

Crucial Security, Inc.

	

Per-­Packet	
 Information	
 specification	

for	
 Geolocation	
 	

Jon “Johnny Cache” Ellch, Senior Security Researcher

jellch@harris.com

 Crucial Security, Inc.
14900 Conference Center Drive

Suite 225
Chantilly, VA 20151

VERSION 2.0.0-d21

July 12, 2011

Geolocation-Tag Specification v2.0

1

TABLE OF CONTENTS

Paragraph Title Page

0. Table	
 of	
 Contents	

1.	
 Introduction ...4	

1.1.	
 Purpose...4	

2.	
 Format..5	

2.1.	
 Format	
 overview ...5	

2.2.	
 Format	
 details ...8	

2.2.1.	
 Basic	
 geotagging	
 header ..8	

2.2.2.	
 Fixed	
 point	
 numerical	
 representation .. 10	

2.2.3.	
 Encoding	
 Application	
 Specific	
 data... 18	

3.	
 GPS-­‐TAG ... 20	

3.1.	
 GpsFlags	
 bitmask... 21	

3.2.	
 GPS-­‐TAG	
 fields .. 21	

4.	
 VECTOR-­‐TAG... 24	

4.1.	
 VectorFlags	
 bitmask .. 25	

4.2.	
 VectorCharacteristics	
 bitmask ... 26	

4.3.	
 Vector	
 operations.. 26	

4.3.1.	
 RelativeTo:	
 Earth ... 26	

4.3.2.	
 RelativeTo:	
 CurrentFrame .. 27	

4.3.3.	
 RelativeTo:	
 ForwardFrame... 27	

4.4.	
 Creating	
 Reference	
 Frames.. 27	

4.4.1.	
 Earth	
 Frame	
 of	
 reference ... 27	

4.4.2.	
 Current	
 Frame	
 of	
 reference.. 27	

4.4.3.	
 Forward	
 Frame	
 of	
 reference... 27	

4.4.4.	
 Reference	
 Frame	
 summary .. 28	

4.5.	
 Rotations. ... 28	

4.6.	
 Offsets .. 28	

4.7.	
 Description.. 28	

4.8.	
 ApplicationData .. 28	

4.9.	
 VECTOR-­‐TAG	
 example ... 28	

.. 29	

5.	
 SENSOR-­‐TAG... 30	

5.1.	
 Sensor	
 tag	
 types .. 30	

5.2.	
 Sensor	
 tag	
 notes.. 31	

5.3.	
 Sensor	
 tag	
 example	
 (total	
 velocity).. 31	

.. 31	

6.	
 ANTENNA-­‐TAG.. 33	

6.1.	
 AntennaFlags	
 Bitmask ... 33	

6.2.	
 ANTENNA-­‐TAG	
 fields ... 34	

6.3.	
 ANTENNA-­‐TAG	
 usage	
 rules. ... 35	

6.3.1.	
 Omni-­‐directional	
 antennas: ... 35	

6.3.2.	
 Modelname: .. 35	

6.3.3.	
 Fractional	
 gain: .. 35	

6.3.4.	
 BeamID	
 field: ... 35	

6.4.	
 ANTENNA-­‐TAG	
 example .. 36	

Geolocation-Tag Specification v2.0

2

6.5.	
 ANTENNA-­‐TAG	
 caveats.. 38	

7.	
 RADIOTAP/802.11COMMON	
 TAGS ... 39	

8.	
 Coordinate	
 Systems .. 40	

8.1.	
 The	
 Absolute	
 East,	
 North,	
 Up	
 (ENU)	
 Coordinate	
 System .. 40	

8.2.	
 The	
 Relative	
 Right,	
 Forward,	
 Up	
 (RFU)	
 Coordinate	
 System .. 42	

8.3.	
 Key	
 Frames	
 of	
 reference.. 43	

8.3.1.	
 Earth	
 Frame	
 of	
 Reference... 43	

8.3.2.	
 Forward	
 Frame	
 of	
 Reference.. 44	

8.3.3.	
 Current	
 Frame	
 of	
 Reference ... 44	

8.4.	
 Non-­‐Key	
 Frames	
 of	
 Reference ... 45	

8.5.	
 Implementation	
 of	
 a	
 Reference	
 Frame .. 45	

8.5.1.	
 Default	
 Frames	
 of	
 Reference.. 46	

8.6.	
 Converting	
 Relative	
 Offsets	
 and	
 Rotations	
 to	
 ENU	
 Coordinates ... 46	

8.6.1.	
 Computing	
 Rotations ... 46	

8.6.2.	
 Relative	
 Offsets.. 47	

8.6.3.	
 Example	
 System	
 with	
 Relative	
 Rotation	
 and	
 Offset	
 Computations ... 47	

8.6.4.	
 Converting	
 offsets	
 to	
 ENU	
 Coordinates .. 50	

9.	
 Processing	
 GEOLOCATION-­‐TAGs ... 52	

9.1.	
 Global	
 GEOLOCATION-­‐TAG	
 state ... 52	

9.2.	
 Reference	
 Frames.. 53	

9.2.1.	
 Key	
 reference	
 frames ... 53	

9.2.2.	
 Non-­‐Key	
 reference	
 frames ... 54	

9.3.	
 Sensor	
 Data... 55	

9.4.	
 GEOLOCATION-­‐TAG	
 state	
 machine	
 variables ... 56	

9.4.1.	
 Curr_Signal .. 56	

9.4.2.	
 Curr_Antenna .. 56	

9.4.3.	
 Reference	
 frames:.. 56	

9.5.	
 PPI-­‐GEOLOCATION	
 TAG	
 processing	
 overview .. 58	

9.5.1.	
 GPS-­‐TAG	
 processing ... 58	

9.5.2.	
 VECTOR-­‐TAG	
 processing... 58	

9.5.3.	
 SENSOR-­‐TAG	
 processing... 59	

9.5.4.	
 ANTENNA-­‐TAG	
 processing.. 59	

9.5.5.	
 DOT11COMMON-­‐TAG	
 processing... 59	

9.5.6.	
 Invalid	
 tags .. 59	

9.6.	
 Undefined	
 values .. 59	

9.6.1.	
 Definedness	
 of	
 ReferenceFrame.Vec.. 59	

9.6.2.	
 Undefined	
 altitudes ... 60	

10.	
 Applications.. 61	

Common	
 use	
 cases .. 61	

10.1.	
 GPS	
 	
 Only... 61	

10.2.	
 GPS	
 +	
 VECTOR	
 +	
 ANTENNA	
 +	
 RADIOTAP .. 63	

10.3.	
 Directional	
 of	
 travel	
 +Velocity	
 +	
 one	
 directional	
 antenna... 65	

10.4.	
 Two	
 static	
 directional	
 antennas	
 with	
 offsets.. 68	

10.5.	
 Electronically	
 steerable	
 antenna.. 74	

10.6.	
 Mechanically	
 steerable	
 antenna .. 76	

10.7.	
 Drifing	
 boat ... 79	

10.8.	
 Time	
 of	
 arrival	
 analysis .. 80	

10.8.1.	
 Timing	
 analysis	
 details ... 83	

10.9.	
 AOA	
 example .. 84	

10.10.	
 TRANSMITTER_POSITION	
 example .. 86	

10.11.	
 Dead	
 reckoning	
 with	
 accelerometers... 88	

Geolocation-Tag Specification v2.0

3

11.	
 Implementers	
 notes.. 89	

11.1.	
 What	
 is	
 the	
 current	
 version	
 of	
 this	
 specification? .. 89	

11.2.	
 My	
 GPS	
 outputs	
 a	
 heading	
 and	
 speed.	
 Why	
 can’t	
 it	
 go	
 in	
 the	
 GPS	
 TAG?... 89	

11.3.	
 So	
 I’ve	
 got	
 this	
 VECTOR-­‐TAG.	
 What	
 does	
 it	
 represent? .. 89	

11.4.	
 When	
 should	
 I	
 set	
 the	
 DEFINES_FORWARD	
 bit?... 89	

11.5.	
 Can	
 a	
 single	
 packet	
 set	
 DEFINES_FORWARD	
 more	
 than	
 once? ... 89	

11.6.	
 I’ve	
 got	
 this	
 super-­‐fancy	
 TDOA	
 based	
 system.	
 	
 How	
 is	
 it	
 supported	
 by	
 this	
 specification? 89	

11.7.	
 I’ve	
 got	
 this	
 super-­‐fancy	
 accelerometer	
 based	
 system.	
 Can	
 I	
 encode	
 it	
 with	
 this	
 format?................... 89	

11.8.	
 I	
 want	
 to	
 encode	
 some	
 data	
 in	
 	
 PPI-­‐GEOLOCATION	
 TAG,	
 but	
 don’t	
 have	
 a	
 packet	
 to	
 insert	
 it	
 into.	
 What	

should	
 I	
 do? ... 90	

12.	
 Wireshark	
 dissector	
 examples .. 91	

12.1.	
 Basic	
 geo-­‐fencing... 91	

12.2.	
 Beamwidth	
 filtering... 91	

12.3.	
 Heading	
 filtering.. 91	

13.	
 Future	
 work .. 92	

13.1.	
 MIMO	
 support... 92	

13.2.	
 Accelerometer	
 based	
 support.. 92	

14.	
 Administrivia .. 93	

14.1.	
 Future	
 updates .. 93	

14.2.	
 Authors ... 93	

14.3.	
 Revision	
 history... 93	

14.4.	
 References .. 93	

Geolocation-Tag Specification v2.0

4

1. Introduction	

When capturing live networking data, it is often useful to store out-of-band meta
information alongside the actual packet contents. Historically this has been most
useful for wireless networks, where information such as signal strength and channel
number are of particular importance.

 There have been a number of ad-hoc solutions to this problem in the past (prism

headers, AVS headers, and more recently radiotap headers). None of these provided
a general solution for allowing arbitrary meta-information to be stored inline with a
packet however.

CACE technologies has developed a general solution to this problem known as Per-
Packet Information (PPI). Tools that implement PPI allow arbitrary data to be
included with individual packets in a standard libpcap formatted packet capture. The
PPI specification can be downloaded from CACE at http://www.cacetech.com/
documents/

1.1. Purpose	

The purpose of this specification is to document a series of PPI tags that can be used
to describe the context in which an 802.11 (or any other) packet was captured. By
utilizing a common format it is the hope of the author that a level of interoperability
will be achieved across different tools. This will enable the de-coupling of packet
visualization and analysis from the platform they are collected on. Four unique tags
are described in this paper, and are collectively referred to as the GEOLOCATION-
TAGS.

PPI GEOLOCATION-TAGS

Number Name Description
30002 GPS An extendible tag that can carry Lon/Lat/Alt as well as

error levels and a 64-bit timestamp. Despite the name, it
may be populated by non-GPS devices (INS, software,
etc).

30003 VECTOR An extendible tag that carries all rotational and offset
information. Data encoded in a VECTOR field may come
from different sources (GPS’s and digital compass’s being
the most common). VECTOR-TAGs can be used to
represent many things, the most useful being
antenna/vehicle orientation.

30004 SENSOR Used to store arbitrary sensor data that is associated with
the current reference frame. Most commonly used for
velocity and acceleration.

30005 ANTENNA An extendible tag that can carry information about the
antenna utilized to collect the packet. Properties include
horizontal and vertical beamwidth, as well as gain.

Another tag, already defined and documented by CACE, is also explicitly recognized
by the PPI-GEOLOCATION standard. This tag, 802.11-COMMON, is defined in the PPI
specification. Its description here is only for informational purposes.

2 802.11- Loosely based off radiotap standard, can be used to

Geolocation-Tag Specification v2.0

5

COMMON by advanced PPI-GEOLOCATION applications to
indicate signal strength on a per-interface or per-
antenna (vs per-packet) level.

2. Format	

 The following section describes the layout on disk of a pcap file that contains PPI

encapsulated data. The description of the pcap and PPI headers are for informational
purposes only; they are defined outside the scope of this document. Detailed
definitions of the GEOLOCATION-TAGS are presented in sections 3 through 6.

2.1. Format	
 overview	

Every pcap file begins with a pcap_file_header. This fixed size header contains a magic
number, version information, and a data linktype (often abbreviated DLT). The DLT
field specifies the type of packets encapsulated in the file. Commonly used DLTs
include Ethernet (DLT_EN10MB) and 802.11 (DLT_IEEE802_11). When PPI is in use
the DLT will be set to DLT_PPI (192).

Immediately following the pcap_file_header, a pcap_pkthdr will be found. Every
packet encapsulated in a pcap file has a pcap_pkthdr. This header contains a
timestamp, the total length of the packet, and the number of bytes actually captured
(may be less than the total). Both length fields in a pcap_pkthdr include the PPI data
that follows.

Geolocation-Tag Specification v2.0

6

 Immediately following the pcap_pkthdr, the linktype specific information begins. In

the case of DLT_PPI the next header encountered is a ppi_packetheader.

This header specifies the version, length, and data link type of the following packet.
The pph_len field accounts only for PPI meta-information PPI encapsulated data. It
does not include data farther up the stack (for example, 802.11 headers).

After the ppi_packetheader, zero or more ppi_fieldheaders will be found. There is
one ppi_fieldheader for each PPI tag included in the file.

The pfh_type field is a 16-bit tag that specifies the type of data that follows (30002
for GPS information, for example). The pfh_datalen field specifies the length of the
data that follows (must be between 0 and 65,520 inclusive). Following each
ppi_fieldheader is a block of tag-specific pfh_datalen data.

The diagram below shows a pcap file where the first packet has two unique
ppi_fieldheaders.

Geolocation-Tag Specification v2.0

7

These two ppi_fieldheaders could correspond to a GPS and VECTOR tag. Assuming
that is the case, we would have a packet that looked like the following diagram.

Geolocation-Tag Specification v2.0

8

2.2. Format	
 details	

This section describes the GEOLOCATION-TAGS in detail. Although the
GEOLOCATION-TAGS are logically independent, they share many implementation
details. In particular, they share a capability for specifying the presence of various
fields, the entire length of a particular tag, and a cross platform way to efficiently
represent fixed point numbers. Before describing the GEOLOCATION-TAGS a brief
note on radiotap headers is in order.

 GEOLOCATION-TAGS have been influenced heavily by the format of radiotap

headers. Radiotap headers are the latest in a series of ad-hoc solutions to encoding
important characteristics about 802.11 packets in-line with packet captures. For
example, radiotap headers can specify the channel and received signal strength that
a packet was captured with, as well as many other characteristics.

 PPI-GEOLOCATION tags are designed to be particularly easy for developers familiar

with radiotap to read and write. Readers unfamiliar with radiotap may wish to
familiarize themselves with it before implementing any PPI-GEOLOCATION parsers.

2.2.1. Basic	
 geotagging	
 header	
 	

All GEOLOCATION-TAGS begin with a base_geotag_header. This header is
intentionally bit-for-bit compatible with a radiotap header. This design decision
allows commonly available radiotap parsers to be re-purposed by initializing them
with different tables for the field sizes and descriptions. The base tag header
(logically equivalent to an ieee80211_radiotap_header) is described below.

 Struct base_geotag_header {

u_int8_t version; //set to 1
u_int8_t pad;
u_int16_t len; //entire length
u_int32_t present; //bitmask indicating fields present
} __attribute__((__packed__));

The version field will change only for updates that would break previous parsers.
Currently all GEOLOCATION-TAGS set this to 2. Version 1 was circulated under
1.2.0. Version 1 did not define sensor tags, and had acceleration/velocity stored in
Vector tags. Version 0 was utilized for internal development purposes, and should
not be used in the wild. Version 2 is the first widely implemented version of this
specification.

 The pad field serves only to make the len field naturally aligned.

 The len field specifies the length of the current individual tag including the
base_geotag_header. This value must be between 8 and 65,535. (The
base_geotag_header.len field is redundant with the ppi_fieldheader.data_len
field. Its inclusion is convenient for standalone parsers, which may be unaware of the
PPI encapsulation.)

