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1. Introduction	
  
When capturing live networking data, it is often useful to store out-of-band meta 
information alongside the actual packet contents. Historically this has been most 
useful for wireless networks, where information such as signal strength and channel 
number are of particular importance.  

 
 There have been a number of ad-hoc solutions to this problem in the past (prism 

headers, AVS headers, and more recently radiotap headers). None of these provided 
a general solution for allowing arbitrary meta-information to be stored inline with a 
packet however. 

 
CACE technologies has developed a general solution to this problem known as Per-
Packet Information (PPI). Tools that implement PPI allow arbitrary data to be 
included with individual packets in a standard libpcap formatted packet capture. The 
PPI specification can be downloaded from CACE at http://www.cacetech.com/ 
documents/ 

1.1. Purpose	
  
The purpose of this specification is to document a series of PPI tags that can be used 
to describe the context in which an 802.11 (or any other) packet was captured. By 
utilizing a common format it is the hope of the author that a level of interoperability 
will be achieved across different tools. This will enable the de-coupling of packet 
visualization and analysis from the platform they are collected on. Four unique tags 
are described in this paper, and are collectively referred to as the GEOLOCATION-
TAGS. 

  
PPI GEOLOCATION-TAGS 

Number Name Description 
30002 GPS An extendible tag that can carry Lon/Lat/Alt as well as 

error levels and a 64-bit timestamp. Despite the name, it 
may be populated by non-GPS devices (INS, software, 
etc). 

30003 VECTOR An extendible tag that carries all rotational and offset 
information.  Data encoded in a VECTOR field may come 
from different sources (GPS’s and digital compass’s being 
the most common). VECTOR-TAGs can be used to 
represent many things, the most useful being 
antenna/vehicle orientation. 

30004 SENSOR Used to store arbitrary sensor data that is associated with 
the current reference frame. Most commonly used for 
velocity and acceleration. 

30005 ANTENNA An extendible tag that can carry information about the 
antenna utilized to collect the packet. Properties include 
horizontal and vertical beamwidth, as well as gain. 

 
Another tag, already defined and documented by CACE, is also explicitly recognized 
by the PPI-GEOLOCATION standard. This tag, 802.11-COMMON, is defined in the PPI 
specification. Its description here is only for informational purposes. 
 

2 802.11- Loosely based off radiotap standard, can be used to 



Geolocation-Tag Specification v2.0       

5  
 

COMMON by advanced PPI-GEOLOCATION applications to 
indicate signal strength on a per-interface or per-
antenna (vs per-packet) level. 

2. Format	
  
 The following section describes the layout on disk of a pcap file that contains PPI 

encapsulated data. The description of the pcap and PPI headers are for informational 
purposes only; they are defined outside the scope of this document. Detailed 
definitions of the GEOLOCATION-TAGS are presented in sections 3 through 6. 

2.1. Format	
  overview	
  
Every pcap file begins with a pcap_file_header. This fixed size header contains a magic 
number, version information, and a data linktype (often abbreviated DLT). The DLT 
field specifies the type of packets encapsulated in the file. Commonly used DLTs 
include Ethernet (DLT_EN10MB) and 802.11 (DLT_IEEE802_11). When PPI is in use 
the DLT will be set to DLT_PPI (192). 

 
Immediately following the pcap_file_header, a pcap_pkthdr will be found. Every 
packet encapsulated in a pcap file has a pcap_pkthdr. This header contains a 
timestamp, the total length of the packet, and the number of bytes actually captured 
(may be less than the total). Both length fields in a pcap_pkthdr include the PPI data 
that follows.  
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 Immediately following the pcap_pkthdr, the linktype specific information begins. In 

the case of DLT_PPI the next header encountered is a ppi_packetheader.  

 
 

This header specifies the version, length, and data link type of the following packet. 
The pph_len field accounts only for PPI meta-information PPI encapsulated data. It 
does not include data farther up the stack (for example, 802.11 headers). 

 
After the ppi_packetheader, zero or more ppi_fieldheaders will be found. There is 
one ppi_fieldheader for each PPI tag included in the file. 

  
The pfh_type field is a 16-bit tag that specifies the type of data that follows (30002 
for GPS information, for example). The pfh_datalen field specifies the length of the 
data that follows (must be between 0 and 65,520 inclusive). Following each 
ppi_fieldheader is a block of tag-specific pfh_datalen data. 
 
The diagram below shows a pcap file where the first packet has two unique 
ppi_fieldheaders. 
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These two ppi_fieldheaders could correspond to a GPS and VECTOR tag.  Assuming 
that is the case, we would have a packet that looked like the following diagram. 
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2.2. Format	
  details	
  
This section describes the GEOLOCATION-TAGS in detail. Although the 
GEOLOCATION-TAGS are logically independent, they share many implementation 
details. In particular, they share a capability for specifying the presence of various 
fields, the entire length of a particular tag, and a cross platform way to efficiently 
represent fixed point numbers.  Before describing the GEOLOCATION-TAGS a brief 
note on radiotap headers is in order. 

