Easy and quick vulnerability hunting in Windows

Cesar Cerrudo
CTO at IOActive Labs
Who am I?

• CTO at IOActive Labs
 • Leading efforts to produce cutting edge research
• I have been working on security for +9 years
• I have found and helped to fix hundreds of vulnerabilities in software such as MS Windows, MS SQL Server, Oracle Database Server, IBM DB2, and more...
• +50 vulnerabilities found on MS products (+20 on Windows operating systems)
• I have researched and created novel attacks and exploitation techniques
Introduction

• With every application you install you are weakening your system security

• Sometimes you need to audit Windows applications
 – Before installing them in hardened servers or in hundreds of desktops.
 – For fun, etc.

• A quick and easy security audit can help to find out vulnerabilities
 – Maybe you can convince your boss of not installing the application or to assume the risks.
 – Make some $$$ by selling it, etc.
Introduction

• Finding some kind of vulnerabilities is not difficult, you just need to know how and where to look for
 – Hopefully today you will learn some how and where
The tools

• Sysinternals tools
 – Process explorer, Process monitor
 – TCPview, accesschk, WinObj, etc.

• Windows debugger
 – WinDbg

• Windows tools
 – Registry editor, Windows explorer, Component services, WMI Control, netstat, cacls, etc.

• Other
 – Wireshark, DeviceTree, etc.
The process

• Always observe and ask yourself What, How, When and Why, be always curious
 – What is that? What does that?
 – How it does that?
 – When it does that?
 – Why it does that?

• Knowledge will get you free and also help you to find vulnerabilities
Targets

• Privileged applications
 – Windows Services
 • Services processes run under privileged accounts
 – Some non services processes run with higher privileges than regular ones
 • WMI processes
 • Windows Installer processes
 • Windows task processes
 • COM Servers, etc.

– Device drivers
– Vulnerabilities could allow to elevate privileges
Targets

• Regular applications
 – ActiveX components
 • Can be accessed remotely by web sites from Internet or Intranet
 • Vulnerabilities could allow to execute code or perform dangerous actions
 – Can save sensitive information on files or registry
 – On Windows >= Vista there is privilege elevation by running with different Integrity Levels
Attack surface

- Network (TCP/IP, etc.)
- File system
- Registry
- Kernel Drivers
- GUI
- DACLs
- COM servers, WMI and ActiveX
Attack surface: GUI

• Unless the application is an interactive service (which is not common nowadays) there isn’t much to look for here.
 – If it’s an interactive service, GUI is protected on Windows >= Vista with new protection against shatter attacks
• If it’s a web app then is just web app security related and not covered here
• So, we won’t focus on the GUI
Attack surface: GUI

• Ask yourself
 – Is an interactive service?
 • Can I manipulate the input in some way?
Attack surface: File System

• Applications save and read data from files
• Applications load binaries (.exe, .dll) read from files that are stored on folders
 – Dll loading search order weaknesses
• Files and folders have DACL
 – If DACL is weak then low privileged users can read, modify, delete, create, etc. files and folders.
 • This could allow elevation of privileges.
 – Reading a password (cleartext or hashed)
 – Modifying/creating a binary, configuration file, etc.
Attack surface: File System

• Ask yourself
 – Have any application file or folder weak permissions?
 • Is the file used to save configuration data?
 – Does configuration data include security options?
 • Is the file used to save sensitive information?
 • Are Dlls or other binaries loaded from that folder?
 – Does the application fail to load Dlls from regular folders?
 • There is any folder with weak permission in Path environment variable?
Attack surface: File System

- **Accesschk.exe users c:\windows –wsu**
 - Searches for file and folder write permissions on all files and folder under c:\windows for users group.
- **ProcMon can monitor for file writing, reading and Dll loading, etc.**
- **Windows Explorer allows to view files and folders, also to view and modify DACLs.**
- **Demo**
 - A couple of Windows 0days, one for NSA only and the other one for lazy people that doesn’t patch often
Attack surface: Registry

• Applications save and read data from registry
• Registry keys have DACL
 • If DACL is weak then low privileged users can read, modify, delete, create, etc. values and keys.
 – This could allow elevation of privileges
 » Changing a folder path or file name
 » Changing some value that alters application execution
 » Reading a password (cleartext or hashed)
 » Etc.
Attack surface: Registry

• Ask yourself
 – Have an application registry key weak permissions?
 • Is the key used to save configuration data?
 – Does configuration data include security options?
 • Is the key used to save sensitive information?
 • Is the key used to save files or folder paths?
 – Are those paths used by the application to access files and folders?
Attack surface: Registry

• Accesschk.exe users hklm –kwsu
 –Searches for registry key write permissions on keys under HKEY LOCAL MACHINE for users group.