Geolocation-Tag Specification v2.0

9

 The 32-bit present field is a bitmask specifying which fields are present in this GPS,

VECTOR, SENSOR, or ANTENNA tag. The use of the bitmask scheme allows for tags
to contain a subset of all possible data (for example, longitude and latitude, but not
altitude). The tag-specific bit definitions are covered in sections 3 through 6.

The following properties are true of both radiotap and base_geotag_header parsing:

• Fields are strictly ordered; The developer can specify any combination of fields,

but the data must appear in the same order as the set bit numbers in the
present bitmask.

• All data fields including the version, len, and present fields in the

base_geotag_header are to be specified in little endian byte-order.

• Field lengths are implicit: the header format does not specify field lengths, it is

expected that the developer knows the corresponding length based on the data
field name.

• Variable-length fields are not supported since field lengths are implicit.

• The MSB of the present bitmask is utilized to indicate the presence of an
extended bitmask following it, although this is currently unused.

While the list of similarities is extensive, there is one significant difference between
radiotap headers and base_geotag_headers: Base_geotag_headers do not force
natural alignment.

The requirement for natural alignment in radiotap was (assumedly) made because
time-sensitive kernel level code is involved in writing radiotap headers. It is expected
that GEOLOCATION-TAGS will be handled in userland, and therefore the need for
natural alignment is less compelling.

Geolocation-Tag Specification v2.0

10

2.2.2. Fixed	
 point	
 numerical	
 representation	

GEOLOCATION-TAGS need to represent a diverse range of floating point numbers on
disk in a platform neutral manner. The details on how floating point values are stored
on disk are covered in this section.

A majority of floating point values processed by GEOLOCATION-TAGS can be handled
as fixed point values ranging between 000.000000 and 999.999999. These values
are said to be fixed3_6 encoded (the 3_6 denoting the number of digits on either
side of the decimal point).

Values stored in the fixed3_6 format include GPS error margins, compass bearings,
and others. A reference encoding/decoding function is presented in section 2.2.2.1,
as well as a table illustrating the encoding scheme.

While the fixed3_6 encoding is sufficient for expressing many values, some fields
require more specialized formats. These fields either need to represent negative as
well as positive values, or have unique requirements on the location of the decimal
point. In particular, longitude, latitude and altitude require special cases to ensure an
optimal range and precisions are utilized. These specialized fixed-point formats are
detailed in Sections 2.2.2.1, 2.2.2.2, and 2.2.2.3.

The following table summarizes the features of each encoding format.

Standard GEOLOCATION-TAG Number Encoding Formats
Name Section Range Precision Use

fixed3_6 2.2.2.1 000.000000
+999.999999

3.6 Position error estimates,
Angular rotations and error
estimates, Antenna
Beamwidth and Gain.

Fixed3_7 2.2.2.2 -180.0000001
+180.0000001

3.7 Latitude and Longitude.

Fixed6_4 2.2.2.3 -180000.0001
+180000.0001

6.4 Altitude, Position offsets,
Velocity and Acceleration

Geolocation-Tag Specification v2.0

11

2.2.2.1. Fixed	
 3_6	
 encoding	
 	

//Input: a positive floating point value
//between 000.0000000 and 999.9999999
//Output: a LITTLE ENDIAN (not necessarily native)
//32 bit unsigned value between 0 and 999999999
//Returns: 0 on success
// -1 on input value to negative
// -2 on input value to positive
int flt_to_fixed3_6(double l, u_int32_t &out)
{
 if(l <= -000.000001)
 {
 fprintf(stderr, “flt_to_fixed3_6: Error. Input value too neg to
convert. %f\n”,l);
 return -1;

 }
 if(l > +999.999999)
 {
 fprintf(stderr, “flt_to_fixed3_6: Error. Input value too pos to
convert. %f\n”,l);
 return -2;
 }
 out = l * 1000000;
 #if BYTE_ORDER == BIG_ENDIAN
 SWAP4(out);
 #endif
 return 0;
}

Table 1: fixed3_6 encoding examples
Value: Encoded (decimal) Encoded:

(little endian)
Comment

000.000000 0000000000 0x00000000 Zero
+000.000001 0000000001 0x01000000 One millionth
+001.000000 0001000000 0x42420f00 One
+123.123456 0123123456 0x00b75607
+360.000000 0360000000 0x002A7515
+999.999999 0999999999 0xFFC99A3B Largest legal value
+1000.000000 1000000000 0x00CA9A3B First illegal value

Geolocation-Tag Specification v2.0

12

//Input: a LITTLE ENDIAN (not necessarily native)
//32 bit unsigned value between 0 and 999999999
//Output: a positive floating point value
//between 000.0000000 and 999.9999999
//Returns: 0 on success
// -2 on input value to positive
int fixed3_6_to_flt(u_int32_t l, double &out)
{
 #if BYTE_ORDER == BIG_ENDIAN
 SWAP4(l);
 #endif
 if(l >= +1000000000)
 {
 fprintf(stderr, “flt_to_fixed3_6: Error. Input value too pos to
convert. %f\n”,l);
 return -2;
 }
 out = (double) l / 1000000.0;
 return 0;

2.2.2.2. fixed_3_7	
 encoding	
 (Longitude/Latitude)	
 	

Most programs represent longitude and latitude as a floating point value between
-180.0000000 and +180.0000000. In order to eliminate the need to store a sign,
these values are mapped to the range (0, 3600000000), with a fixed decimal point
after the third digit. This allows any longitude/latitude to be represented in 4 bytes
with 7 digits to the right of the decimal. Any values between 3600000001
(0x0xD693A401) and 4294967295 (0xFFFFFFFF) are invalid. A sample function that
performs this mapping is shown below.

Table 2: fixed3_7 encoding samples
Value: Encoded (decimal) Encoded:

(little endian)
Comment

-180.0000001 Illegal value
-180.0000000 0000000000 0x00000000 Smallest legal value
-179.9999999 0000000001 0x01000000
000.0000000 1800000000 0x00D2496B Zero

+123.1234567 3031234567 0x07F8ACB4
+179.9999999 3599999999 0xFFA393D6
+180.0000000 3600000000 0x00A493D6 Largest legal value
+180.0000001 3600000001 0x01A493D6 Illegal value

Geolocation-Tag Specification v2.0

13

//Input: a signed floating point value (latitude/longitude are good examples)
//between -180.0000000 and +180.0000000, inclusive)
//Output: a LITTLE ENDIAN (not necessarily native)
//32 bit unsigned value between 0 and 3600000000
//Returns: 0 on success
// -1 on input value to negative
// -2 on input value to positive
int flt_to_fixed_3_7(double l, u_int32_t &out)
{
 if(l <= -180.0000001)
 {
 fprintf(stderr, “ppi_gpstag_encode_lon_lat: Error. Input value too neg

to convert. %f\n”,l);
 return -1;
 }

 if(l >= +180.0000001)
 {
 fprintf(stderr, “ppi_gpstag_encode_lon_lat: Error. Input value too pos

to convert. %f\n”,l);
 return -2;
 }
 //scaled_l may be positive or negative.
 Int32_t scaled_l = (int32_t) ((l) * (double) 10000000);
 out = (u_int32_t) (scaled_l + ((int32_t) 180 * 10000000));
 #if BYTE_ORDER == BIG_ENDIAN
 SWAP4(out);
 #endif
 return 0;
}

Geolocation-Tag Specification v2.0

14

//Input: a LITTLE ENDIAN (not necessarily native) 32 bit unsigned
//value between 0 and 3600000000
//Output: a signed floating point (suitable for latitude or longitude)
//between -180.0000000 and +180.0000000, inclusive)
//Returns: 0 on success
// -2 on input value to positive
int fixed_3_7_to_flt(u_int32_t l, double &out)
{
 #if BYTE_ORDER == BIG_ENDIAN
 SWAP4(l);
 #endif
 if (l > 3600000000)
 {
 fprintf(stderr, “ppi_gpstag_decode_lon_lat: Error.
 Input value too pos to convert. %f\n”,l);
 return -2;
 }
 int32_t remapped_l = l – (180 * 10000000);
 out = (double) ((double) remapped_l / 10000000);
 return 0;
}

Geolocation-Tag Specification v2.0

15

2.2.2.3. fixed_6_4	
 encoding	
 (Altitude,	
 Sensor	
 Data)	

Some floating point values, such as altitude, need to express a larger range with less
precision. The fixed_6_4 encoding scheme can be used in these cases.

For example, most altitudes range between -10,000m (Pacific Ocean’s Marianas
Trench) and +10,000m (commercial aircraft). By utilizing the following encoding
scheme (similar to fixed_3_6) we can map (-180000.0000, +180000.0000) onto (0,
3600000000). This provides sufficient range to express altitudes on Earth with
millimeter level precision.

This format is also used for all Sensor data in conjunction with a scaling factor term,
which allows a general signed, floating point format with 9+ significant digits over
the range of 10-128 to 10127. See Section 5 for details on Sensor Tags and Sensor
Data types.

Table 3: fixed_6_4 encoding samples
Value: Encoded

(decimal)
Encoded

(little endian)
Comment

 -180000.0001 Illegal value
 -180000.0000 0000000000 0x00000000 Most negative expressible value
 -179999.9999 0000000001 0x01000000
 -010000.0000 0800000000 0x0008af2f Marianas trench (approx)
 000000.0000 1800000000 0x00D2496B Sea level
+000000.0001 1800000001 0x01D2496B Sea level plus .0001 meters
+021000.0123 2010000123 0xfb2ace77 Very high altitude flight
+179999.9999 3599999999 0xFFA393D6
+180000.0000 3600000000 0x00A493D6 Most positive expressible value
+180000.0001 Illegal value

Geolocation-Tag Specification v2.0

16

//Input: a signed floating point value (f.ex, altitude) between
//-180000.0000 and +180000.0000 meters, inclusive)
//Output: a LITTLE ENDIAN (not necessarily native)
// 32 bit unsigned value between 0 and 3600000000
//Returns: 0 on success
// -1 on input value to negative
// -2 on input value to positive
int flt_to_fixed_6_4(double l, u_int32_t &out)
{
 if(l <= -180000.0001)
 {
 fprintf(stderr, “ppi_gpstag_encode_lon_lat: Error. Input value too neg

to convert. %f\n”,l);
 return -1;
 }

 if(l >= +180000.0001)
 {
 fprintf(stderr, “ppi_gpstag_encode_lon_lat: Error. Input value too pos

to convert. %f\n”,l);
 return -2;
 }
 //scaled_l may be positive or negative.
 Int32_t scaled_l = (int32_t) ((l) * (double) 10000);
 out=(u_int32_t) (scaled_l + ((int32_t) 180000 * 10000));
 #if BYTE_ORDER == BIG_ENDIAN
 SWAP4(out);
 #endif
 return 0;
}

Geolocation-Tag Specification v2.0

17

//Input: a LITTLE ENDIAN (not necessarily native)
//32 bit unsigned value between 0 and 3600000000
//Output: a signed floating point value (f.ex, altitude)
//between -180000.0000 and +180000.0000 meters, inclusive)
//Returns: 0 on success
// -2 on input value to positive
int fixed_6_4_to_flt(u_int32_t alt, double &out)
{

 #if BYTE_ORDER == BIG_ENDIAN
 SWAP4(alt);
 #endif
 if(alt >= +3600000001)
 {
 fprintf(stderr, “ppi_gpstag_decodea_alt: Error. Input value too pos to

convert. %f\n”,alt);
 return -2;
 }
 int32_t remapped_alt = alt – (180000 * 10000);
 out = (double) ((double) remapped_alt / 10000);
 return 0;
}

Geolocation-Tag Specification v2.0

18

2.2.3. Encoding	
 Application	
 Specific	
 data	
 	

As currently defined, each PPI-GEOLOCATION tag includes an optional, 4-byte
application identifier (AppId) and an optional application-specific 60-byte field
(AppData). These fields can be used to identify which application generated a
GEOLOCATION-TAG, as well as store small amounts of application-specific data. They
are indicated by the presence of bits 29 and 30 in the present bitmask.

2.2.3.1. Application	
 ID	
 	

The Application ID (AppId) is a 4-byte field that can be used to identify the
application that generated the current GEOLOCATION-TAG. Applications that utilize
advanced feature of the GEOLOCATION-TAGS specification are encouraged to include
an AppId in every GEOLOCATION-TAG to aid in diagnosing errors in the specification.

Application ID numbers are intended to be self-regulating. Current defined values for
AppId are included in the table below. All other values are unallocated. Applications
may choose any unallocated app number they wish. Developers are encouraged to
contact the maintainer of this standard to have their application number published.

Value
(on disk: little endian)

Description

00 00 00 00 – 00 00 00 FF Reserved
01 02 03 04 Reserved, testing
53 52 48 00 – 53 52 48 FF Harris, Inc (HRS)
53 49 4B 00 – 53 49 4B FF Kismet development (KIS)
4D 4F 52 00 – 4D 4F 52 FF Reserved
4A 46 43 00 – 4A 46 43 FF Reserved (JFC)
52 41 47 00 – 52 41 47 FF Reserved (RAG)
53 52 54 00 – 53 52 54 FF Reserved (SRT)
31 33 70 00 – 31 33 70 FF Reserved
FF 00 00 00 – FF 00 00 FF Reserved

2.2.3.2. Application	
 Data	

All GEOLOCATION-TAGS include the ability to carry 60 bytes of arbitrary data in the
AppData field. Developers who need to store small amounts of application specific
data related to the tag in question can use this field. The AppData field is indicated
by bit 30 in the present bitmask.

Applications that utilize the 60-byte AppData field must also include an AppId field
(in order to correctly identify the format of the AppData field). Parsing and
versioning of application specific data is up to the individual application.

When the AppData field is utilized, it can be logically considered as a 64-byte field of
the following format (since the app_num must be present as well).

 Struct app_specific{
u_int32_t app_id; //32-bit little-endian app number.
U_int8_t app_data[60]; //application specific
} __attribute__((__packed__));

Geolocation-Tag Specification v2.0

19

Developers utilizing the AppData field are encouraged to document their formats,
and to request a proper field in the PPI-GEOLOCATION TAG if applicable. Developers
may also consider creating their own SENSOR type tag if applicable.

Geolocation-Tag Specification v2.0

20

3. GPS-­TAG	
 	

The GPS-TAG is used to provide a general frame of reference for the tagging of a
packet. The GPS-TAG can encode lon/lat/alt, error margins, and a high-resolution
timestamp. It can also encode what device type was used (GPS, INS, etc).

Advanced applications that need to encode data captured with higher resolution than
offered by the GPS-TAG (for example, 2 antennas a fixed width apart) can
accomplish this via the use of offset fields in the VECTOR-TAG (covered in section 4).
Simpler applications can simply tag each packet with a lon/lat/alt by using the GPS-
TAG itself.

Like all GEOLOCATION-TAGS, the GPS tag begins with a base_geotag_header. The
following table describes the bitmask to be used with this tag:

Bit (LSB=0) Length Name Encoding (unit, format)
0 4 GpsFlags 32-bit bitmask
1 4 Latitude degrees, fixed3_7
2 4 Longitude degrees, fixed3_7
3 4 Altitude meters, fixed6_4
4 4 Altitude_g meters, fixed6_4
5 4 Gpstime: Details below
6 4 FractionalTime ns, 32-bit unsigned
7 4 eph: meters, fixed3_6
8 4 epv meters, fixed3_6
9 4 ept: ns, 32-bit unsigned
10-27 0 Reserved
28 32 DescriptionString ASCII, null-padded
29 4 AppId See section 2.2.3.1
30 60 AppData See section 2.2.3.2
31 0 Indicates extended bitmap.

Immediately following the base_geotag_header zero or more fields (as specified in
the present field) will follow. They shall be ordered by the significance of the bit used
to specify the field in the present bitmask (increasing), and encoded according to the
table above.

As currently defined a valid GPS-TAG shall not be any larger than 144 bytes (the
size of a base_geotag_header plus every currently defined field), or less than 8
bytes (the size of a base_geotag_header). Any GEOLOCATION-TAG that does not
include at least a base_geotag_header is invalid.