 
 GEOLOCATION-TAGS have been influenced heavily by the format of radiotap 

headers. Radiotap headers are the latest in a series of ad-hoc solutions to encoding 
important characteristics about 802.11 packets in-line with packet captures. For 
example, radiotap headers can specify the channel and received signal strength that 
a packet was captured with, as well as many other characteristics.  

 
 PPI-GEOLOCATION tags are designed to be particularly easy for developers familiar 

with radiotap to read and write. Readers unfamiliar with radiotap may wish to 
familiarize themselves with it before implementing any PPI-GEOLOCATION parsers. 

 

2.2.1. Basic	
  geotagging	
  header	
   	
  
All GEOLOCATION-TAGS begin with a base_geotag_header. This header is 
intentionally bit-for-bit compatible with a radiotap header.  This design decision 
allows commonly available radiotap parsers to be re-purposed by initializing them 
with different tables for the field sizes and descriptions. The base tag header 
(logically equivalent to an ieee80211_radiotap_header) is described below. 

 
  Struct base_geotag_header { 

u_int8_t        version;     //set to 1  
u_int8_t        pad; 
u_int16_t       len;         //entire length  
u_int32_t       present;     //bitmask indicating fields present 
} __attribute__((__packed__)); 
 
The version field will change only for updates that would break previous parsers. 
Currently all GEOLOCATION-TAGS set this to 2. Version 1 was circulated under 
1.2.0. Version 1 did not define sensor tags, and had acceleration/velocity stored in 
Vector tags. Version 0 was utilized for internal development purposes, and should 
not be used in the wild. Version 2 is the first widely implemented version of this 
specification. 

  
 The pad field serves only to make the len field naturally aligned. 
 

 The len field specifies the length of the current individual tag including the 
base_geotag_header. This value must be between 8 and 65,535. (The 
base_geotag_header.len field is redundant with the ppi_fieldheader.data_len 
field. Its inclusion is convenient for standalone parsers, which may be unaware of the 
PPI encapsulation.) 
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 The 32-bit present field is a bitmask specifying which fields are present in this GPS, 

VECTOR, SENSOR, or ANTENNA tag. The use of the bitmask scheme allows for tags 
to contain a subset of all possible data (for example, longitude and latitude, but not 
altitude). The tag-specific bit definitions are covered in sections 3 through 6. 

 
The following properties are true of both radiotap and base_geotag_header parsing: 

 
• Fields are strictly ordered; The developer can specify any combination of fields, 

but the data must appear in the same order as the set bit numbers in the 
present bitmask. 

 
• All data fields including the version, len, and present fields in the 

base_geotag_header are to be specified in little endian byte-order.  
 

 
• Field lengths are implicit: the header format does not specify field lengths, it is 

expected that the developer knows the corresponding length based on the data 
field name. 

 
 

• Variable-length fields are not supported since field lengths are implicit. 
 
 

• The MSB of the present bitmask is utilized to indicate the presence of an 
extended bitmask following it, although this is currently unused. 

 
 
 

While the list of similarities is extensive, there is one significant difference between 
radiotap headers and base_geotag_headers: Base_geotag_headers do not force 
natural alignment. 
 
The requirement for natural alignment in radiotap was (assumedly) made because 
time-sensitive kernel level code is involved in writing radiotap headers. It is expected 
that GEOLOCATION-TAGS will be handled in userland, and therefore the need for 
natural alignment is less compelling. 
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2.2.2. Fixed	
  point	
  numerical	
  representation	
  
GEOLOCATION-TAGS need to represent a diverse range of floating point numbers on 
disk in a platform neutral manner. The details on how floating point values are stored 
on disk are covered in this section. 

 
A majority of floating point values processed by GEOLOCATION-TAGS can be handled 
as fixed point values ranging between 000.000000 and 999.999999.  These values 
are said to be fixed3_6 encoded (the 3_6 denoting the number of digits on either 
side of the decimal point). 

 
Values stored in the fixed3_6 format include GPS error margins, compass bearings, 
and others.  A reference encoding/decoding function is presented in section 2.2.2.1, 
as well as a table illustrating the encoding scheme. 

 
While the fixed3_6 encoding is sufficient for expressing many values, some fields 
require more specialized formats. These fields either need to represent negative as 
well as positive values, or have unique requirements on the location of the decimal 
point. In particular, longitude, latitude and altitude require special cases to ensure an 
optimal range and precisions are utilized. These specialized fixed-point formats are 
detailed in Sections 2.2.2.1, 2.2.2.2, and 2.2.2.3. 
 
The following table summarizes the features of each encoding format. 
 