• ProcMon can monitor for registry writing, reading, modification, etc.

• Registry Editor allows to view and modify registry key and values, also to view and set DACLs

• Demo
Attack surface: DACLs

- Processes, Threads, Files, File Mappings, Pipes, Interprocess synchronization objects, etc. are Kernel objects
 - If they are securable they have a security descriptor then a DACL
 - Named Kernel objects can be accesses from other processes
 - Some unnamed such as processes and threads can be accessed too
Attack surface: DACLs

• Windows services are securable objects
 – Weak DACL means that low privileged users can change services permissions and elevate privileges
Attack surface: DACLs

• Ask yourself
 – Can the Kernel object be accessed by other processes?
 • Has it a NULL DACL?
 • Has it a weak DACL?
 – What kind of Kernel object is?
 • What are the known attack vectors for processes, threads, file mappings, pipes, etc.?
 – Can a low privileged user change the service DACL or configuration?
 – Demo
Attack surface: COM Servers, WMI and ActiveX

• Applications can install COM Servers, WMI providers and ActiveX controls
 – COM Servers and WMI providers can run under high privileged accounts
 • New Windows versions enforce a strong ACL on COM Servers
 – Applications can modify ACL but with limits
 • If dangerous functionality is exposed to low privileged users it could be abused (most servers will impersonate the caller)
 – ActiveX could be remotely accessed by web sites
 • This could allow abuse of functionality or exploitation of known or unknown vulnerabilities
Attack surface: COM Servers, WMI and ActiveX

• Ask yourself
 – Are there COM Servers or WMI providers with weak DACLs?
 • Do they provide dangerous functionality?
 – Does the COM Server or WMI provider run under a high privileged account and allow low privileged accounts to access them?
 – Can the functionality be abused in some way?
 – Are there ActiveX components with non secure settings?
 • Have these ActiveX vulnerabilities or expose dangerous functionality?
Attack surface: COM Servers, WMI and ActiveX

• Component services tool displays COM Servers permissions and WMI Control tool displays WMI ones

• ActiveX safe for scripting and safe for initialization
 – Subkeys \{7DD95801-9882-11CF-9FA9-00AA006C42C4\} and \{7DD95802-9882-11CF-9FA9-00AA006C42C4\} under key HKCR\CLSID\{ActiveXGUID\}\Implemented Categories
 – Kill bit set if value named Compatibility Flags = 0x00000400 on HKLM \SOFTWARE\Microsoft\Internet Explorer\ActiveX Compatibility \ActiveXGUID
Attack surface: COM Servers, WMI and ActiveX

• To detect COM objects (Servers, WMI and ActiveX) installed by an application monitor (ProcMon tool) key HKLM\SOFTWARE\Classes\CLSID
 – WMI providers are also listed on key HKLM\SOFTWARE\Microsoft \WBEM\CIMOM\SecuredHostProviders

• Demo
Attack surface: Network

• Services can be accessed locally or from the network, using TCP/IP or other protocols
 – We need to identify what ports the application is listening on
 • netstat –anob
 • TCPView

• Services can make outbound connections
 – netstat –anob
 – TCPView
 – Wireshark
Attack surface: Network

• Ask yourself
 – Does the application listen in some ports?
 • What ports?
 • Does it accept remote and/or local connections?
 • What protocols are used?
 – Does the application make outbound connections?
 • What protocols are used?
 • Does it update itself?
 – Update is done in a secure way?
Attack surface: Network

• Fuzz protocols on open ports
 – Time consuming unless you do simple fuzzing
 • Simple fuzzing could be just changing bytes incrementally
 – Just capture a network packet and build a simple tool to change bytes in the packet and send it while target application is attached to a debugger
 – Could easily find some DOS if application is buggy

• Demo
Attack surface: Kernel drivers

• Some applications install device drivers
 – Weak DACLs could allow abuse of functionality and elevation of privileges
 • WinObj and accessenum tools can be used to see DACLs
 – Accesschk.exe -wuo everyone \device
 – They can have vulnerabilities allowing elevation of privileges
 – Need to RE and debug to find out functionality and audit it
 • DeviceTree displays a lot of information about device drivers
Attack surface: Kernel drivers

• Ask yourself
 – Does the application install device drivers?
 • Do they have a proper DACL?
 • What functionality do they provide?
 – Can the functionality be abused/exploited in some way?

• Demo
Conclusions

• Finding vulnerabilities is not difficult if you know how and where to look for.

• Be always aware and ask yourself What, How, When and Why
Fin

• Questions?
• Thanks

• E-mail: ccerrudo@ioactive.com
• twitter: @cesarcer