Geolocation-Tag Specification v2.0

21

3.1. GpsFlags	
 bitmask	

The GpsFlags bitmask is used to describe the type of positioning system that was
used to provide a location. A likely source of its values is the NMEA GPGGA field
“Quality Indicator” field.

Bit Description
0 No fix available
1 GPS fix
2 Differential GPS fix
3 PPS fix
4 Real Time Kinematic
5 Float RTK
6 estimated (dead reckoning)
7 Manual input mode
8-31 Reserved

3.2. GPS-­TAG	
 fields	

Name Description

Latitude Self-descriptive, fixed3_7 encoding
Longitude Self-descriptive, fixed3_7 encoding
Altitude Self-descriptive, fixed6_4 encoding
Altitude_g Altitude from ground level, fixed6_4 encoding. See 9.5.1

for processing details.
Gpstime 32-bit unsigned counter, seconds since unix epoch (UTC).

Like all Fields contained in GEOLOCATION-TAGS, this is
stored little endian.

Fractional
Time

32-bit unsigned counter, 1 nano-second resolution.
Fractional time should not exceed one second.

eph Estimated horizontal error in meters. Stored as a fixed3_6
epv Estimated vertical error in meters. Stored as a fixed3_6
ept Estimated clock error in nano-seconds. Stored as a 32-bit

unsigned counter. (Utilizing ns as units allows between 0 and
4 secs of clock error, while maximizing resolution).

DescriptionString 32-byte NULL padded ASCII description of what this GPS-
TAG is attached to. Examples include “Silver ford Taurus” or
“Stationary-antenna-1”

AppId See section 2.2.3.1
AppData See section 2.2.3.2

 Maximum GPS-TAG size:

Producers of error values (eph, epv, ept) are expected to store them with at least
95% confidence. If an application cannot determine the error within a 95% range the
value should not be stored.

Applications consuming eph, epv, or ept may assume that they were stored with at
least 95% confidence.

Geolocation-Tag Specification v2.0

22

A concrete example of the GPS-TAG encoding scheme is shown below. Note that the
inclusion of Altitude and Altitude_g is for illustration purposes only. Real life
applications are expected to utilize only one representation of altitude.

GPS-TAG Example
Field Native Decimal Encoded

(little endian)
GPSFlags Manual fix 0x80000000
Latitiude 19° 7’24.45”N 19.1234567 0x07D4AF76
Longitude 155°36’54.23”W -155.7654321 0xCFE6710E
Altitude 200.123m 0x4E5B686B
Altitude_g 002.100m 0x08244A6B
Date Tue, 02 Nov 2010

17:58:39 UTC
1288720719 0x4F51D04C

FractionalTime 0.1s 0.1 0x00E1F505
Horiz-err 27.0m 0xC0FC9B01
Vert-err 71.3m 0xA0F33F04
Time-err .000005s 0x88130000

Geolocation-Tag Specification v2.0

23

Scapy decoding of GPS-tag in test packet

Wireshark decoding of GPS-TAG in test packet

Geolocation-Tag Specification v2.0

24

4. VECTOR-­TAG	

The VECTOR-TAG allows applications to encode vectors in 3-dimensional space.
Vectors can provide offsets and rotations. This allows them to precisely describe an
arbitrary point and orientation. The combination of position and orientation is called
a Reference Frame. Details on the coordinate systems used to describe these
reference frames are presented in section 8.

Bits that influence the mathematical interpretation of VECTOR-TAGS are stored in
the VectorFlags bitmask. Bits that characterize what a VECTOR-TAG is describing are
stored in the VectorCharacteristics bitmask. These bits describe what the vector
represents: direction of travel, orientation of antenna, and so on. While they may
influence how an application interprets a particular VECTOR tag, they do not
influence the mathematical orientation.

While the VECTOR-TAG can store a rich amount of rotational information, rotation
around the Z-axis will probably be the most useful to applications; when stored in
absolute values this corresponds to degrees rotated around true (not magnetic)
North.

Bit
(LSB=0)

Length Name Encoding
(unit, format, coordinate-sys)

0 4 VectorFlags 32-bit bitmask, details below
1 4 VectorCharacteristics 32-bit bitmask, details below
2 4 Pitch (Rot-X) degrees, fixed3_6, E/N/U, R/F/U
3 4 Roll (Rot-Y) degrees, fixed3_6, E/N/U, R/F/U
4 4 Heading (Rot-Z) degrees, fixed3_6, E/N/U, R/F/U
5 4 Off-X: (East/Right) meters, fixed6_4, E/N/U, R/F/U
6 4 Off-Y: (North/Forward) meters, fixed6_4, E/N/U, R/F/U
7 4 Off-Z: (up) meters, fixed6_4, E/N/U, R/F/U
8-15 0 Reserved
16 4 Err-Rot degrees, fixed3_6
17 4 Err-Off meters, fixed6_4
18-27 0 Reserved
28 32 DescriptionString 32 byte NUL padded ASCII

description string.
29 4 AppId See section 2.2.3.1
30 60 AppData See section 2.2.3.2
31 0 Indicates extended

bitmap.

As currently defined a valid VECTOR-TAG shall not be any larger than 144 bytes (the
size of a base_geotag_header plus every currently defined field), or less than 8
bytes (the size of a base_geotag_header). Any GEOLOCATION-TAG that does not
include at least a base_geotag_header is invalid.

Geolocation-Tag Specification v2.0

25

4.1. VectorFlags	
 bitmask	

The VectorFlags bitmask defines how to interpret the values in a vector tag. There
are currently only 3 bits defined. Bit 0 is used to mark a vector as the Forward frame
of reference. This allows other vectors further down the packet to provide offsets and
rotations relative to this vector. This bit is designated as DEFINES_FORWARD_FRAME

 OF_REFERENCE.

Bits 1 and 2 are combined into a subfield known as RelativeTo. The combination of
these two bits is used to indicate which Reference Frame this Vector is RelativeTo.

Bit Name Description

0 DefinesForward Indicates that the Frame of Reference defined by
this VECTOR-TAG is the Forward Frame of
Reference. The Forward Frame of Reference is
the basis of the relative coordinate system
described in Section 8.2, and more information
on the Forward Frame of Reference is provided in
Section 8.3.2.

1,2 RelativeTo 00: All rotations and offsets are relative to the
Forward frame of reference. (0x00)

01: All rotations and offsets are relative to the
Earth frame of reference. (0x01)

10: All rotations and offsets are relative to the
Current Frame of reference. (0x02)

11: Reserved

See Section 8 for details on the definition of each
reference frame, as well as the ENU and RFU
coordinate systems utilized in each.

3-31 Reserved

	

Geolocation-Tag Specification v2.0

26

4.2. VectorCharacteristics	
 bitmask	

The VectorCharacteristics field is used to help applications describe what the encoded
VECTOR is supposed to indicate. The bits here are purely descriptive; they do not
change how any VECTOR-TAG should be handled mathematically.

Bit Name Description
0 ANTENNA This vector indicates the direction of an

antenna
1 DIRECTION_OF_TRAVEL This vector indicates the direction of travel

of a vehicle

2 FRONT_OF_VEHICLE Indicates the direction of the front of a
vehicle. May differ from actual direction of
travel in some cases (boat drifting, car in
reverse, etc)

3 ANGLE_OF_ARRIVAL Vector indicates the angle-of-arrival of a
packet. This vector may be synthesized
from many different data points at the
application level. It is not equivalent to
antenna direction.

4 TRANSMITTER_POSITION This is combined with a vector offset to
allow applications to explicitly encode where
they think a transmitter is located. See
10.10 for example.

5-7 Reserved
8 GPS_DERIVED Vector was derived from GPS hardware in

some manner (most likely, heading is based
off of deltas in position)

9 INS_DERIVED Vector was derived from INS system
10 COMPASS_DERIVED Vector was derived from digital compass
11 ACCELEROMTER_DERIVED Vector was derived from accelerometer(s)
12 HUMAN_DERIVED Vector was derived from manual user input
13-31 Reserved

Note that these values are not mutually exclusive. For example, an antenna pointed
out the windshield of a car could set bits 0, 1, and 2 (Provided the car was not in
reverse, which would invalidate the DIRECTION_OF_TRAVEL bit). A VECTOR-TAG
could also contain information derived from both a GPS and digital compass, for
example.

4.3. Vector	
 operations	

All vector operations take place on a specific reference frame. The reference frame
that the offsets and rotations are applied to is defined by the value in the RelativeTo
subfield of VectorFlags. There are three possible options:

4.3.1. RelativeTo:	
 Earth	

Rotations RelativeTo Earth can be though of as absolute rotations. Since these
rotations are on the East/North/Up coordinate system, they provide an anchor for all
relative rotations to build off. Applications that encounter a vector that is

Geolocation-Tag Specification v2.0

27

RelativeTo:Earth will not need information contained in any other vector to convert it
to world coordinates. (A 45.0 degree Rot-Z rotation that is RelativeTo Earth
corresponds to North-East).

4.3.2. RelativeTo:	
 CurrentFrame	

Some applications may find it useful to chain offsets or rotations together. In this
case they can use RelativeTo:CurrentFrame. As we will see below, CurrentFrame is a
frame of reference that represents the most recently processed Vector. This means
that Vector tags that set RelativeTo:CurrentFrame will be applied to the most recent
previously processed Vector tag.

4.3.3. RelativeTo:	
 ForwardFrame	

Finally, the PPI-GEOLOCATION specification allows applications to indicate that a
given vector defines the Forward Frame of reference. This is useful in advanced
applications, which need to encode a system of rotations relative to some common
reference frame other than Earth.

For example, a system consisting of two antennas (one out the passenger and driver
side door) could conveniently be encoded by saying they are 90 and 270 degrees
rotated relative to the forward frame of reference; In this case the application would
need to provide a vector indicating the front of the vehicle is Forward. (This exact
scenario is covered in detail in 10.4).

4.4. Creating	
 Reference	
 Frames.	

While the previous section illustrates how a vector indicates what reference frame it
should be applied to, Vectors are also used to create Reference Frames. The precise
rules for setting the values in a given reference frame are specified in the rules that
define the PPI-GEOLOCATION state machine (section 9). The following summary
provides a quick understanding of how the key Reference Frames are initialized and
updated.

4.4.1. Earth	
 Frame	
 of	
 reference	

The Earth Frame of Reference is centered at a provided Latitude, Longitude, Altitude,
and matches standard map coordinates, where the X, Y, and Z axes align with East,
North, and Up, respectively. This reference frame is described in detail in 8.1.
Rotations and offsets that are RelativeTo: Earth take place on the East/North/Up
coordinate system.

4.4.2. Current	
 Frame	
 of	
 reference	

The current frame of reference is updated upon successful processing of any Vector
tag. Therefore the current frame of reference contains the most recently processed
Vector tag.

4.4.3. Forward	
 Frame	
 of	
 reference	

The Forward frame of reference is updated upon successful processing of any Vector
tag, which has set the DEFINES_FORWARD (BIT 0) in VectorFlags. The ability for an
application to define its own ReferenceFrame allows advanced applications to store
data in whatever local coordinate system is convenient.

Geolocation-Tag Specification v2.0

28

4.4.4. Reference	
 Frame	
 summary	

Vectors that are RelativeTo the EarthFrame of reference utilize the East/North/Up
(E/N/U) coordinate system described in 8.1. An application that reads rotational
information in the E/N/U format does not need information about any other frame of
reference (such as the heading a car was moving at) to determine the orientation of
a vector.

Vectors that are RelativeTo the CurrentFrame of reference, or RelativeTo the Forward
frame of reference utilize the Right/Forward/Up (R/F/U) coordinate system described
in 8.2.

All operations (either offsets or rotations) take place on the reference frame
indicated by the RelativeTo subfield of VectorFlags.

4.5. Rotations.	

VECTOR-TAGS may contain zero or more rotations which take place on the
ReferenceFrame indicated by the RelativeTo: subfield of VectorFlags. The appropriate
rotation matrices are provided in 8.6.

4.6. Offsets	

VECTOR-TAGS may contain zero or more offsets from which take place on the
ReferenceFrame indicated by the RelativeTo: subfield of VectorFlags.

4.7. Description	

All currently defined GEOLOCATION-TAGS include a 32-byte, NULL padded, ASCII
description string. Examples for vectors include “VecforAnt1”, “Constant offset for
ANT1” or “DOT provided by GPS”, and so on.

4.8. ApplicationData	

All currently defined GEOLOCATION-TAGS include a 60-byte field for arbitrary
application level data. See section 2.2.3 for details.

4.9. VECTOR-­TAG	
 example	

A concrete example of the VECTOR-TAG encoding scheme is shown below.

VECTOR-TAG example
Field Name Native Value Encoded (little endian)
VectorFlags DEFINES_FORWARD:0

RelativeTo:Earth
0x0200000

VectorChars GPS_DERIVED 0x00010000
Rot-X (pitch) 10.0 (Slightly upward) 0x80969800
Rot-Y
(roll)

0.0 0x00000000

Rot-Z
(heading)

22.5 (NNE) 0xa0525701

	

Geolocation-Tag Specification v2.0

29

	

Wireshark decoding of VECTOR-TAG in test packet

Scapy decoding of VECTOR-TAG in test packet

Geolocation-Tag Specification v2.0

30

5. SENSOR-­TAG	
 	

The Sensor-TAG allows applications to encode commonly available sensor
information such as velocity and acceleration in a consistent manner. All Sensor tags
can express values in three-dimensions, which is stored with the appropriate frame
of reference. Sensor tags can also encode total values as well as error levels.

Sensor types that are inherently dimensionless (Temperature, etc) should be stored
in the Val_T field.

Bit

(LSB=0)
Length Name Encoding

(unit, format)
0 2 SensorType 16-bit identifier (see table below)
1 1

(SIGNED)
ScaleFactor Signed byte, -128 to +127 range.

All values multiplied by
10^scale_factor, 10-128 to 10127

2 4 Val_X Fixed 6_4, X-Axis component
3 4 Val_Y Fixed 6_4, Y-Axis component
4 4 Val_Z Fixed 6_4, Z-Axis component
5 4 Val_T Fixed 6_4, Total magnitude.
6 4 Val_E Fixed 6_4, Error term
7-27 0 Reserved
28 32 DescriptionString 32 byte NUL padded ASCII

description string.
29 4 AppId See section 2.2.3.1
30 60 AppData See section 2.2.3.2
31 0 Indicates extended

bitmap.

5.1. 	
 Sensor	
 tag	
 types	

A list of discrete values that can be used for SensorType, and the associated units for
each val_X/Y/Z/T field is provided below

Value Name Units
0 Reserved Reserved
1 Velocity Meters/sec
2 Acceleration Meters/sec/sec
3 Jerk Meters/sec/sec/sec
4-99 Reserved
100 Rotation Degress/sec
101 Magnetic Tesla
102-
999

Reserved

1000 Temperature Celsius
1001 Barometer Pascal
1002 Humidity Percent
1003-
1999

Reserved

2000 CLOCK (TDOA) Seconds (Offset from GPSTime)
2001 Phase Degrees (0-360)
2001+ Reserved

Geolocation-Tag Specification v2.0

31

As currently defined a valid SENSOR-TAG shall not be any larger than 127 bytes (the
size of a base_geotag_header plus every currently defined field), or less than 8
bytes (the size of a base_geotag_header). Any GEOLOCATION-TAG that does not
include at least a base_geotag_header is invalid.

5.2. Sensor	
 tag	
 notes	

All applications which utilize the TDOA_CLOCK or Phase sensor must include an
AppId. A more detailed explanation of these sensors is given in 10.8 and 10.9.

5.3. Sensor	
 tag	
 example	
 (total	
 velocity)	

The following example illustrates how to encode a total velocity of North by North East
at 5m/s. This would reflect real-world usage of a speed provided from a GPS.