 

Standard GEOLOCATION-TAG Number Encoding Formats 
Name Section Range Precision Use 

fixed3_6 2.2.2.1  000.000000 
+999.999999 

3.6 Position error estimates, 
Angular rotations and error 
estimates, Antenna 
Beamwidth and Gain. 

Fixed3_7 2.2.2.2 -180.0000001 
+180.0000001 

3.7 Latitude and Longitude. 

Fixed6_4 2.2.2.3 -180000.0001 
+180000.0001 

6.4 Altitude, Position offsets, 
Velocity and Acceleration 
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2.2.2.1. Fixed	
  3_6	
  encoding	
  	
  
//Input: a positive floating point value  
//between 000.0000000 and 999.9999999 
//Output: a LITTLE ENDIAN (not necessarily native)  
//32 bit unsigned value between 0 and 999999999 
//Returns: 0 on success 
//         -1 on input value to negative 
//         -2 on input value to positive 
int flt_to_fixed3_6(double l, u_int32_t &out) 
{      
    if(l <= -000.000001) 
    { 
      fprintf(stderr, “flt_to_fixed3_6: Error. Input value too neg to 
convert. %f\n”,l); 
      return -1; 
     
    }  
    if(l > +999.999999) 
    { 
      fprintf(stderr, “flt_to_fixed3_6: Error. Input value too pos to 
convert. %f\n”,l); 
      return -2; 
    } 
    out = l * 1000000; 
    #if BYTE_ORDER == BIG_ENDIAN 
    SWAP4(out); 
    #endif 
    return 0; 
} 

 
 

Table 1: fixed3_6 encoding examples 
Value: Encoded (decimal) Encoded: 

(little endian) 
Comment 

000.000000 0000000000 0x00000000 Zero 
+000.000001 0000000001 0x01000000 One millionth 
+001.000000 0001000000 0x42420f00 One 
+123.123456 0123123456 0x00b75607  
+360.000000 0360000000 0x002A7515  
+999.999999 0999999999 0xFFC99A3B Largest legal value 
+1000.000000 1000000000 0x00CA9A3B First illegal value 
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//Input: a LITTLE ENDIAN (not necessarily native)  
//32 bit unsigned value between 0 and 999999999 
//Output: a positive floating point value  
//between 000.0000000 and 999.9999999 
//Returns: 0 on success 
//        -2 on input value to positive 
int fixed3_6_to_flt(u_int32_t l, double &out) 
{ 
    #if BYTE_ORDER == BIG_ENDIAN 
    SWAP4(l); 
    #endif 
    if(l >= +1000000000) 
    { 
      fprintf(stderr, “flt_to_fixed3_6: Error. Input value too pos to 
convert. %f\n”,l); 
      return -2; 
    }  
    out = (double) l / 1000000.0; 
    return 0; 

 
 
 

2.2.2.2. fixed_3_7	
  encoding	
  (Longitude/Latitude)	
  	
  
Most programs represent longitude and latitude as a floating point value between  
-180.0000000 and +180.0000000. In order to eliminate the need to store a sign, 
these values are mapped to the range (0, 3600000000), with a fixed decimal point 
after the third digit.  This allows any longitude/latitude to be represented in 4 bytes 
with 7 digits to the right of the decimal. Any values between 3600000001 
(0x0xD693A401) and 4294967295 (0xFFFFFFFF) are invalid. A sample function that 
performs this mapping is shown below.  
 
 

Table 2: fixed3_7 encoding samples 
Value: Encoded (decimal) Encoded: 

(little endian) 
Comment 

-180.0000001   Illegal value 
-180.0000000 0000000000 0x00000000 Smallest legal value 
-179.9999999 0000000001 0x01000000  
000.0000000 1800000000 0x00D2496B Zero 

+123.1234567 3031234567 0x07F8ACB4  
+179.9999999 3599999999 0xFFA393D6  
+180.0000000 3600000000 0x00A493D6 Largest legal value 
+180.0000001 3600000001 0x01A493D6 Illegal value 
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//Input: a signed floating point value (latitude/longitude are good examples)  
//between -180.0000000 and +180.0000000, inclusive) 
//Output: a LITTLE ENDIAN (not necessarily native)  
//32 bit unsigned value between 0 and 3600000000 
//Returns: 0 on success 
//         -1 on input value to negative 
//         -2 on input value to positive 
int flt_to_fixed_3_7(double l, u_int32_t &out) 
{ 
    if(l <= -180.0000001) 
    { 
      fprintf(stderr, “ppi_gpstag_encode_lon_lat: Error. Input value too neg 

to convert. %f\n”,l); 
      return -1; 
    } 
 
    if(l >= +180.0000001) 
    { 
      fprintf(stderr, “ppi_gpstag_encode_lon_lat: Error. Input value too pos 

