bit AES key
uint8_t persistent_integrity[8] 160-bit SHA1 hash

iOS Passcodes
The Springboard application is responsible for presenting the lock screen and accepting the user’s passcode. The
passcode is verified by passing it through the MobileKeyBag framework and to the AppleKeyStoreUserClient
KeyBagUnlock method. In the kernel, the AppleKeyStore kernel extension derives the User Passcode Key through the
PBKDF2 key stretching algorithm using AES with the UID Key as the pseudorandom function. This User Passcode Key is
then used to unwrap the Class Keys from the System KeyBag. If the unwrapping fails, then the KeyBagUnlock method
returns that the passcode is incorrect.

After successive incorrect passcode guesses, Springboard enforces a increasing “back-off” delay in order to deter casual
passcode guessing. In addition, the device may be configured to wipe itself after a chosen number of incorrect passcode

Trail of Bits

Apple iOS Security Evaluation 26

15 http://www.zdziarski.com/blog/?p=516

http://www.zdziarski.com/blog/?p=516
http://www.zdziarski.com/blog/?p=516

guesses. These protections, however, are only enforced by the Springboard application, not the iOS kernel. With a
custom command-line application on a jailbroken device, the passcodes can be guessed directly against the
AppleKeyStoreUserClient without encountering an increasing delay or a forced device wipe.

In the course of this assessment, such a tool was written and tested on a jailbroken iPhone 4. On this configuration,
passcodes could be guessed at an average rate of 9.18 guesses per second. This yields a maximum of 18 minutes to
guess a simple 4-digit passcode.

Data Protection API Coverage
An enumeration of all of the files metadata on a raw filesystem image identified only three files protected with
NSProtectionComplete:

• Data:/mobile/Library/Caches/Snapshots/com.apple.Preferences/UIApplicationAutomaticSnapshotDefault-
Portrait@2x.jpg

• Data:/mobile/Library/Caches/Snapshots/com.apple.VoiceMemos/UIApplicationAutomaticSnapshotDefault-
Portrait@2x.jpg

• Data:/mobile/Library/Mail/Protected Index

These files indicated the only two aspects of iOS that make use of Data Protection: automatic screenshots and
MobileMail. The automatic screenshots are taken when the user is in an application and hits the home button to return to
the Springboard screen. This causes a screen shrinking transition to be displayed using a screenshot of the current
application view. These screenshots are written to the filesystem protected using the Data Protection API. In addition,
MobileMail uses Data Protection for stored e-mail messages and attachments. No other files or aspects of iOS were
found to use Data Protection for files stored on the filesystem.

As was demonstrated by a research report from the Fraunhofer Institute for Secure Information Technology16, many
passwords in the Keychain are protected using kSecAttrAccessibleAlways and are accessible from a lost phone without
requiring knowledge of the user’s passcode. Their results are summarized for common built-in password types in the
table below.

Password Keychain Item Protection Classes

Password Type Keychain Item Protection Class
MobileMail AOL Email Account kSecAttrAccessibleWhenUnlocked
CalDav kSecAttrAccessibleAlways
MobileMail IMAP Account kSecAttrAccessibleWhenUnlocked
MobileMail SMTP Account kSecAttrAccessibleWhenUnlocked
MobileMail Exchange Account kSecAttrAccessibleAlways
iOS Backup Password kSecAttrAccessibleWhenUnlocked
LDAP kSecAttrAccessibleAlways
Voicemail kSecAttrAccessibleAlways
VPN IPsec Shared Secret kSecAttrAccessibleAlways

Trail of Bits

Apple iOS Security Evaluation 27

16 “Lost iPhone? Lost Passwords! Practical Consideration of iOS Device Encryption Security”,
http://sit.sit.fraunhofer.de/studies/en/sc-iphone-passwords.pdf

http://sit.sit.fraunhofer.de/studies/en/sc-iphone-passwords.pdf
http://sit.sit.fraunhofer.de/studies/en/sc-iphone-passwords.pdf

Password Type Keychain Item Protection Class
VPN XAuth Password kSecAttrAccessibleAlways
VPN PPP Password kSecAttrAccessibleAlways
Safari Forms Auto-Fill kSecAttrAccessibleWhenUnlocked
WiFi WPA Enterprise with LEAP kSecAttrAccessibleAlways
WiFi WPA kSecAttrAccessibleAlways

Trail of Bits

Apple iOS Security Evaluation 28

Assessment
The Data Protection API in iOS is a well designed foundation that enables iOS applications to easily declare which files
and Keychain items contain sensitive information and should be protected when not immediately needed. There are no
obvious flaws in its design or use of cryptography. It is, however, too sparingly used by the built-in applications in iOS 4,
let alone by third-party applications. This leaves the vast majority of data stored on a lost device subject to recovery if a
remote wipe command is not sent in time.

The default iOS simple four-digit passcodes can be guessed in under 20 minutes using freely available tools, which will
allow the attacker will physical access to the device to also decrypt any files or items in the Keychain that are protected
using the Data Protection API. For this reason, it is crucial that sufficiently complex passcodes be used on all iOS
devices.

Even with sufficiently complex passcodes, there are a number of sensitive passwords that may be recovered from a lost
device, including passwords for Microsoft Exchange accounts, VPN shared secrets, and WiFi WPA passwords. This
should be taken into account and these passwords should be changed if an iOS device storing them is lost.

Trail of Bits

Apple iOS Security Evaluation 29