VECTOR-TAG example 5.3
Field Name Native Value Encoded (little endian)
VectorFlags DEFINES_FORWARD:0

RelativeTo:Earth
0x0200000

VectorChars GPS_DERIVED 0x00010000
Rot-Z
(heading)

22.5 (NNE) 0xa0525701

SENSOR-TAG Example 5.3
Field Name Native Value Encoded (little endian)
SensorType Velocity (0x0001) 0x0100
CcVal-T 5.0 0x50954a6b

Detailed examples illustrating velocity and acceleration are provided in 10.3. An
example illustrating the use of the TDOA-CLOCK field is given in 10.8.

	

	

Wireshark decoding of SENSOR-TAG in test packet

Geolocation-Tag Specification v2.0

32

Scapy decoding of SENSOR-TAG in test packet

Geolocation-Tag Specification v2.0

33

6. ANTENNA-­TAG	
 	

The ANTENNA-TAG is designed to capture as much fundamental knowledge about an
antenna as possible, while allowing applications the flexibility they need to expand
upon it in the future. While only a handful of fields are supported (gain, beamwdith,
modelname, etc), by unambiguously defining characteristics present in every
antenna, a minimum level of interoperability can be achieved. The ANTENNA-TAG
also provides applications the ability to encode application-specific antenna
information as well.

Like all GEOLOCATION-TAGS, the ANTENNA-TAG begins with a geotag_base_
header. The following table describes the bitmask to be used with this tag.

Bit
(LSB=0)

Length Name Encoding
(unit, format)

0 4 AntennaFlags Bitmask, 32-bits
1 1 Gain dBi, unsigned 8-bit
2 4 Horizontal beamwidth degrees, fixed3_6
3 4 Vertical beamwidth degrees, fixed3_6
4 4 PrecisionGain dBi, fixed3_6
5 2 BeamID Identifies beam pattern

(electronically steerable antennas)
6-25 0 Reserved
26 32 SerialNumber ASCII only, null padded
27 32 Modelname ASCII only, null padded
28 32 DescriptionString ASCII only, null padded
29 4 AppId See section 2.2.3.1
30 60 AppData See section 2.2.3.2
31 0 Indicate extended

bitmap.

As currently defined a valid ANTENNA-TAG shall not be any larger than 187 bytes
(the size of a base_geotag_header plus every currently defined field), or less than 8
bytes (the size of a base_geotag_header). Any GEOLOCATION-TAG that does not
include at least a base_geotag_header is invalid.

6.1. AntennaFlags	
 Bitmask	

The AntennaFlags bitmask is a 32-bit bitmask indicating various attributes about the
current antenna and its configuration. There are currently only seven bits defined.

Bit Description
0 Antenna part of MIMO system
1 Horizontally polarized
2 Vertically polarized
3 Circularly polarized (left handed)
4 Circularly polarized (right handed)
5-15 Reserved
16 Electronically steerable antenna
17 Mechanically steerable antenna
18-31 Reserved

Geolocation-Tag Specification v2.0

34

6.2. ANTENNA-­TAG	
 fields	

Name Description

AntennaFlags
A 32-bit bitmask indicating various attributes about the current
antenna and its configuration. Most useful is polarization and if
the current ANTENNA is part of a MIMO system.

Gain Unsigned 8-bit value, dBi. Not encoded in any fixed point
format. (Ranges from 0-255)

HorizBW Horizontal beamwidth of antenna expressed in degrees.
Fixed3_6

VertBW Vertical beamwidth of antenna expressed in degrees. Fixed3_6

PrecisionGain
Gain in dBi, expressed as a fixed3_6 (allows expression of
partial dB). Takes priority over Gain field when both are
present.

BeamId

Electronically steerable antennas have a finite set of unique
beam patterns. This field encodes exactly which pattern was
being used.
16-bit, little endian. Antenna-specific.

SerialNumber 32 bytes, fixed length, null padded ASCII string.
Serial Number of the Antenna. Examples include 00000001.

Modelname

32 bytes, fixed length, null padded ASCII string. Applications
should encourage the encoding of a model name unique to a
manufacturer. Good examples include: OD9-8, PA24-13,
DC24HDPF1PF-EZ, SA24-120-16-WB

DescriptionString
32-byte NULL padded ASCII description of what this ANTENNA-
TAG is doing. Examples include “Out passenger side door” or
“Stationary-antenna-1”

AppId See section 2.2.3.1
AppData See section 2.2.3.2

As currently defined a valid ANTENNA-TAG shall not be any larger than 187 bytes
(the size of a base_geotag_header plus every currently defined field), or less than 8
bytes (the size of a base_geotag_header). Any GEOLOCATION-TAG that does not
include at least a base_geotag_header is invalid

Geolocation-Tag Specification v2.0

35

6.3. ANTENNA-­TAG	
 usage	
 rules.	

Although ANTENNA-TAGs only contain a handful of fields, by following the following
rules a significant amount of information about the connected antenna can be
discerned.

6.3.1. Omni-­‐directional	
 antennas:	

ANTENNA-TAG producers should set the HorizontalBeamwidth to 360.0 (360000000,
or 0x002a7515 (little endian)) for any omni-directional antenna. Similarly,
consumers interested in discerning between Omni-directional and directional
antennas should test the HorizontalBeamwidth field for equality with 360.0.

If ANTENNA-TAG producers are observed to be not honoring the 360.0 = Omni-
directional convention, it is permissible for consumers to characterize any antennas
with HorizBeamwidth >= 270.0 degrees as an Omni.

6.3.2. Modelname:	

Applications producing model names should try to encode a uniquely identifying
model name into the Modelname. If an application is unable to provide a unique
Modelname, it may generate a generic Modelname using the following scheme.

Generic modelnames shall be of the form:

[GainInDBIdBi-][Internal|Omni|MagMountOmni|Panel|Yagi|Sector|Grid]
where GainInDBI is apparent. Consumers of Modelnames shall NOT parse them
for gain values. Producers of Modelnames will NOT include the gain portion in the
Modelname unless the actual gain field is also present.

Example generic Modelnames include (but are not limited to):
5dBi-Omni, 8.5dBi-MagMountOmni, 27dBi-Yagi, 15dBi-Panel, MagMountOmni, Yagi,
Grid.

6.3.3. Fractional	
 gain:	

Many antennas have fractional amount of gain (e.g. 8.5dBi). Applications that need
to encode gain with such precision are encouraged to use both the gain field, as well
as the PrecisionGain field (which takes precedence). Applications should round 0.5 up
when filling in the gain field.

6.3.4. BeamID	
 field:	

The BeamID contains vendor-specific values, placed into a standardized field.
Manufacturers of electronically steerable antennas should encode the relevant
orientation, beamwidth, gain, etc for a given BeamID in the appropriate fields.
Vendor aware applications may be able to interpret (BeamID, ModelStr) or (BeamId,
Appld) data with more fidelity than offered by standardized GEOLOCATION-TAG data.

Applications are discouraged from simply producing ANTENNA-TAGs with only
BeamIDs (essentially utilizing BeamID as a magic number to identify vendor-specific
antenna characteristics). Applications making use of BeamID should fill out a
VECTOR tag with a relative heading and the gain/horizbw field of the associated
ANTENNA tag.

Geolocation-Tag Specification v2.0

36

6.4. ANTENNA-­TAG	
 example	

The following table provides a concrete example of ANTENNA-TAG encoding. Note
that this example includes every field for the sake of completeness. The majority of
applications would include only the gain and horizontal beamwidth fields.

Wireshark decoding of ANTENNA-TAG in packet

ANTENNA-TAG Example
Field Name Native Value Encoded (little endian)
AntennaFlags Horizontal Polarity,

Electronically Steerable
0x02000000

Gain 9 dBi 0x09
HorizBW 120.0 0x00E22707
VertBW 30.0 0x80C3C901
PrecisionGain 8.5dBi 0x20b38100
BeamID 10 0x0A00
SerialNumber TST-ANT-00001 “TST-ANT-00001”
Modelname SA24-120-9 “SA24-120-9_E”
DescriptionString ExampleDescrStr “ExampleDescrStr”
ApppId 0x04030201 0x01020304
AppData “0x41424344..”

Geolocation-Tag Specification v2.0

37

scapy decoding of ANTENNA-TAG in test packet

Geolocation-Tag Specification v2.0

38

6.5. ANTENNA-­TAG	
 caveats.	

While the ANTENA-TAG can convey basic properties about antennas, accurately
describing the characteristics of a specific antenna requires knowing its radiation
pattern. In theory applications could store their own models of antennas and utilize
the Modelname to identify particular antennas in their internal database.

This would work well within a single enterprise, but without a centralized Modelname
authority collisions/disparities on data captured in the wild will quickly mount.
Organizations are free to try and use the application specific data field to try and
minimize this problem.

The AntennaFlags bitmask has quite a bit of room to grow. If readers have plausible
uses for the other bits the author would like to know.

Geolocation-Tag Specification v2.0

39

7. RADIOTAP/802.11COMMON	
 TAGS	

Radiotap headers are currently the most widely supported format for storing signal
strength, channel information, and other 802.11 specific characteristics in a pcap file.
These headers precede the actual 802.11 header, and are specified in a pcap file by
setting the DLT to DLT_IEEE802_11_RADIO (127). Radiotap headers are structurally
very similar to GEOLOCATION-TAGs in that they both make use of a bitmask to
indicate which fields are present. Radiotap headers are defined at www.radiotap.org
[1].

802.11COMMON tags are designed to encapsulate most of the information present in
a radiotap header, inside of an easier to parse PPI-TAG. This tag is defined by CACE
in [2], and has been assigned a pfh_type value of 2. 802.11COMMON tags differ
from GEOLOCATION-TAGS and Radiotap headers in that they are fixed length and
utilize predetermined values to indicate that fields are not present (in lieu of the
present bitmask used by radiotap and GEOLOCATION-TAGs).

While the PPI-GEOLOCATION specification recognizes that Radiotap headers are
prevalent in the wild, formalizing their interaction with the PPI-GEOLOCATION state
machine is difficult. Therefore, applications implementing the PPI-GEOLOCATION
processing engine may decide to treat Radiotap headers as logically equivalent to a
Dot11Common tag.

Non-legacy applications are heavily encouraged to utilize Dot11Common tags to
store signal strength, channel information, etc. This will minimize the amount of
ambiguity when the tagged data is run through different engines.

Applications that produce PPI-GEOLOCATION tagged data that do decide to utilize
Radiotap to encode signal/channel information must not also include a
Dot11Common tag in the packet. Including both creates an inherently ambiguous
case in the processing engine.

The following table describes a useful subset of fields present in both
802.11COMMON tags and Radiotap headers; it is included for convenience only. The
definition of both 802.11COMMON tags and Radiotap headers are outside the scope
of this specification.

Name Description Type Size (bytes)

Rate Data rate in multiples of 500 Kbps
Invalid value = 0x0000

Unsigned 2

Channel-Freq Radiotap-formatted channel frequency, in MHz
Invalid value = 0x0000

Unsigned 2

Channel-Flags Radiotap-forrmatted channel flags: Unsigned 2
dBm-Antsignal RF signal power at antenna Invalid value = -128 Signed 1
dBm-Antnoise RF noise at antenna Invalid value = -128 signed 1

Geolocation-Tag Specification v2.0

40

8. Coordinate	
 Systems	

Collection systems can combine GPS and VECTOR tags, defined in sections 3 and 4,
to precisely define the position and orientation of the system when the tagged packet
was collected. Basic systems might use a GPS tag to provide the vehicle position,
and a VECTOR tag to indicate the vehicle heading or direction an antenna was facing.

More advanced applications may include additional VECTOR fields to provide roll,
pitch, and heading information. Multiple VECTOR tags can be combined to provide
detailed information about the vehicle itself, the vehicle’s direction of travel, and the
relative position and orientation of multiple antennas located on the vehicle. Finally,
applications can also include sensor tags to indicate velocity and acceleration
information along any of the provided vectors.

To provide all of this functionality, two coordinate systems are defined: The
East/North/Up Coordinate System and the Right/Forward/Up Coordinate System.
The E/N/U system can be though of as an absolute coordinate system, and is
covered in Section 8.1. It has axes aligned to East, North, and Up, matching
standard map coordinates. The E/N/U system is used in any vector that is RelativeTo:
Earth.

The Relative Coordinate System, covered in Section 8.2, has Right, Forward, and Up
axes aligned to a specified absolute pitch, roll, and heading provided by a VECTOR
tag. The Vector tags RelativeTo: field determines exactly which Vector to be used as a
base for the R/F/U system.

Multiple VECTOR tags can be provided with a single packet, which can establish
multiple relative coordinate systems. These multiple coordinate systems are referred
to as Frames of Reference. An overview of reference frames is given in Section 8.3,
and specific algorithms for establishing and updating these reference frames are
provided in Section 9.

As mentioned in section 4.3, all vectors are RelativeTo one of three frames (Earth,
Current, or Forward).

8.1. The	
 Absolute	
 East,	
 North,	
 Up	
 (ENU)	
 Coordinate	
 System	

The Absolute Coordinate System shown on the left in Figure 8.1 defines a local (X, Y,
Z) = (East, North, Up) Cartesian system with axes aligned with standard map
coordinates. This system is referred to as a local coordinate system, because while
the directions East, North, and Up are nearly constant over a small area (small in
Earth terms: hundreds of miles), they all change as the system moves around the
globe. For example, the direction Up is horizontal at the equator, but vertical at the
poles. The center of the coordinate system is defined at a specific latitude (φ),
longitude (λ), and altitude, as shown on the right in Figure 8.1, and forms a plane
tangent to the surface of the Earth.

Geolocation-Tag Specification v2.0

41

Figure 8.1: The Absolute (East, North, Up) Coordinate System.

Axis Direction Zero defined as:
+X East 90 degrees clockwise from True North.
+Y North True North.
+Z Up Opposite Earth’s gravitational pull.

The origin of the Absolute coordinate system is set by a GPS tag. At a minimum,
this tag should provide latitude and longitude, with altitude provided or assumed to
be ground level.

Once the system position is set using a GPS tag, the system orientation can be
defined using a VECTOR tag. The VECTOR tag has Rot-X, Rot-Y, and Rot-Z fields,
also known as Pitch, Roll, and Heading, which are shown in Figure 8.1. These
absolute rotations show the system orientation as rotations about the East, North,
and Up axes.

Rotation Name Symbol Description

Rot-X Pitch

Counter-Clockwise rotation about the X axis.
When Rot-X = 0, the front and back of vector
should be parallel to the ground. When Rot-X =
90, the vector will be perpendicular to the
ground, with its nose facing up.

Rot-Y Roll

Counter-Clockwise rotation about the Y axis.
When Rot-Y = 0, the left and right sides of the
vector should be parallel to the ground. When
Rot-Y is positive, the right side of the object
indicated by vector will be lower than the left
side. (Right wing down convention)

Rot-Z Heading

Clockwise rotation about the Z axis. When Rot-
Z = 0, the vector should be oriented at true
(not magnetic) North. When Rot-Z = 90, the
vector will be oriented due East.
Note: This rotation is clockwise so the rotation
angle matches a standard compass heading.

Geolocation-Tag Specification v2.0

42

As an example, Figure 8.2 shows how these pitch, roll, and heading values describe
the orientation of a vehicle, and how these values establish the Right, Forward, and
Up axes of the Relative Coordinate System covered in Section 8.2.

Figure 8.2: Absolute Roll, Pitch, and Heading describing Vehicle Orientation.

8.2. The	
 Relative	
 Right,	
 Forward,	
 Up	
 (RFU)	
 Coordinate	
 System	

The Relative Coordinate System has Right, Forward, and Up axes which track the
orientation provided by a VECTOR tag. The zeroes of the RFU system depend on
what the vector has indicated it is RelativeTo: If the Vector is RelativeTo:
ForwardFrame, then the R/F/U system is aligned with the most recently processed tag
which has the FORWARD_FRAME bit set. If the Vector is RelativeTo: CurrentFrame, then
the R/F/U coordinate system is aligned with the most recently processed Vector tag.
Vectors which are RelativeTo: Earth use the absolute E/N/U system.

Figure 8.3: The Relative (Right, Forward, Up) Coordinate System.