to convert. %f\n”,l); 
      return -2; 
    } 
    //scaled_l may be positive or negative. 
    Int32_t scaled_l =  (int32_t) ((l) * (double) 10000000); 
    out = (u_int32_t) (scaled_l + ((int32_t) 180 * 10000000)); 
    #if BYTE_ORDER == BIG_ENDIAN 
    SWAP4(out); 
    #endif 
    return 0; 
} 
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//Input: a LITTLE ENDIAN (not necessarily native) 32 bit unsigned 
//value between 0 and 3600000000 
//Output: a signed floating point (suitable for latitude or longitude) 
//between -180.0000000 and +180.0000000, inclusive) 
//Returns: 0 on success 
//         -2 on input value to positive 
int fixed_3_7_to_flt(u_int32_t l, double &out) 
{ 
    #if BYTE_ORDER == BIG_ENDIAN 
    SWAP4(l); 
    #endif 
    if ( l > 3600000000) 
     { 
      fprintf(stderr, “ppi_gpstag_decode_lon_lat: Error.  
 Input value too pos to convert. %f\n”,l); 
      return -2; 
    } 
    int32_t remapped_l = l – (180 * 10000000); 
    out = (double) ((double) remapped_l / 10000000); 
    return 0; 
} 
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2.2.2.3. fixed_6_4	
  encoding	
  (Altitude,	
  Sensor	
  Data)	
  
Some floating point values, such as altitude, need to express a larger range with less 
precision. The fixed_6_4 encoding scheme can be used in these cases. 

 
For example, most altitudes range between -10,000m (Pacific Ocean’s Marianas 
Trench) and +10,000m (commercial aircraft). By utilizing the following encoding 
scheme (similar to fixed_3_6) we can map (-180000.0000, +180000.0000) onto (0, 
3600000000). This provides sufficient range to express altitudes on Earth with 
millimeter level precision.  
 
This format is also used for all Sensor data in conjunction with a scaling factor term, 
which allows a general signed, floating point format with 9+ significant digits over 
the range of 10-128 to 10127.  See Section 5 for details on Sensor Tags and Sensor 
Data types. 
 

Table 3: fixed_6_4 encoding samples 
Value: Encoded 

(decimal) 
Encoded 

(little endian) 
Comment 

 -180000.0001   Illegal value 
 -180000.0000 0000000000 0x00000000 Most negative expressible value 
 -179999.9999 0000000001 0x01000000  
 -010000.0000 0800000000 0x0008af2f Marianas trench (approx) 
  000000.0000 1800000000 0x00D2496B Sea level 
+000000.0001 1800000001 0x01D2496B Sea level plus .0001 meters 
+021000.0123 2010000123 0xfb2ace77 Very high altitude flight 
+179999.9999 3599999999 0xFFA393D6  
+180000.0000 3600000000 0x00A493D6 Most positive expressible value 
+180000.0001   Illegal value 
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//Input: a signed floating point value (f.ex, altitude) between  
//-180000.0000 and +180000.0000 meters, inclusive) 
//Output: a LITTLE ENDIAN (not necessarily native)  
//        32 bit unsigned value between 0 and 3600000000 
//Returns: 0 on success 
//         -1 on input value to negative 
//         -2 on input value to positive 
int flt_to_fixed_6_4(double l, u_int32_t &out) 
{ 
    if(l <= -180000.0001) 
    { 
      fprintf(stderr, “ppi_gpstag_encode_lon_lat: Error. Input value too neg 

to convert. %f\n”,l); 
      return -1; 
    } 
 
    if(l >= +180000.0001) 
    { 
      fprintf(stderr, “ppi_gpstag_encode_lon_lat: Error. Input value too pos 

to convert. %f\n”,l); 
      return -2; 
    } 
    //scaled_l may be positive or negative. 
    Int32_t scaled_l =  (int32_t) ((l) * (double) 10000); 
    out=(u_int32_t) (scaled_l + ((int32_t) 180000 * 10000)); 
    #if BYTE_ORDER == BIG_ENDIAN 
    SWAP4(out); 
    #endif 
    return 0; 
} 
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//Input: a LITTLE ENDIAN (not necessarily native)  
//32 bit unsigned value between 0 and 3600000000 
//Output: a signed floating point value (f.ex, altitude)  
//between -180000.0000 and +180000.0000 meters, inclusive) 
//Returns: 0 on success 
//         -2 on input value to positive 
int fixed_6_4_to_flt(u_int32_t alt, double &out) 
{ 
 
    #if BYTE_ORDER == BIG_ENDIAN 
    SWAP4(alt); 
    #endif 
    if(alt >= +3600000001) 
    {  
      fprintf(stderr, “ppi_gpstag_decodea_alt: Error. Input value too pos to 

convert. %f\n”,alt); 
      return -2; 
    } 
    int32_t remapped_alt = alt – (180000 * 10000); 
    out = (double) ((double) remapped_alt / 10000); 
    return 0; 
} 
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2.2.3. Encoding	
  Application	
  Specific	
  data	
  	
  
As currently defined, each PPI-GEOLOCATION tag includes an optional, 4-byte 
application identifier (AppId) and an optional application-specific 60-byte field 
(AppData).  These fields can be used to identify which application generated a 
GEOLOCATION-TAG, as well as store small amounts of application-specific data. They 
are indicated by the presence of bits 29 and 30 in the present bitmask. 

2.2.3.1. Application	
  ID	
  	
  
The Application ID (AppId) is a 4-byte field that can be used to identify the 
application that generated the current GEOLOCATION-TAG. Applications that utilize 
advanced feature of the GEOLOCATION-TAGS specification are encouraged to include 
an AppId in every GEOLOCATION-TAG to aid in diagnosing errors in the specification.  
 
Application ID numbers are intended to be self-regulating. Current defined values for 
AppId are included in the table below. All other values are unallocated. Applications 
may choose any unallocated app number they wish. Developers are encouraged to 
contact the maintainer of this standard to have their application number published. 

 
Value  
(on disk: little endian) 

Description 

00 00 00 00 – 00 00 00 FF Reserved 
01 02 03 04 Reserved, testing 
53 52 48 00 – 53 52 48 FF Harris, Inc (HRS) 
53 49 4B 00 – 53 49 4B FF Kismet development (KIS) 
4D 4F 52 00 – 4D 4F 52 FF Reserved 
4A 46 43 00 – 4A 46 43 FF Reserved (JFC) 
52 41 47 00 – 52 41 47 FF Reserved (RAG) 
53 52 54 00 – 53 52 54 FF Reserved (SRT) 
31 33 70 00 – 31 33 70 FF Reserved  
FF 00 00 00 – FF 00 00 FF Reserved 

 
 

2.2.3.2. Application	
  Data	
  
All GEOLOCATION-TAGS include the ability to carry 60 bytes of arbitrary data in the 
AppData field. Developers who need to store small amounts of application specific 
data related to the tag in question can use this field. The AppData field is indicated 
by bit 30 in the present bitmask.  
 
Applications that utilize the 60-byte AppData field must also include an AppId field 
(in order to correctly identify the format of the AppData field). Parsing and 
versioning of application specific data is up to the individual application. 
 
When the AppData field is utilized, it can be logically considered as a 64-byte field of 
the following format (since the app_num must be present as well).  

  Struct app_specific{ 
u_int32_t       app_id;     //32-bit little-endian app number. 
U_int8_t        app_data[60]; //application specific 
} __attribute__((__packed__)); 
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Developers utilizing the AppData field are encouraged to document their formats, 
and to request a proper field in the PPI-GEOLOCATION TAG if applicable. Developers 
may also consider creating their own SENSOR type tag if applicable. 
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3. GPS-­TAG	
  	
  
The GPS-TAG is used to provide a general frame of reference for the tagging of a 
packet. The GPS-TAG can encode lon/lat/alt, error margins, and a high-resolution 
timestamp. It can also encode what device type was used (GPS, INS, etc). 
  
Advanced applications that need to encode data captured with higher resolution than 
offered by the GPS-TAG (for example, 2 antennas a fixed width apart) can 
accomplish this via the use of offset fields in the VECTOR-TAG (covered in section 4). 
Simpler applications can simply tag each packet with a lon/lat/alt by using the GPS-
TAG itself. 
  
Like all GEOLOCATION-TAGS, the GPS tag begins with a base_geotag_header. The 
following table describes the bitmask to be used with this tag: 
 

Bit (LSB=0) Length Name Encoding (unit, format) 
0 4 GpsFlags 32-bit bitmask 
1 4 Latitude degrees, fixed3_7 
2 4 Longitude degrees, fixed3_7 
3 4 Altitude meters, fixed6_4 
4 4 Altitude_g meters, fixed6_4 
5 4 Gpstime: Details below 
6 4 FractionalTime ns, 32-bit unsigned  
7 4 eph: meters, fixed3_6 
8 4 epv meters, fixed3_6 
9 4 ept: ns, 32-bit unsigned  
10-27 0 Reserved  
28 32 DescriptionString ASCII, null-padded 
29 4 AppId See section 2.2.3.1 
30 60 AppData See section 2.2.3.2 
31 0 Indicates extended bitmap.  

 
Immediately following the base_geotag_header zero or more fields (as specified in 
the present field) will follow. They shall be ordered by the significance of the bit used 
to specify the field in the present bitmask (increasing), and encoded according to the 
table above. 

 
As currently defined a valid GPS-TAG shall not be any larger than 144 bytes (the 
size of a base_geotag_header plus every currently defined field), or less than 8 
bytes (the size of a base_geotag_header). Any GEOLOCATION-TAG that does not 
include at least a base_geotag_header is invalid. 
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3.1. GpsFlags	
  bitmask	
  
The GpsFlags bitmask is used to describe the type of positioning system that was 
used to provide a location. A likely source of its values is the NMEA GPGGA field 
“Quality Indicator” field. 