Geolocation-Tag Specification v2.0

43

For example, once a GPS tag provides the origin of the E/N/U Coordinate System
described in Section 8.1, a VECTOR tag could define the orientation of a vehicle by
providing Absolute Pitch, Roll, and Heading values, as shown in Figure 8.2. Once this
vehicle orientation is established, setting the FORWARD_FRAME flag indicates that this
position and orientation will be used as the origin of a Relative Coordinate system
that is RelativeTo: Forward.

Figure 8.3 shows the axes of the Relative Coordinate System, as well as how the
Right, Forward, and Up axes would line up on a vehicle in the example given above.

Once the relative coordinate system is established, additional VECTOR tags can
provide offsets and rotations on this coordinate system. If the relative coordinate
system defines the center of a vehicle, subsequent VECTOR tags may wish to define
the position and orientation of one or more antennas relative to this vehicle center.
Figure 8.4 shows the axes of this relative coordinate system in blue, and the start
and direction of relative Pitch, Roll, and Heading rotations in red. The axes of the
newly formed Frame of Reference are shown in green.

Figure 8.4: Relative Roll, Pitch, and Heading describing a new Frame of Reference.

Figure 8.2 shows how absolute rotations set the orientation of the Right, Forward, Up
axes relative to the ENU coordinate system. Figure 8.4 shows how relative rotations
can define a new set of axes. The current Right, Forward, Up axes are shown in blue
in Figure 8.4. Relative Rotations form the new axes shown in green.

8.3. Key	
 Frames	
 of	
 reference	

A Key frame of reference is a frame of reference that Vector operations may be
applied to. Currently this is limited to Earth, Current, and Forward.

8.3.1. Earth	
 Frame	
 of	
 Reference	

The Earth frame of reference serves as an anchor for converting relative offsets and
rotations into absolute terms. The position of the Earth frame of reference is always
equal to the most recently processed GPS tag. Its orientation is read-only, and uses
the E/N/U coordinate system defined in 8.1. Any vector which is RelativeTo:Earth is
oriented on the E/N/U coordinate system. This Reference frame was designed to be
convenient for humans and digital compass’s to interact with.

Geolocation-Tag Specification v2.0

44

8.3.2. Forward	
 Frame	
 of	
 Reference	

The forward frame of reference is useful for applications that find it convenient to
create their own local coordinate system. For example, a system of two antennas
(one in the passenger and driver window), that is also equipped with a digital
compass that indicates the direction of travel of the vehicle would find it convenient
to encode the two antennas as 90 and 270 degrees relative to forward. In this case
the application would first need to provide a vector that gives the current orientation
of the vehicle. This vector would set the DEFINES_FORWARD (bit 0 in VectorFlags).
And the following vectors indicating the orientation of the antennas would set
RelativeTo: Forward. This case is covered in detail in 10.4

Different systems may choose to align forward to different system components. For
example, one system may align forward to the front of the vehicle, while another
may align forward to the direction of an antenna. It is important to emphasize that
the DEFINES_FORWARD bit is not indicative of the front of a vehicle, or the direction of
travel, or any other physical characteristic. (These physical properties are handled by
the VectorCharacteristics bitmask).

The DEFINES_FORWARD bit is used to specify a convenient local coordinate system for
an application. Applications may set this bit on multiple vectors if they desire to re-
define this reference frame for any reason.

8.3.3. Current	
 Frame	
 of	
 Reference	

The current frame of reference is defined by the most recently processed Vector tag.
It is a Key frame of reference because it allows applications to specify offsets and
rotations that are relative to the most recently preceding Vector tag.

In many systems, it makes sense to define Forward as the center of the vehicle, with
the X (Right) axis aligned with the right side of the vehicle, and the Y (Forward) axis
aligned with the front of the vehicle. This is a good starting point to then give the
relative location and orientation of antennas and other sensors. However, with
electronically or mechanically steerable antennas, it is sometimes necessary to
define the location of the fixed base portion of the antenna as well as the orientation
of the rotating receive element.

If the base is offset as well as pitched or rolled relative to the vehicle center, it is
much simpler to give that translation first, and then provide the receive element or
electronic beam rotation as a second Vector relative to the base. In particular, if the
antenna base contains sensors that do not rotate with the receive element, this
intermediate frame needs to be defined, but marking it as Forward would make it
more difficult to define the location of additional antennas or sensors. So in these
cases, use a Vector RelativeTo: Forward or Earth to first define the antenna base.
Then, if necessary, use Sensor tags to give any data from sensors located inside the
base. Finally, define a Vector RelativeTo: CurrentFrame to give the orientation of the
rotating receive element relative to the base, and set the Antenna bit in the
VectorChars flag to indicate this Vector gives a new antenna location.

Geolocation-Tag Specification v2.0

45

8.4. Non-­Key	
 Frames	
 of	
 Reference	

Section 9 indicates that a PPI-GEOLOCATION state machine should store a Reference
frame that corresponds with every VectorCharacteristic bit (Antenna, Direction of
travel, Front of vehicle, etc). These Reference frames are provided to all client
applications as a convenience when any state is queried. The state machine cannot
be directed to perform operations on any of these frames explicitly. The state
machine will only apply vector operations to Key frames of reference (Earth,
Forward, Current).

8.5. Implementation	
 of	
 a	
 Reference	
 Frame	

The following pseudocode demonstrates a simple implementation of a frame of
reference.

struct GPSPos
{
 u_int32_t present;
 float lon, lat, alt
 u_int32_t GPSTime, fractionaltime;
};
struct BasicVec
{
 u_int32_t present, VectorFlags, VectorChars;
 float rotX, rotY, rotZ; //pitch, roll, heading,

 //in absolute (E/N/U) terms
};
struct SensorData_T
{
 u_int32_t present;
 float val_X, val_Y, val_Z, val_T val_E;

..
struct FrameOfReference_t
{
 struct GPSPos Pos;
 struct BasicVec Vec;

 struct SensorData_T SensorData[1024];
 //Arbitrary application specific data can

//also be stored here. F.ex, data processed from
//ApplicationData fields, as well as vel and accel

};
FrameOfReference_t Forward_Frame;

A complete frame of reference would include every defined field related to position,
including timestamps, error levels, rotations in 3-dimensions, and possibly sensor
data such as velocity and acceleration. However parsers should accept partially
defined frames of reference, producing a warning only when an operation that
utilizes an undefined value is encountered. (For example, providing a vertical offset
when no altitude was specified). For details on handling undefined values see Section
9.6.

Geolocation-Tag Specification v2.0

46

8.5.1. Default	
 Frames	
 of	
 Reference	

It is important to note that the initial Forward and Current Frame of Reference
(Defined in section 9) matches absolute ENU coordinates. In other words, the default
Forward Frame and CurrentFrame is equivalent to a VECTOR tag that is RelativeTo:
Earth with Rot-X, Rot-Y, Rot-Z, Offset-X, Offset-Y, and Offset-Z all set to 0. It is also
important to remember that every time a GPS tag is received, all frames of reference
should reset to the default state. Additional implementation details are provided in
Section 9.

8.6. Converting	
 Relative	
 Offsets	
 and	
 Rotations	
 to	
 ENU	
 Coordinates	

Ultimately, all system information needs to be converted to ENU coordinates to allow
plotting, comparison and processing of data. Section 8.6.1 describes how rotation
matrices are formed from absolute and relative rotations. These rotation matrices
can then be combined to translate relative rotations back to absolute terms. The
resulting matrix is also used to translate relative coordinates back to ENU
coordinates, as discussed in Section 8.6.2. Section 8.6.3 gives a practical application
of these concepts with equations and results.

8.6.1. Computing	
 Rotations	

A relative rotation contained in a VECTOR tag can be combined with the reference
frame it is RelativeTo: to give the absolute orientation of the antenna (or other
object), but the absolute and relative angles usually cannot simply be added
together, and the order in which the rotations are applied is critical.

If only absolute and relative heading information is provided (pitch and roll
are assumed 0), then the two values can be added together directly.

This is also true for other simple cases, but in general, rotations matrices must be
created representing the reference frame that the current vector is RelativeTo as well
as the relative rotation.

In the following section we process a relative vector (which we assume in this
example to represent an antenna) that is RelativeTo: Forward. The Forward frame of
reference is used to create a rotation matrix . The relative rotation is
converted into a rotation matrix .

(If the vector had been RelativeTo:Current the math would be identical, but we
would replace the values used to initialize with those found in
CurrentFrame).

Both and have the form:

	

Where:
 = Roll = Vec.RotY

 = Pitch = Vec.RotX

Geolocation-Tag Specification v2.0

47

= Yaw = Vec.RotZ

Therefore

	

A final rotation matrix, is computed by multiplying and

transforms a point or vector from a relative frame (Rel_Vec above) into the
ENU coordinate system.

The final absolute (E/N/U) rotation angles are:

Where means row a, column b of , and atan2 expects (y,x) input, not
(x,y)

8.6.2. Relative	
 Offsets	

VECTOR tags may store E/N/U or R/F/U offsets to further encode the location of a
particular element of the system. (E/N/U offsets are of marginal utility, but a
consequence of allowing vector operations RelativeTo:Earth). R/F/U offsets can be
specified from either the Current Frame or Forward Frame of reference via the
RelativeTo: field. Relative offsets specified in R/F/U coordinates can be translated to
ENU coordinates by storing them in matrix form and multiplying by . An
example is given in Section 8.6.3.

8.6.3. Example	
 System	
 with	
 Relative	
 Rotation	
 and	
 Offset	
 Computations	

This section illustrates one typical system configuration that uses both absolute and
relative rotations, as well as relative offsets to define the location of individual system
elements. The locations of these elements are translated back to absolute E/N/U
coordinates, using the equations provided in Section 8.6.1, and the Frame of
Reference structure defined in Section 8.5.

8.6.3.1. System	
 Definition	

Please consider the following system:
• A vehicle with a 1m wide, 1.5m long roof
• An INS unit mounted at the center of the roof, providing GPS information as

well as Roll, Pitch, and Heading information
• A steerable antenna mounted at the back left corner of the vehicle roof. The

antenna can only rotate in the azimuth plane, and provides relative azimuth
angle feedback as it rotates, and started (0 degree mark) facing the front of
the vehicle.

Geolocation-Tag Specification v2.0

48

Figure 8.5: Example System Orientation and Component Layout

8.6.3.2. System	
 GEOLOCATION	
 Tags	

When a packet is received, the system would output one GPS and two VECTOR tags.
The example below shows the system output if the vehicle was travelling East up a
steep hill with the antenna pointing towards the right front corner of the vehicle roof:

GPS-TAG
Latitiude 40.787743°
Longitude -73.971210°
Altitude 200.123m

VECTOR-TAG
VectorFlags Ox03: DefinesForward + RelativeTo:Earth

Bit 0: Vector defines the Forward Frame of Reference
Bit1,2: RelativeTo:Earth

VectorCharacteristics 0x06
FRONT_OF_VEHICLE
DIRECTION_OF_TRAVEL (vector indicates direction of travel)

Rot-X (Pitch) 30.0°
Rot-Y (Roll) 10.0°
Rot-Z (Heading) 90.0°
Off-R (Right) 0.0
Off-F (Forward) 0.0
Off-U (Up) 0.0

VECTOR-TAG
VectorFlags 0x00

RelativeTo: Forward
VectorCharacteristics 0x01

ANTENNA (vector represents an antenna)
Heading (RotZ) 45.0°
Off-R (Right) -0.5 meters
Off-F (Forw) -0.75 meters

The VectorCharacteristics flags of the first VECTOR-TAG indicate this tag provides the
vehicle direction of travel as well as the orientation of the front of the vehicle. The
VectorFlags indicate that the rotations provided are RelativeTo: Earth, meaning they
give the orientation of the vehicle in the E/N/U coordinate system. This tag also

Geolocation-Tag Specification v2.0

49

indicates it should be used as the Forward frame of reference by setting the
DEFINES_FORWARD_FRAME_OF_REFERENCE bit.

The VectorCharacteristics and VectorFlags flags of the second VECTOR-TAG indicate
this tag gives the position and orientation of an Antenna, relative to the currently
defined forward frame of reference.

8.6.3.3. Calculated	
 Rotation	
 Matrices	

Using the formula shown in 8.6.1 we can generate the following two rotation
matrices.

	

Geolocation-Tag Specification v2.0

50

Converting	
 to	
 Absolute	
 ENU	
 Rotations	

With computed, we can derive the ENU rotations of the antenna.

 Antenna_Absolute.RotY = 28.3

 Antenna_Absolute.RotX = 14.3

 Antenna_Absolute.RotZ =135.9

Which indicates that the antenna was oriented with 14.3 degrees of (absolute) pitch,
28.3 degrees of (absolute) roll, and was pointed approximately south by south east.

8.6.4. Converting	
 offsets	
 to	
 ENU	
 Coordinates	

In order to convert offsets into E/N/U coordinates first construct a matrix
representing the offsets IN R/F/U coordinates.

Convert to East, North, Up coordinates, by multiplying by

Geolocation-Tag Specification v2.0

51

 can be interpreted as follows: when the car is facing East at the given pitch

and roll, the antenna is 0.69 meters to the West, 0.49 meters to the North, and 0.3
meters below the center of the vehicle roof. The final absolute location of the
antenna on the Earth is the combination of the current GPS latitude, longitude and
altitude information with this vector.

Geolocation-Tag Specification v2.0

52

9. Processing	
 GEOLOCATION-­TAGs	
 	

The following section illustrates in detail how GEOLOCATION-TAG processing should
be handled. It is not expected that every application will implement this algorithm in
its entirety; however applications that deviate from the following interpretation will
be viewed as not compliant with the PPI-GEOLOCATION tag standard.

A reference implementation of this algorithm, py-ppi-geo-state, is expected to be
available in the PPI-GEOLOCATION SDK. Developers may wish to refer to the code
for implementation details. While every effort is made to keep this document and the
implementation synchronized, the reference implementation should be seen as the
definitive authority on the described state machine.

9.1. Global	
 GEOLOCATION-­TAG	
 state	

The following diagram depicts all of the state that is required to be tracked by a
GEOLOCATION-TAG processor. This state includes internal representations of the
most recent ANTENNA and 802.11COMMON tag, as well as the three Key Reference
frames. A second set of reference frames, ones that correspond to each
VectorCharacteristic (Antenna, Direction of Travel, Front of vehicle, etc) is also
tracked. These are stored for the convenience of client applications. The state
machine does not use these non-key frames of reference as the input of any
operation.

It is expected that the internal representation of GEOLOCATION-TAGS preserve the
present bitmask to determine whether or not a value has been defined yet. A field
that is not present is said to be undefined.

Geolocation-Tag Specification v2.0

53

9.2. Reference	
 Frames	

Vector tags are combined with GPS tags to define Reference frames. The following
rules apply to all reference frame variables maintained by the GEOLOCATION-TAG
processor.

• All reference frames are reset to their default values at the start of each packet
and upon successful processing of any GPS tag.

• The default values for all frames of reference, excluding the Earth Frame, are
Off-X=0, Off-Y=0, Off-Z=0, Rot-X=0, Rot-Y=0, Rot-Z=0. This makes the
default axes for all non-Earth frames identical to the Earth frame.

9.2.1. Key	
 reference	
 frames	

Earth_Frame: Frame of reference where the Pos value is always equal to the most
recently processed GPS tag. The Vector portion of Earth frame is immutable, and
always represents the E/N/U system described in section 8.3.1.

Curr_Frame This reference frame is updated with the offsets and rotations of the
most recently encountered Vector tag. As such, Curr_Frame contains the most recent
orientation and position processed by the GEOLOCATION-TAG processor. Applications
can check the VectorCharacteristics of this field to determine what this vector
indicates (See 10.6 for an example of this).

Geolocation-Tag Specification v2.0

54

By default, Off-X=0, Off-Y=0, Off-Z=0, Rot-X=0, Rot-Y=0, Rot-Z=0. This makes all
reference frame axes identical to the Earth frame of reference until they are
updated.