 
Bit Description 
0 No fix available 
1 GPS fix 
2 Differential GPS fix 
3 PPS fix 
4 Real Time Kinematic 
5 Float RTK 
6 estimated (dead reckoning) 
7 Manual input mode 
8-31 Reserved 

 

3.2. GPS-­TAG	
  fields	
  
Name Description 

Latitude Self-descriptive, fixed3_7 encoding 
Longitude Self-descriptive, fixed3_7 encoding 
Altitude Self-descriptive, fixed6_4 encoding 
Altitude_g Altitude from ground level, fixed6_4 encoding. See 9.5.1 

for processing details. 
Gpstime 32-bit unsigned counter, seconds since unix epoch (UTC). 

Like all Fields contained in GEOLOCATION-TAGS, this is 
stored little endian. 

Fractional 
Time 

32-bit unsigned counter, 1 nano-second resolution. 
Fractional time should not exceed one second. 

eph Estimated horizontal error in meters. Stored as a fixed3_6 
epv Estimated vertical error in meters. Stored as a fixed3_6 
ept Estimated clock error in nano-seconds. Stored as a 32-bit 

unsigned counter. (Utilizing ns as units allows between 0 and 
4 secs of clock error, while maximizing resolution). 

DescriptionString 32-byte NULL padded ASCII description of what this GPS-
TAG is attached to. Examples include “Silver ford Taurus” or 
“Stationary-antenna-1” 

AppId See section 2.2.3.1 
AppData See section 2.2.3.2 

 Maximum GPS-TAG size:  
 

Producers of error values (eph, epv, ept) are expected to store them with at least 
95% confidence. If an application cannot determine the error within a 95% range the 
value should not be stored. 

 
Applications consuming eph, epv, or ept may assume that they were stored with at 
least 95% confidence. 
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A concrete example of the GPS-TAG encoding scheme is shown below. Note that the 
inclusion of Altitude and Altitude_g is for illustration purposes only. Real life 
applications are expected to utilize only one representation of altitude.  
 

GPS-TAG Example 
Field Native Decimal  Encoded  

(little endian) 
GPSFlags Manual fix  0x80000000 
Latitiude 19° 7’24.45”N 19.1234567 0x07D4AF76  
Longitude 155°36’54.23”W -155.7654321 0xCFE6710E 
Altitude  200.123m 0x4E5B686B 
Altitude_g  002.100m 0x08244A6B 
Date Tue, 02 Nov 2010 

17:58:39 UTC  
1288720719 0x4F51D04C 

FractionalTime 0.1s 0.1 0x00E1F505 
Horiz-err  27.0m 0xC0FC9B01 
Vert-err  71.3m 0xA0F33F04 
Time-err  .000005s 0x88130000 
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Scapy decoding of GPS-tag in test packet 

 
Wireshark decoding of GPS-TAG in test packet 
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4. VECTOR-­TAG	
  
The VECTOR-TAG allows applications to encode vectors in 3-dimensional space. 
Vectors can provide offsets and rotations. This allows them to precisely describe an 
arbitrary point and orientation. The combination of position and orientation is called 
a Reference Frame. Details on the coordinate systems used to describe these 
reference frames are presented in section 8.  
 
Bits that influence the mathematical interpretation of VECTOR-TAGS are stored in 
the VectorFlags bitmask. Bits that characterize what a VECTOR-TAG is describing are 
stored in the VectorCharacteristics bitmask. These bits describe what the vector 
represents: direction of travel, orientation of antenna, and so on. While they may 
influence how an application interprets a particular VECTOR tag, they do not 
influence the mathematical orientation.  
 
While the VECTOR-TAG can store a rich amount of rotational information, rotation 
around the Z-axis will probably be the most useful to applications; when stored in 
absolute values this corresponds to degrees rotated around true (not magnetic) 
North. 

 
 

Bit 
(LSB=0) 

Length Name Encoding 
(unit, format, coordinate-sys) 

0 4 VectorFlags 32-bit bitmask, details below 
1 4 VectorCharacteristics 32-bit bitmask, details below 
2 4 Pitch (Rot-X)  degrees,  fixed3_6,  E/N/U, R/F/U 
3 4 Roll (Rot-Y) degrees,  fixed3_6, E/N/U, R/F/U 
4 4 Heading  (Rot-Z) degrees,  fixed3_6,  E/N/U, R/F/U 
5 4 Off-X: (East/Right) meters,   fixed6_4,  E/N/U, R/F/U 
6 4 Off-Y: (North/Forward) meters,   fixed6_4,  E/N/U, R/F/U 
7 4 Off-Z: (up) meters,   fixed6_4,  E/N/U, R/F/U 
8-15 0 Reserved  
16 4 Err-Rot degrees,  fixed3_6 
17 4 Err-Off meters,   fixed6_4 
18-27 0 Reserved  
28 32 DescriptionString 32 byte NUL padded ASCII 

description string. 
29 4 AppId See section 2.2.3.1 
30 60 AppData See section 2.2.3.2 
31 0 Indicates extended 

bitmap. 
 

 
As currently defined a valid VECTOR-TAG shall not be any larger than 144 bytes (the 
size of a base_geotag_header plus every currently defined field), or less than 8 
bytes (the size of a base_geotag_header). Any GEOLOCATION-TAG that does not 
include at least a base_geotag_header is invalid. 



Geolocation-Tag Specification v2.0       

25  
 

 

4.1. VectorFlags	
  bitmask	
  
The VectorFlags bitmask defines how to interpret the values in a vector tag. There 
are currently only 3 bits defined. Bit 0 is used to mark a vector as the Forward frame 
of reference. This allows other vectors further down the packet to provide offsets and 
rotations relative to this vector. This bit is designated as DEFINES_FORWARD_FRAME 

 OF_REFERENCE. 
 
Bits 1 and 2 are combined into a subfield known as RelativeTo. The combination of 
these two bits is used to indicate which Reference Frame this Vector is RelativeTo. 
  

 
Bit Name Description 

0 DefinesForward Indicates that the Frame of Reference defined by 
this VECTOR-TAG is the Forward Frame of 
Reference.  The Forward Frame of Reference is 
the basis of the relative coordinate system 
described in Section 8.2, and more information 
on the Forward Frame of Reference is provided in 
Section 8.3.2. 
 

1,2 RelativeTo 00: All rotations and offsets are relative to the 
Forward frame of reference. (0x00) 
 
01: All rotations and offsets are relative to the 
Earth frame of reference. (0x01) 
 
10: All rotations and offsets are relative to the 
Current Frame of reference. (0x02) 
 
11: Reserved 
 
See Section 8 for details on the definition of each 
reference frame, as well as the ENU and RFU 
coordinate systems utilized in each. 

3-31 Reserved  
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4.2. VectorCharacteristics	
  bitmask	
  
The VectorCharacteristics field is used to help applications describe what the encoded 
VECTOR is supposed to indicate. The bits here are purely descriptive; they do not 
change how any VECTOR-TAG should be handled mathematically. 
 

Bit Name Description 
0 ANTENNA This vector indicates the direction of an 

antenna 
1 DIRECTION_OF_TRAVEL This vector indicates the direction of travel 

of a vehicle 
 

2 FRONT_OF_VEHICLE Indicates the direction of the front of a 
vehicle. May differ from actual direction of 
travel in some cases (boat drifting, car in 
reverse, etc)  

3 ANGLE_OF_ARRIVAL Vector indicates the angle-of-arrival of a 
packet. This vector may be synthesized 
from many different data points at the 
application level. It is not equivalent to 
antenna direction. 

4 TRANSMITTER_POSITION This is combined with a vector offset to 
allow applications to explicitly encode where 
they think a transmitter is located. See 
10.10 for example. 

5-7 Reserved  
8 GPS_DERIVED Vector was derived from GPS hardware in 

some manner (most likely, heading is based 
off of deltas in position) 

9 INS_DERIVED Vector was derived from INS system 
10 COMPASS_DERIVED Vector was derived from digital compass 
11 ACCELEROMTER_DERIVED Vector was derived from accelerometer(s) 
12 HUMAN_DERIVED Vector was derived from manual user input 
13-31 Reserved  

 
 

Note that these values are not mutually exclusive. For example, an antenna pointed 
out the windshield of a car could set bits 0, 1, and 2 (Provided the car was not in 
reverse, which would invalidate the DIRECTION_OF_TRAVEL bit). A VECTOR-TAG 
could also contain information derived from both a GPS and digital compass, for 
example. 

4.3. Vector	
  operations	
  
All vector operations take place on a specific reference frame. The reference frame 
that the offsets and rotations are applied to is defined by the value in the RelativeTo 
subfield of VectorFlags. There are three possible options: 

 

4.3.1. RelativeTo:	
  Earth	
  
Rotations RelativeTo Earth can be though of as absolute rotations. Since these 
rotations are on the East/North/Up coordinate system, they provide an anchor for all 
relative rotations to build off.  Applications that encounter a vector that is 
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RelativeTo:Earth will not need information contained in any other vector to convert it 
to world coordinates.  (A 45.0 degree Rot-Z rotation that is RelativeTo Earth 
corresponds to North-East). 
 

4.3.2. RelativeTo:	
  CurrentFrame	
  
Some applications may find it useful to chain offsets or rotations together. In this 
case they can use RelativeTo:CurrentFrame. As we will see below, CurrentFrame is a 
frame of reference that represents the most recently processed Vector. This means 
that Vector tags that set RelativeTo:CurrentFrame will be applied to the most recent 
previously processed Vector tag. 
 

4.3.3. RelativeTo:	
  ForwardFrame	
  
Finally, the PPI-GEOLOCATION specification allows applications to indicate that a 
given vector defines the Forward Frame of reference. This is useful in advanced 
applications, which need to encode a system of rotations relative to some common 
reference frame other than Earth.   
 