Forward_Frame: This reference frame is updated with the offsets and rotations of
the most recently encountered Vector tag that has the VectorFlags.DEFINES_FORWARD
bit set.

This frame of reference is designed to allow applications to create their own
convenient local R/F/U based coordinate system. It is described in 8.3.2 and an
example of using it is provided in 10.4.

9.2.2. Non-­‐Key	
 reference	
 frames	

The GEOLOCATION-TAG processor tracks the following reference frames. They are all
updated when the appropriate bit in VectorCharacteristics is set. These are tracked
as a convenience for end-user applications; the state machine itself will not use
these values as input into any operation.

Antenna_Frame: Indicates the orientation of the most recently processed vector
with the VectorChars.ANTENNA bit set.

DOT_Frame: This value contains the most recent frame of reference indicated by a
VECTOR with the VectorChars.DIR_OF_TRAVEL bit set.

FOV_Frame: Indicates the orientation of the most recently processed vector with
the VectorChars.FRONT_OF_VEHICLE bit set

AOA_Frame: Indicates the orientation of the most recently processed vector with
the VectorChars.ANGLE_OF_ARRIVAL bit set

Transmitter_POS: Indicates the position of the most recently processed vector
with the VectorChars.TRANSMITTER_POS bit set (See example 10.10 for details).

Geolocation-Tag Specification v2.0

55

9.3. Sensor	
 Data	

An arbitrary amount of sensor data can be attached to any reference frame. This
data is stored in a tree-based hierarchy. This hierarchy of this tree is designed to
propagate sensor information in a way that is relevant (and well defined) to
applications.

Consider the case of a velocity tag that is stored with the Forward frame of
reference. In this case a Vector tag that represents an antenna is also provided. The
antenna frame is marked as RelativeTo:Forward. In all likelihood the antenna is
moving at the same velocity as the reference frame it is RelativeTo. The following
algorithm, implemented in the PPI-GEOLOCATION state machine attempts to
propagate this information in a meaningful manner, while still giving applications as
much flexibility as necessary to store a variety of sensor data.

The following algorithm, implemented inside the PPI-GEOLOCATION state machine
attempts to bridge this gap, in a manner that is convenient to both GEOLOCATION-
TAG producers and consumers.

• Sensor data that precedes all Vector tags is attached to the Earth frame of
reference.

• Sensor data which follows any Vector tag is attached to all frames of
reference that are updated by the most recently preceding Vector tag, (This
means the smallest possible subset of updated frames is CurrentFrame).

• Any vector which is RelativeTo: a key frame of reference inherits all sensor
data from the key frame it is RelativeTo.

Readers implementing their own PPI-GEOLOCATION tag processor are encouraged to
review the reference implementation and ensure equivalent parse trees.

Geolocation-Tag Specification v2.0

56

9.4. GEOLOCATION-­TAG	
 state	
 machine	
 variables	

All PPI-GEOLOCATION tag processors must keep track of whether a field in a given
variable was initialized to its default value, or if it represents data actually provided
by a tag. Fields that are backed with user data are said to be defined. Fields which
are initialized with values from the state machine are un-defined. This relationship is
straightforward, except in the case of vectors which are computed RelativeTo: key
frames of reference which contained undefined values. In this case the rules in
section 9.6.1 are applied.

Unless stated otherwise, all values are set to 0 and undefined at initialization time.
The following section iterates over each variable, and describes when it is initialized
and updated.

9.4.1. Curr_Signal	

Internal representation of the most recently processed Dot11Common tag. This is
where applications look to see the signal strength, channel, etc.

9.4.1.1. 	
 Initial	
 values:	

Initialized on: PACKET_START
AntSignal, AntNoise are initialized to -128 and undefined (This is used to indicate
unknown in Dot11Common tags)
All other Curr_Signal fields are initialized to zero and set to undefined.

9.4.1.2. Updated	
 on:	

Successful processing of any Dot11Common-tag causes all fields in Curr_Signal to be
updated. Applications that parse Radiotap headers would update all Curr_Signal
fields upon successfully parsing of Radiotap headers.

9.4.2. Curr_Antenna	

Internal representation of the most recently processed ANTENNA-TAG. This is where
applications look to see the beamwidth, gain, etc of the antenna the packet was
received on.

9.4.2.1. 	
 Initial	
 values:	

Initialized on: PACKET_START
Gain is initialized to 5 dBi,
HorizBw is initialized to 360.0
All other Curr_Antenna fields are initialized to zero and set to undefined.
(The motivation for default gain/beamwidths is to provide consistent defaults across
various implementations when no antenna data is present.)

9.4.2.2. Updated	
 on:	

Successful processing of any ANTENNA-tag causes all fields in Curr_Antenna to be
updated.

9.4.3. Reference	
 frames:	

Initialized on: PACKET_START, GPS_TAG
Represents various frames of reference in the state machine.

9.4.3.1. 	
 Initial	
 values:	

Initialized on: PACKET_START, GPS_TAG.
All fields set to zero and undefined on PACKET_START.

Geolocation-Tag Specification v2.0

57

Processing of GPS TAGs cause the Position field of all reference frames to be
updated, and the vector field of all frames other than Earth reset to zero and
undefined.

9.4.3.2. Updated	
 on:	

Curr_Frame:
 Position is updated on processing of any vector (ApplyOffsets).
 Orientation is updated on processing of any vector (ApplyRotations).
 Sensor data: handled according to 9.3.
Forward_Frame:

Position is updated on processing of any vector with DEFINES_FORWARD bit in
VectorCharacteristics set (ApplyOffsets).

 Orientation is updated on processing of any vector (ApplyRotations).
 Sensor data: handled according to 9.3.
Earth_Frame:
 Position is updated on processing of any GPS tag.
 Orientation is immutable, set to E/N/U coordinate system.
 Sensor data: handled according to 9.3.

Non-key-Frames (Antenna, DOT, FOV, …):
Non-key reference frames are updated any time a vector is processed with the
applicable VectorCharacteristic bit set.

 Position is updated on processing of any applicable vector (ApplyOffsets).
 Orientation is updated on processing of any applicable vector

(ApplyRotations).
 Sensor data: handled according to 9.3.

Geolocation-Tag Specification v2.0

58

9.5. PPI-­GEOLOCATION	
 TAG	
 processing	
 overview	

While section 9.4 precisely describes the circumstances when each PPI-
GEOLOCATION variable is modified, this section gives a brief description of what
happens to a PPI-GEOLOCATION tag is processed. This description is supplementary
to the definitions in 9.4

9.5.1. GPS-­‐TAG	
 processing	
 	

When A GPS-TAG is processed it causes every frame of reference to take on the
supplied value in the position field. They also reset every frame of references vector
to their default values.

9.5.2. VECTOR-­‐TAG	
 processing	
 	

VECTOR-TAGs are used to precisely define a location (via on offset) and/or an
orientation (via the rotation fields). As shown in the Figure below, when both offsets
and rotations are present, offsets are applied first. Offset X,Y, and Z values are
aligned to the axes of whichever key frame of reference the Vector is RelativeTo.
This offset point becomes the origin of the new Current Frame, and any rotations are
then applied in the order Heading, Pitch, Roll, centered at this origin. Detailed
information on applying rotations is given in Section 8.6.1

Geolocation-Tag Specification v2.0

59

9.5.3. SENSOR-­‐TAG	
 processing	

When a SENSOR-TAG is processed it is attached to one or more reference frames
according to the algorithm described in 9.3

9.5.4. ANTENNA-­‐TAG	
 processing	
 	

Processing an ANTENNA-TAG causes Curr_Antenna to be Updated. There are no side-
effects, and no other variables are modified.

9.5.5. DOT11COMMON-­‐TAG	
 processing	
 	

Processing a Dot11Common TAG causes Curr_Signal to be Updated. There are no
side-effects, and no other variables are modified.

9.5.6. Invalid	
 tags	

It is possible to craft invalid GEOLOCATION-TAGS; either through invalid lengths,
invalid fixed point values, and other avenues. Applications encountering any parsing
error (other than referencing an undefined value, covered above) should stop
processing the current tag, revert GlobalState to the values stored previous to
encountering the erroneous tag, and continue processing on the next tag.

9.6. Undefined	
 values	
 	

PPI-GEOLOCATION state machines must be able to distinguish between values that
were provided as initial defaults, and values that are actually derived from user data.
Values that are derived from user data are said to be defined. In most cases there
is a simple relationship between variables in the PPI-GEOLOCATION state machine.

For example, Curr_Antenna.HorizBw is given an initial value of 360, but it set to
undefined As soon as an antenna tag is processed with the HorizBw field, the
variable will be updated and marked as defined. This simple relationship holds true
for all variables except the vector portion of reference frames. Since vectors can be
computed relative to other vectors, and any one of the 6 rotation variables involved
can be undefined, the following rules are used.

9.6.1. Definedness	
 of	
 ReferenceFrame.Vec	

1. Any rotations not present will be assumed 0 and marked undefined in the
resulting Reference Frame.

2. If two vectors are combined that BOTH provide ONLY Heading, ONLY Pitch, or

ONLY Roll, then the provided Heading, Pitch or Roll will be defined, and the
other two rotations will be assumed 0 and marked undefined in the resulting
Reference Frame.

3. Otherwise, if two vectors that both have at least one rotation present are

combined, then if any Pitch, Roll, Heading value for either of the two vectors
was undefined, all three will be undefined in the resulting Reference Frame.

The application of rule 2 allows many applications only concerned with heading to get
the desired results from the state machine, while rule 3 allows applications to
validate that all the inputs were present to reliably compute the vector used in the
reference frame.

Geolocation-Tag Specification v2.0

60

9.6.2. Undefined	
 altitudes	

Applications encountering packets with no altitude or altitude_g field must assume
they were captured at ground level. More precisely: when a frame of reference has
an undefined Pos.altitude and an undefined Pos.altitude_g field, applications shall
treat the altitude as ground level.

Geolocation-Tag Specification v2.0

61

10. Applications	

The most obvious use for GEOLOCATION-TAGS is to provide a standardized way for
802.11 capturing utilities to encode GPS and orientation information. Assuming a
fully filled out set of GEOLOCATION-TAGS, the visualization system can know exactly
when and where a packet was captured, including the orientation of the antenna and
the antenna in use. Supplementary sensor information can also be provided, which
allows the precise expression of velocity, acceleration, temperature, and can easily
be expanded to include application specific data. It is the author’s hope that by
commoditizing the storage of this information interest will develop around building
geo-location systems that can interoperate with common tools.

	
 	
 	
 Common	
 use	
 cases	

The following section identifies the most common use-cases for GEOLOCATION-
TAGS. It starts out with the simplest cases to encode and moves on to more difficult
examples. Although not every conceivable combination is expressed below, the most
useful cases should be covered. Applications are encouraged to imitate one of these
use-cases in order to maximize compatibility. A pcap file that illustrates all of these
examples is included in the SDK.

10.1. GPS	
 	
 Only	

Many applications today store GPS meta-information out-of-band of packets captured
during a survey. These applications could be easily modified to output this
information in-line with the pcap file by using a GPS-TAG. The following scenario
walks through the state of a GEOLOCATION-TAG processor that encounters such
input.

GPS-TAG
Latitiude 40.787743°
Longitude -73.971210°

Processing this single tag results in the following GEOLOCATION-STATE table.
A (u) next to a name indicates that the current value is undefined, a value provided
by or derived from a default.

Antenna_Frame
Position
Defined: Lon,Lat
Lat/Lon 40.787743°, -73.971210°
Vec
Defined: None
Rot-X (Pitch) (u) 0
Rot-Y (Roll) (u) 0
Rot-Z (Heading) (u) 0

Curr_Antenna (defaults)
Defined: None
AntennaFlags (u) 0x00
Gain (u) 5
Horizbw (u) 360.0

Geolocation-Tag Specification v2.0

62

Curr_Sig (undefined)
Defined: None
Antsignal (u) -128 (unknown, from initialize_defaults)
Antnoise (u) -128 (unknown, from initialize_defaults)

Curr_Frame and ForwardFrame are identical to Antenna_Frame

Since no ANTENNA-TAG was included, the defaults specified in 9.4.2.1 were used to
populate Curr_Antenna.

The preceding GEOLOCATION-STATE indicate that there is an omni-directional
antenna pointed due north (AntennaFrame.rotZ=0) located at the position described by
the GPS-TAG. However, the rotation information is marked as undefined (since it did
not come from any user data). Antenna characteristics as well as signal strength are
also marked as undefined in the state machine. The visualization output shown
below is based only on variables in the state machine that are marked as defined.

Geolocation-Tag Specification v2.0

63

10.2. GPS	
 +	
 VECTOR	
 +	
 ANTENNA	
 +	
 RADIOTAP	

This case represents a common scenario where the collection system has a single
omni-directional antenna on the top of the vehicle.

GPS-TAG
Latitude 40.787743°
Longitude -73.971210°

 VECTOR (Antenna)
VectorFlags 0x02

RelativeTo:Earth
VectorChars 0x01 (Antenna)
Rot-X: (Pitch) 90
Rot-Y: (Roll) 0
Rot-Z: (Heading) 0
DescriptionString Antenna-1 orientation

ANTENNA-TAG
AntennaFlags 0x02

Bit 1: Horizontal-Polarity
Gain 8 dBi
HorizBW 360.0
Modelname 8dBi-MagMountOmni

RADIOTAP
Antsignal -80 dB
Antnoise -110 dB
channel 6

The addition of a Vector-Tag, ANTENNA-TAG and Radiotap header results in the
following updated GEOLOCATION-STATE

Antenna_Frame
Position
Defined: Lon,Lat
Lat/Lon 40.787743°, -73.971210°
Vec
Defined: Rot-X/Y/Z
Rot-X: (Pitch) 90
Rot-Y: (Roll) 0
Rot-Z: (Heading) 0

Curr_Antenna
Defined: AntennaFlags,gain,horizbw,Modelname
AntennaFlags 0x02

Bit 1: HORIZONTALLY_POLARIZED
Gain 8
horizbw 360.0
Modelname 8dBi-MagMountOmni

Geolocation-Tag Specification v2.0

64

Curr_Sig
Defined: Antsignal,Antnoise,Channel
Antsignal -80
Antnoise -110
Channel 6

In the image above the visualization system renders signal strength as a color coded
and scaled line, where orientation is determined by AntennaFrame.Vec.

Geolocation-Tag Specification v2.0

65

10.3. Directional	
 of	
 travel	
 +Velocity	
 +	
 one	
 directional	
 antenna	

In this case we illustrate a common configuration of one directional antenna pointed
out the passenger side window of a moving car. This requires the introduction of two
VECTOR-TAGs; one for the direction of the car, and one for the antenna. Note that
the second VECTOR tag utilizes rotations RelativeTo:ForwardFrame. Also note the
introduction of the Rot-X field in the vehicle’s VECTOR TAG; the system is now
recording a 10 degree incline. This example also introduces the sensor tag.

GPS (vehicle position)
GPSFlags 0x02

1:GPS_FIX
Latitude 40.787743°
Longitude -73.971210°

VECTOR (vehicle orientation)
VectorFlags 0x03

Defines_Forward
RelativeTo:Earth (Rotations in E/N/U Coordinates)

VectorChars 0x06
1:DIRECTION_OF_TRAVEL
2:FRONT_OF_VEHICLE

Rot-X: pitch 10.0°
Rot-Z: heading 22.5° (NNE)

Sensor (Velocity)
SensorType Velocity
Val_T 20.0 m/s

VECTOR (right antenna orientation)
VectorFlags 0x04

RelativeTo:ForwardFrame
VectorChars 0x01

Bit 0:ANTENNA
Rot-Z: heading 90.0 (90 degrees right, relative to forward)

 ANTENNA (right antenna)
Antennaflags 0x02

Bit 1: HORIZONTALLY_POLARIZED
Gain 9 dBi
horizbw 120
Modelname SA24-120-9

 802.11COMMON1 (right antenna signal)
Antsignal -75 dB
Antnoise -110 dBi
channel 6

Geolocation-Tag Specification v2.0

66

The GEOLOCATION-STATE generated from processing the preceding five tags is
shown below.

Forward_Frame*
Position
Defined: GPSFlags,Lon,Lat
GpsFlags 0x02: GPS-FIX
Lat/Lon 40.787743°, -73.971210°
Vec
Defined: VectorFlags,VectorChars,RotX,RotZ
VectorCharacteristics 0x06

FRONT_OF_VEHICLE
DIRECTION_OF_TRAVEL

Rot-X: Pitch 10.0°
Rot-Y: Roll (u) 0° (comes from initialize_defaults)
Rot-Z: Heading 22.5.° (NNE)
SensorData (Velocity)
Val-T 20.0 m/s

 *DOT_Frame, FOV_Frame contain identical values.

Antenna_Frame
Position
Defined: Lon,Lat
Lat/Lon 40.787743°, -73.971210°
Vec
Defined: VectorFlags, VectorChars, RotX ,RotZ,
VectorCharacteristics 0x01

Bit 0: ANTENNA
Rot-X: Pitch (u) 0.0
Rot-Y: Roll (u) 10.0

Geolocation-Tag Specification v2.0

67

Rot-Z: Heading (u) 112.5° (ESE)
SensorData (Velocity)
Val-T 20.0 m/s (Inherited from Forward_ Frame)

Examining AntennaFrame.Vec field we see that 10° of pitch relative to the vehicle is
equal to 10° of roll to the antenna. This is consistent with an antenna pointed out the
passenger window of an up-hill travelling car. Notice that since Roll was not included
in the vector tag that created ForwardFrame, roll was not defined in
ForwardFrame.Vec. Therefore when the state machine combined the antenna vector
with ForwardFrame according to 9.6.1 it marked all of the Vec fields in
AntennaFrame as undefined.

We can follow the propagation of the velocity Sensor tag throughout the frames of
reference in this example. The tag was originally attached to the ForwardFrame, and
since the second vector tag was RelativeTo:Forward, the sensor data propagated to
AntennaFrame as well.

Geolocation-Tag Specification v2.0

68

10.4. Two	
 static	
 directional	
 antennas	
 with	
 offsets	

This case is similar to the previous, except that we now have two antennas
connected to two independent interfaces capturing the same packet. (How an
application verifies that this was indeed the same packet before tagging it in this
manner is outside the scope of this document.).

Assume for simplicity that the vehicle is exactly 1.5 meters wide, that the GPS
Antenna is located 0.2 meters above each antenna (on the roof), and that each
antenna is forward 0.6m of the GPS antenna. If we wanted to encode all of this
precisely, we would do it as follows.

GPS (vehicle position)
GPSFlags 0x02

1:GPS_FIX
Latitiude 40.787743°
Longitude -73.971210°
Altitude_g 2.0m

Note the use of altitude_g here: We specify the height of the roof of the car as 2.0m
from ground. It is recommended that ground based applications utilize the
altitude_g field rather filling in altitude results from a GPS receiver, as altitude
readings may vary significantly in values and precision in real world conditions.
Alternately, applications may simply leave altitude out, which should cause all
applications processing geolocation-tags to assume ground level.

Geolocation-Tag Specification v2.0

69

VECTOR (vehicle orientation)
VectorFlags 0x03

Defines_Forward
RelativeTo:Earth (Rotations in E/N/U Coordinates)

VectorChars 0x06
1:DIRECTION_OF_TRAVEL
2:FRONT_OF_VEHICLE

Rot-X: pitch 10.0°
Rot-Z: heading 22.5° (NNE)

Sensor (Velocity)
SensorType Velocity
Val_T 8.5 m/s

Sensor (Acceleration)
SensorType Acceleration
Val_T 0.5 m/s2

The velocity and acceleration values tell us that the car was travelling through the
intersection when this packet was captured.

VECTOR (right antenna orientation)
VectorFlags 0x04

RelativeTo:ForwardFrame
VectorChars 0x01

Bit 0:ANTENNA
Rot-Z: heading 90.0 (90 degrees right, relative to forward)
Off-X: (Right) 0.75m
Off-Y: (Forward) 0.6m
Off-Z: (Up) -0.2m

 ANTENNA (right antenna)
Antennaflags 0x02

Bit 1: HORIZONTALLY_POLARIZED
Gain 9 dBi
horizbw 120
Modelname SA24-120-9

 802.11COMMON1 (right antenna signal)
Antsignal -75 dB
Antnoise -110 dBi
channel 6

Geolocation-Tag Specification v2.0

70

Lets examine the values of the GEOLOCATION-STATE at this point.

Forward_Frame
Position
Defined: GPSFlags,Lon,Lat,Alt_g
GpsFlags 0x02: GPS-FIX
Lat/Lon/Alt_g: 40.787743°, -73.971210°, 2.0m
Vec
Defined: VecFlags,VectorChars,RotX,RotZ
VectorCharacteristics 0x06

FRONT_OF_VEHICLE
DIRECTION_OF_TRAVEL

Rot-X: Pitch 10.0°
Rot-Y: Roll (u) 0° (This is a default)
Rot-Z: Heading 22.5.° (NNE)
SensorData (Velocity)
Val-T 8.5 m/s
SensorData (Acceleration)
Val-T 0.5 m/s2

Forward_Frame was defined by the combination of the first GPS-TAG and the first
VECTOR-TAG. We also have acceleration and velocity information from the sensor
tags.

Antenna_Frame’s position has an offset of (.75m right, .6m forward, 0.2m down) of
the position stored in Forward_Frame.pos. Converting these offsets into the E/N/U
coordinate system (as shown in 8.6.4) we arrive at: (0.93m East, 0.29m North,
-0.09 Up). Applying the E/N/U offsets to the original lon/lat/alt leads to the results
listed in Anntenna_Frame.pos

Geolocation-Tag Specification v2.0

71

Antenna_Frame, CurrFrame

Position
Defined: Lon,Lat,Alt_g
Lat/Lon/Alt_g: 40.7877459, -73.9711987, 1.8m
Vec
Defined: VectorChars,RotX RotZ,
VectorCharacteristics 0x06

FRONT_OF_VEHICLE
DIRECTION_OF_TRAVEL

Rot-X: Pitch (u) 0.0
Rot-Y: Roll (u) 10.0
Rot-Z: Heading (u) 115.5° (ESE)
SensorData (Velocity) (Inherited from ForwardFrame)
Val-T 8.5 M/s
SensorData (Accel) (Inherited from ForwardFrame)
Val-T 0.5 M/s2

Examining AntennaFrame.Vec field we see that 10° of pitch relative to the vehicle is
equal to 10° of roll to the antenna. This is consistent with an antenna pointed out the
passenger window of an up-hill travelling car. We can see that all of the rotation
fields on Antenna frame are undefined, due to rule 3 of section 9.6.1.

Curr_Antenna and Curr_Signal are trivially derived from their respective tags.

Curr_Antenna
Defined: AntennaFlags,gain,horizbw,Modelname
Undefined: Vertbw,PrecisionGain,BeamID, ...
AntennaFlags 0x02

Bit 1: HORIZONTALLY_POLARIZED
gain 9
horizbw 120.0
Modelname SA24-120-9

Curr_Sig
Defined: Antsignal, Antnoise, channel
Undefined: …
Antsignal -75
Antnoise -110
channel 6

If we were to plot out all of the information present so far, it would look similar to
the illustration in 10.4

Geolocation-Tag Specification v2.0

72

Moving on to the next set of tags we have:

VECTOR (left antenna orientation)
VectorFlags 0x00

RelativeTo:ForwardFrame
VectorChars 0x01

Bit 0:ANTENNA
Rot-Z: heading 270.0 (degrees right, relative to forward)
Off-X: (Right) -0.75m
Off-Y: (Forward) 0.6m
Off-Z: (Up) -0.2m

 ANTENNA (left antenna)
Antennaflags 0x02

Bit 1: HORIZONTALLY_POLARIZED
Gain 9 dBi
horizbw 120
Modelname SA24-120-9

 802.11COMMON1 (left antenna signal)
Signal -95 dB
noise -118 dBi
channel 6

The VECTOR-TAG changes both Curr_Frame and Antenna_frame to reflect the offsets
and rotations indicated. Instead of slightly north-east of our initial point, we are
slightly north-west. And since this antenna is 180 degrees opposite the first, the 10
degrees of roll are in the opposite direction.

Antenna_Frame, CurrFrame
Position
Defined: GPSFlags, Lon, Lat, Alt_g
Lat/Lon/Alt_g: (-0.75R, 0.60F, 0.20U)-->(-0.45E, 0.87N,-0.09U)

40.7877521, -73.9712145, 1.8M
Vec
Defined: VectorFlags,VectorChars, RotX RotZ, Off-R/F/U
VectorCharacteristics 0x06

FRONT_OF_VEHICLE
DIRECTION_OF_TRAVEL

Rot-X: Pitch(u) 0.0°
Rot-Y: Roll (u) -10.0°
Rot-Z: Heading (u) 292.5° (WNW)
SensorData (Velocity) (Inherited from ForwardFrame)
Val-T 8.5 m/s
SensorData (Accel) (Inherited from ForwardFrame)
Val-T 0.5 m/s2

Geolocation-Tag Specification v2.0

73

Of course Curr_Sig and Curr_Antenna are updated accordingly, resulting in the
following diagram. (Signal strength has been colored/scaled to reflect intensity), and
the offsets were of such a small scale they are difficult to see.

The above screenshot conveys most of this information, although seeing the offsets
and pitch is difficult due to scale.

Geolocation-Tag Specification v2.0

74

10.5. Electronically	
 steerable	
 antenna	

This case is similar to that of 10.2, except that the ELECTRONICALLY_STEERABLE_
ANTENNA bit in the AntennaFlags is set. Antennas of this type can electronically
steer their beam, resulting in many packets captured at approximately the same
time/location/ but varying rot-Z values for the antenna. In this case we tagged a
packet while the antenna was electronically steered 120 degrees from the front.
(Astute readers will note the presence of the BeamID field in the ANTENNA-TAG. This
16-bit value should uniquely identify every possible beam pattern present for a given
antenna.)

GPS (vehicle position)
GPSFlags 0x02

Bit 1:GPS_FIX
Latitiude 40.787743°
Longitude -73.971210°

VECTOR (current orientation of electrically-steered antenna)
VectorFlags 0x03

Defines_Forward
RelativeTo:Earth (Rotations in E/N/U Coordinates)

VectorChars 0x01
Bit 0:ANTENNA

Rot-Z: heading 120.0 (degrees right, relative to forward)

 ANTENNA (Electronically steerable)
Antennaflags 0x00010002

Bit 2: HORIZONTALLY_POLARIZED
Bit 16: ELECTRONICALLY_STEERABLE

Gain 12 dBi
horizbw 60
BeamID 0xF1A1 (Vendor specific)
Modelname ElectronicallySteerableExAntenna
AppId 0x04030201

 802.11COMMON1 (electronically steerable antenna signal)
Signal -75 dB
noise -110 dBi
channel 6

Geolocation-Tag Specification v2.0

75

Geolocation-Tag Specification v2.0

76

10.6. Mechanically	
 steerable	
 antenna	

This case is similar to 10.5 except that it illustrates that the forward frame of
reference may differ from the capturing systems “intuitive” notion of forward. This
example utilizes three different VECTOR-TAGs. One to define the forward frame of
reference, one to define the direction of travel/front of vehicle, and finally a relative
vector to describe the orientation of a mechanically steered antenna.

The motivation for this case is a mechanically steered antenna positioned out the
rear of a vehicle, thus the servo’s definition of forward is out the back of the car. In
this case the mechanically steered antenna is 75 degrees past the zero mark.

GPS (vehicle position)
GPSFlags 0x02

1:GPS_FIX
Latitiude 40.787743°
Longitude -73.971210°

VECTOR (vehicle orientation, direction of travel)
VectorFlags 0x02

RelativeTo:Earth (Rotations in E/N/U Coordinates)
VectorChars 0x06

1:DIRECTION_OF_TRAVEL
2:FRONT_OF_VEHICLE

Rot-Z: heading 22.5.(NNE)

VECTOR (forward frame of reference (back of vehicle)
VectorFlags 0x03

Defines_Forward
RelativeTo:Earth (Rotations in E/N/U Coordinates)

VectorChars 0x00
Rot-Z: heading 202.5°(SSW)

VECTOR (mechanically steerable antenna orientation)
VectorFlags 0x00

RelativeTo:Forward
VectorChars 0x01

1:ANTENNA
Rot-Z: heading 75.0°

 ANTENNA (Electronically steerable)
Antennaflags 0x020002

Bit 2: HORIZONTALLY_POLARIZED
Bit 17: ELECTRONICALLY_STEERABLE

Gain 12 dBi
horizbw 60
Modelname 12dBi-Panel

Geolocation-Tag Specification v2.0

77

 802.11COMMON1 (steerable antenna signal)
Antsignal -77 dB
Antnoise -110 dBi
channel 6

	

Geolocation-Tag Specification v2.0

78

Note that the heading in AntennaFrame is marked as defined. This is because rule 2 in
section 9.6.1 has been applied.

Note that the original vector that indicated direction of travel is contained in
DOT_Frame. It is omitted for brevity.

Forward_Frame
Position
Defined: GPSFlags,Lon,Lat
GpsFlags 0x02: GPS-FIX
Lat/Lon 40.787743°, -73.971210°
Vec
Defined: VectorChars,RotZ
Rot-X:Pitch (u) 0° (This value comes from initialize_defaults)
Rot-Y:Roll (u) 0° (This value comes from initialize_defaults)
Rot-Z: Heading 202.5° (SSW)

Antenna_Frame, Curr_Frame
Position
Defined: GPSFlags,Lon,Lat
GpsFlags 0x02: GPS-FIX
Lat/Lon 40.787743°, -73.971210°
Vec
Defined: VectorFlags,VectorChars,RotZ
VectorChars 0x01

1:ANTENNA
Rot-X: Pitch (u) 0° (This value comes from RFU2ENU)
Rot-Y: Roll (u) 0°
Rot-Z: Heading 277.5° (WSW)

Geolocation-Tag Specification v2.0

79

10.7. Drifing	
 boat	

This example is included for sake of completeness; Imagine a boat at sea oriented
toward the north east, with one antenna off the starboard (right) side, drifting due
West. In this case the direction of travel is West, the front of the vehicle is North East,
and the antenna orientation is South East. This would be encoded with three different
VECTOR tags, each with a specific bit in VectorChars set. This situation would look
something like the following.

The goal of this example is to illustrate why applications should pay attention to how
they parse and set VectorCharacteristics.

Geolocation-Tag Specification v2.0

80

10.8. Time	
 of	
 arrival	
 analysis	
 	

This example illustrates how to utilize the TDOA-CLOCK Sensor to encode timing and
position values with sufficient precision that an angle of arrival can be computed based
on time of flight using two antennas, or a position solution can be found using three
antennas.

In this case two antennas are positioned 50 meters apart on Soldier field. Each
portion of the collection system shares a synchronized clock with nano-second
resolution. Since the distance between the antennas is significant, they are marked
with GPS-Tags. Applications can encode distances with millimeter precision by utilizing
the offset field of Vector-TAGS if necessary.

GPS-TAG (ant1)
GPS-Flags 0x80

8:Manual input mode
Latitude 41.861885
Longitude -87.616926
GPSTime Nov 02 2010 17:58:39
FractionalTime .20

 VECTOR (first antenna)
VectorFlags 0x02

RelativeTo:Earth (Rotations in E/N/U Coordinates)
VectorChars 0x01

Bit 0: Antenna
Rot-X: (Pitch) 90.0
DescriptionString Antenna-1 orientation

SensorData (TDOA_CLOCK)
ScaleFactor -9
Val-T 60.8754 (sec)
AppId 0x04030201

ANTENNA-TAG 1
Gain 5 dBi
HorizBW 360.0
AntennaFlags Bit 1: Horizontal-Polarity 1
Modelname 8dBi-Omni
DescriptionString Signal 1

 802.11COMMON1 (ant1 signal)
Antsignal -60 dB

This is the first time we have seen a Sensor tag that utilizes the ScaleFactor field. This
sensor indicates that the shared clock is set to 10-9 *60.8754 secs. (To get an absolute
time this value can be added to the GPSTimestamp field in the GPS-TAG; however
most applications using TDOA_CLOCK will be only interested in the deltas between

Geolocation-Tag Specification v2.0

81

them.) The preceding tags define a precise location and time when the packet was
received.

The following tags describe the second antenna, where the packet was received 118
ns later.

GPS-TAG (ant2)
GPS-Flags 0x10

7:Manual input mode
Latitude 41.861904
Longitude -87.616365
GPSTime Nov 02 2010 17:58:39
FractionalTime .20

 VECTOR (second antenna orientation)
VectorFlags 0x02

RelativeTo:Earth (Rotations in E/N/U Coordinates)
VectorChars 0x01

0: Antenna
Rot-X: (Pitch) 90.0
DescriptionString Antenna-1 orientation

SensorData (TDOA_CLOCK)
ScaleFactor -9
Val-T 178.124 (Secs)
AppId 0x04030201

ANTENNA-TAG 2
Gain 5 dBi
HorizBW 360.0
AntennaFlags Bit 1: Horizontal-Polarity 1
Modelname 8dBi-MagMountOmni
DescriptionString “Bottom Right of field”

 802.11COMMON1 (ant1 signal)
Antsignal -80 dB

Again, the field to note is the TDOA_Clock which is set to 10-9 *178.124 secs

Geolocation-Tag Specification v2.0

82

By taking the delta between the two clocks we can determine that when the wave
arrived at t1, it took 118 ns to reach t2. Light travels approximately 35 meters in
118ns , which means that when the wave had arrived at t1 it still had 35 meters to
travel to t2.

dt = 178 – 60 = 118ns
b = 118ns * (3e8ms)
b = 35.35 meters

Given that we know the distance between both antennas, and given that we know
the distance the signal had to travel after encountering t1 to arrive at t2, we can
perform the following calculation to compute the angle of arrival at t2.

cosθ = b/a = 35.35 / 50.0
cosθ = 0.707
θ = acos(0.707) = +/-45°

Solving gives two possible values for Theta (+/-45°). This ambiguity can be
resolved using additional AOA measurements from other antennas. The simplest
approach is to have a third antenna located off-axis from the other two, from which
another AOA can be computed and the intersection performed.

Applications which perform this type of analysis are encouraged to consider
performing their own analysis and outputting the resulting angles and distances, as
demonstrated in example 10.10

Geolocation-Tag Specification v2.0

83

10.8.1. Timing	
 analysis	
 details	

It should be emphasized that this specification does not dictate precisely when in the
802.11 packet reception the synchronized TDOA_CLOCK sensor should be set. This is
an implementation detail left to the collection system. As such, any application that
makes use of the TDOA_CLOCK field must also store an AppId that can be used to
differentiate products. This will help avoid mistakenly comparing clock values which
are not actually synchronized.

	

Geolocation-Tag Specification v2.0

84

10.9. AOA	
 example	

The PPI-GEOLOCATION specification allows applications to encode synthesized values,
such as the angle of arrival or the computed position of a transmitter. Both of these
features are accomplished by using the appropriate vector characteristics.

In the following example, an AOA is computed from a single location (perhaps by
utilizing a phased array system). Setting the appropriate vector characteristic in the
vector tag is used to indicate than the vector represents an AOA.

Applications are free to synthesize AOA data from whatever source(s) they feel are
appropriate. As such, applications that set the AOA vector characteristic must also
include an AppId, to help differentiate results.

GPS-TAG (ant2)
GPS-Flags 0x10

7:Manual input mode
Latitude 41.861904
Longitude -87.616350
GPSTime Tue May 17 09:40:32
FractionalTime .20

 VECTOR (antenna orientation)
VectorFlags 0x02

RelativeTo:Earth (Rotations in E/N/U Coordinates)
VectorChars 0x09

0: Antenna
Rot-X: (Pitch) 90.0
DescriptionString Antenna-1 orientation

 VECTOR (Angle of arrival)
VectorFlags 0x02

RelativeTo:Earth (Rotations in E/N/U Coordinates)
VectorChars 0x08

3: Angle of arrival
Rot-Z: (Heading) 323.4
Err-rot: 10.0 (10 degrees margin of error)
AppId 0x04030201

ANTENNA-TAG 2
Gain 5 dBi
HorizBW 360.0
AntennaFlags Bit 1: Horizontal-Polarity 1
Modelname 8dBi-MagMountOmni
DescriptionString “Bottom Right of field”

 802.11COMMON1 (ant1 signal)
Antsignal -80 dB

Geolocation-Tag Specification v2.0

85

Providing Angles of arrival and signal strength can be useful to applications which not
only need to know the direction of a transmitter, but how strong the signal is from a
given position.

Geolocation-Tag Specification v2.0

86

10.10. TRANSMITTER_POSITION	
 example	

Similar to AOA, applications can choose to encode not just the position of the
collection system and the angle to the transmitter, but they can choose to encode
what they have computed to be the position of the transmitter. In the following
example the collection system has computed a position of a transmitter, and is
encoding the distance to it from the collection system as an offset.40

GPS-TAG (ant2)
GPS-Flags 0x10

7:Manual input mode
Latitude 41.861904
Longitude -87.616350
GPSTime Tue May 17 09:40:32
FractionalTime .20
AppId 0x04030201

 VECTOR (antenna orientation)
VectorFlags 0x02

RelativeTo:Earth (Rotations in E/N/U Coordinates)
VectorChars 0x1001

0: Antenna
12: Human derived

Rot-X: (Pitch) 90.0
DescriptionString Antenna-1 orientation
AppId 0x04030201

 VECTOR (Forward, Angle of arrival)
VectorFlags 0x02

RelativeTo:Earth (Rotations in E/N/U Coordinates)
VectorChars 0x09

1: Defines_Forward
3: Angle of arrival

Rot-Z: (Heading) 323.4
Err-Rot: 10.0
AppId 0x04030201

 VECTOR (Transmitter Position)
VectorFlags 0x00

RelativeTo:Forward
VectorChars 0x10

5:TRANSMITTER_POSITION
Off-Y: (Forward) 40 meters
Err-Off: 2.0 meters
AppId 0x04030201

ANTENNA-TAG 2
Gain 5 dBi
HorizBW 360.0
AntennaFlags Bit 1: Horizontal-Polarity 1

Geolocation-Tag Specification v2.0

87

Modelname 8dBi-MagMountOmni
zDescriptionString “Bottom Right of field”
AppId 0x04030201

 802.11COMMON1 (ant1 signal)
Antsignal -80 dB

This set of tags contains the most useful set of information. It allows the
GEOLOCATION-ENGINE to know where the packet was captured, what angle it was
captured at, the computed distance to the transmitter, and the signal strength the
packet was received at when it arrived at t2. This data also contains error estimates
on the angle of arrive (2nd vetor tag, err_rot), and distance to the transmitter (3rd
vector err_off).

Applications that perform TDOA analysis are strongly encouraged to encode their
results in this format.

Geolocation-Tag Specification v2.0

88

10.11. Dead	
 reckoning	
 with	
 accelerometers	
 	

PPI-GEOLOCATION tags can support accelerometer-based applications in two
manners. In the first case, the application itself performs integration on the
acceleration data, and outputs packets tagged at the appropriate location. This can be
accomplished either with GPS-tags, or with Vector offsets. This case is similar enough
to those previously presented to need no further explanation.

Alternately, the application can output a stream of sensor data that is used by a
GEOLOCATION-TAG processing engine to compute the position a packet was captured
at. While it is possible to encode all of the relevant information into a PPI-
GEOLOCATION tagged packet capture, doing so requires the processing application to
remember state across individual packets. As such, applications that wish to perform
this integration go above and beyond the rules specified in the PPI-GEOLOCATION
state machine, and therefore may be application specific.

Geolocation-Tag Specification v2.0

89

11. Implementers	
 notes	

The following section is intended to help implementers answer common questions
about the GEOLOCATION-TAG specification.

11.1. What	
 is	
 the	
 current	
 version	
 of	
 this	
 specification?	

2.0.0 represents the first widespread distribution of this specification. New
applications should use this version, and should set the geotag_ver field to 2 as well.

11.2. My	
 GPS	
 outputs	
 a	
 heading	
 and	
 speed.	
 Why	
 can’t	
 it	
 go	
 in	
 the	
 GPS	
 TAG?	

All heading information should be stored in a VECTOR-TAG. Please craft a VECTOR-
TAG, fill in the Rot-Z (Heading) field, and set the VectorCharacteristics.DIRECTION_OF
TRAVEL bit appropriately. You should also set Bit 8 in VectorCharacteristics (GPS
DERIVED).
Velocity is stored in Sensor tags. Please see 10.3 for details on this use case.

11.3. So	
 I’ve	
 got	
 this	
 VECTOR-­TAG.	
 What	
 does	
 it	
 represent?	

Vectors can represent many things (vehicle orientation, antenna orientation, etc).
Check the VectorCharacteristics field to be sure. Alternately, just utilize the provided
state machine and it will handle this all for you by providing a frame of reference for
each characteristic.

11.4. When	
 should	
 I	
 set	
 the	
 DEFINES_FORWARD	
 bit?	

Any application that wishes to define its own local coordinate system must set the
DEFINES_FORWARD bit to initialize it. Example 10.4 illustrates the most intuitive
use of the forward frame of reference. Example 10.6 illustrates another use of the
forward frame of reference.

11.5. Can	
 a	
 single	
 packet	
 set	
 DEFINES_FORWARD	
 more	
 than	
 once?	

Yes. If an application decides that it easier to encode a system with more than one
R/F/U coordinate system it may redefine Forward_Frame at any time. Applications
that find themselves doing this may find it more convenient to encode information
RelativeTo:CurrentFrame.

11.6. I’ve	
 got	
 this	
 super-­fancy	
 TDOA	
 based	
 system.	
 	
 How	
 is	
 it	
 supported	
 by	

this	
 specification?	
 	

TDOA based systems can either encode the relevant position/timing information and
allow a post-processor to perform the triangulation work. (See Ex 10.8), or they can
encode the results of the triangulation. If possible, applications that perform this sort
of geo-location are encouraged to perform their own triangulation and to encode their
results in a manner similar to that presented in 10.10

11.7. I’ve	
 got	
 this	
 super-­fancy	
 accelerometer	
 based	
 system.	
 Can	
 I	
 encode	
 it	

with	
 this	
 format?	

Applications that perform dead-reckoning with accelerometers that wish to support
this specification are encouraged to perform integration at the application level and
encode the results in a GPS-TAG or vector offset.

Applications may encode raw acceleration information as well as heading information
using Sensor tags, however the specification does not specify a standard way to
handle the state that much be stored across individual packets. Applications that

Geolocation-Tag Specification v2.0

90

pursue this direction are encouraged to contact the maintainer of this specification,
so that a cross-platform solution can be agreed upon.

11.8. I	
 want	
 to	
 encode	
 some	
 data	
 in	
 	
 PPI-­GEOLOCATION	
 TAG,	
 but	
 don’t	

have	
 a	
 packet	
 to	
 insert	
 it	
 into.	
 What	
 should	
 I	
 do?	

Many applications need to write a steady stream of sensor data (position,
acceleration, time, etc). These applications are encouraged to produce PPI-
GEOLOCATION tagged packets with 0 in the pfh_datalen field.

Geolocation-Tag Specification v2.0

91

12. Wireshark	
 dissector	
 examples	

Wireshark contains dissectors for all of the described PPI-GEOLOCATION tags. This
makes it a valuable tool in development and testing of PPI-GEOLOCATION aware
applications. However, it should be emphasized that the included dissctors do not
implement a PPI-GEOLOCATION state machine. Therefore there is no easy way to
perform vector operations reliably, or to query the state of a PPI-GEOLOCATION tag
state machine as is parses the input packet. The following examples are for illustration
only; proper interpretation of a PPI-GEOLOCATION tagged packet requires the
implementation of a PPI-GEOLOCATION state machine.

12.1. Basic	
 geo-­fencing	
 	

Basic geo-fencing can be performed using a display filter with wireshark. It should be
emphasized that wireshark does not contain a compliant ppi-geolocation state
machine, and therefore there is no simple way to perform the appropriate vector
operations (for example, offsets). However, rough filtering based on GPS tags can be
performed in the following manner.

((ppi_gps.lon <= -155.01) && (ppi_gps.lon >= -155.03) &&

 (ppi_gps.lat >= 19.01) && (ppi_gps.lat <= 19.03))

12.2. Beamwidth	
 filtering	

Another useful filter: Only looking at data captured with an Omni-directional antenna
where the packet was received with a signal value > -75 db.

(ppi_antenna.horizbw == 360) && (radiotap.dbm_antsignal > -75)

Or, if dot11common tags are in use

(ppi_antenna.horizbw == 360) && (ppi.80211-common.dbm.antsignal > -75)

12.3. Heading	
 filtering	

The following filter illustrates the functionally of a VECTOR TAG by only displaying
packets that were captured on an antenna which was pointed Northeasterly.

 (ppi_vector.vflags.relative_to == 0x01)&& ppi_vector.chars.antenna == 1)
(ppi_vector.err_rot <= 50) && (ppi_antenna.horizbw < 360) &&
(ppi_vector.heading <= 60 && ppi_vector.heading >= 30) &&

The first line line explicitly checks for rotational coordinates that are Relativeto:
Earth, and that the vector represents an antenna. The test for a reasonably low
rotation error is to avoid processing packets that may have been tagged with to
much error (perhaps magnetic interference with a digital compass). The beamwidth
test is to make sure we are only processing packets with a directional (not Omni-
directional) antenna.

This example shows the limitations of processing PPI-GEOLOCATION tags without an
appropriate state machine. It is difficult to write a filter that can perform a similar
check if the antenna Vector is RelativeTo:Forward or Current.

Geolocation-Tag Specification v2.0

92

13. Future	
 work	

While this specification hopes to provide a solid base for interoperability among
vendors, it has some known limitations. The following issues will be addressed in the
future. Vendors who are interested in any of these areas are encouraged to contact
the maintainer of this specification.

13.1. MIMO	
 support.	
 	

Although the current specification explicitly handles multiple antenna and signal
strength fields, the current support is based around duplicate packets being captured
on independent interfaces. MIMO support could be added by indicating that each
Antenna, 802.11COMMON tag par indicates a spatial stream. The other option is an
attempt at standardizing the CACE 802.11N related tags interaction with the
GEOLOCATION-STATE machine. Both options are currently under consideration.

Vendors with concerns or suggestions regarding the best way to integrate MIMO
support are encourage to contact the maintainer of this specification.

13.2. Accelerometer	
 based	
 support	

Acceleration information can be stored in Sensor-tags. However, the current iteration
of the specification does not dictate how state should be carried across packets.
Currently, the best way for accelerometer based applications to utilize this
specification is to perform the integration at the application level and output data
that is already tagged with the computed position.

.

Geolocation-Tag Specification v2.0

93

14. Administrivia	

Inquiries, comments, and any other feedback regarding this standard should be
directed to jellch@harris.com

14.1. Future	
 updates	

The current maintainers reserve the right to make minor changes to the
GEOLOCATION-TAG processing algorithms as implementations proceed. These
changes will not cause a version bump in the base geolocation-tag header. Only
updates that would cause parsing errors, or the addition of very significant
fields will increment the version field.

14.2. Authors	

This specification was primarily authored by Jon Ellch of Harris corporation. It was
technically reviewed by Mike Troutman and Bob Riemenschnieder.

14.3. Revision	
 history	

2.0.0: Added sensor tag, cleaned up state machine, moved velocity/acceleration.
1.2.0: Dropped all minor revisions. This should simply be called 1.2.0
1.2-d20: Draft widely circulated;

14.4. References	

1) CACE PPI specification, http://www.cacetech.com/documents/
2) Radiotap specification, http://www.radiotap.org/