For example, a system consisting of two antennas (one out the passenger and driver 
side door) could conveniently be encoded by saying they are 90 and 270 degrees 
rotated relative to the forward frame of reference; In this case the application would 
need to provide a vector indicating the front of the vehicle is Forward. (This exact 
scenario is covered in detail in 10.4). 
 

4.4. Creating	
  Reference	
  Frames.	
  
While the previous section illustrates how a vector indicates what reference frame it 
should be applied to, Vectors are also used to create Reference Frames. The precise 
rules for setting the values in a given reference frame are specified in the rules that 
define the PPI-GEOLOCATION state machine (section 9). The following summary 
provides a quick understanding of how the key Reference Frames are initialized and 
updated. 
 

4.4.1. Earth	
  Frame	
  of	
  reference	
  
The Earth Frame of Reference is centered at a provided Latitude, Longitude, Altitude, 
and matches standard map coordinates, where the X, Y, and Z axes align with East, 
North, and Up, respectively. This reference frame is described in detail in 8.1. 
Rotations and offsets that are RelativeTo: Earth take place on the East/North/Up 
coordinate system. 
 

4.4.2. Current	
  Frame	
  of	
  reference	
  
The current frame of reference is updated upon successful processing of any Vector 
tag. Therefore the current frame of reference contains the most recently processed 
Vector tag. 
 

4.4.3. Forward	
  Frame	
  of	
  reference	
  
The Forward frame of reference is updated upon successful processing of any Vector 
tag, which has set the DEFINES_FORWARD (BIT 0) in VectorFlags. The ability for an 
application to define its own ReferenceFrame allows advanced applications to store 
data in whatever local coordinate system is convenient.  
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4.4.4. Reference	
  Frame	
  summary	
  
 
Vectors that are RelativeTo the EarthFrame of reference utilize the East/North/Up 
(E/N/U) coordinate system described in 8.1. An application that reads rotational 
information in the E/N/U format does not need information about any other frame of 
reference (such as the heading a car was moving at) to determine the orientation of 
a vector.  

 
Vectors that are RelativeTo the CurrentFrame of reference, or RelativeTo the Forward 
frame of reference utilize the Right/Forward/Up (R/F/U) coordinate system described 
in 8.2.  
 
All operations (either offsets or rotations) take place on the reference frame 
indicated by the RelativeTo subfield of VectorFlags. 

 

4.5. Rotations.	
  
VECTOR-TAGS may contain zero or more rotations which take place on the 
ReferenceFrame indicated by the RelativeTo: subfield of VectorFlags. The appropriate 
rotation matrices are provided in 8.6. 

4.6. Offsets	
  
VECTOR-TAGS may contain zero or more offsets from which take place on the 
ReferenceFrame indicated by the RelativeTo: subfield of VectorFlags.  

4.7. Description	
  
All currently defined GEOLOCATION-TAGS include a 32-byte, NULL padded, ASCII 
description string. Examples for vectors include “VecforAnt1”, “Constant offset for 
ANT1” or “DOT provided by GPS”, and so on.  

4.8. ApplicationData	
  
All currently defined GEOLOCATION-TAGS include a 60-byte field for arbitrary 
application level data. See section 2.2.3 for details. 

4.9. VECTOR-­TAG	
  example	
  
A concrete example of the VECTOR-TAG encoding scheme is shown below.   
 

VECTOR-TAG example 
Field Name Native Value Encoded (little endian) 
VectorFlags DEFINES_FORWARD:0 

RelativeTo:Earth 
0x0200000 

VectorChars GPS_DERIVED 0x00010000 
Rot-X (pitch) 10.0 (Slightly upward) 0x80969800 
Rot-Y 
(roll) 

0.0 0x00000000 

Rot-Z 
(heading) 

22.5 (NNE) 0xa0525701 
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Wireshark decoding of VECTOR-TAG in test packet 

 
Scapy decoding of VECTOR-TAG in test packet
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5. SENSOR-­TAG	
  	
  
The Sensor-TAG allows applications to encode commonly available sensor 
information such as velocity and acceleration in a consistent manner. All Sensor tags 
can express values in three-dimensions, which is stored with the appropriate frame 
of reference.  Sensor tags can also encode total values as well as error levels. 
 
Sensor types that are inherently dimensionless (Temperature, etc) should be stored 
in the Val_T field. 

  
Bit 

(LSB=0) 
Length Name Encoding 

(unit, format) 
0 2 SensorType 16-bit identifier (see table below) 
1 1 

(SIGNED) 
ScaleFactor  Signed byte, -128 to +127 range. 

All values multiplied by 
10^scale_factor, 10-128 to 10127 

2 4 Val_X Fixed 6_4, X-Axis component 
3 4 Val_Y Fixed 6_4, Y-Axis component 
4 4 Val_Z Fixed 6_4, Z-Axis component 
5 4 Val_T Fixed 6_4, Total magnitude. 
6 4 Val_E Fixed 6_4, Error term 
7-27 0 Reserved  
28 32 DescriptionString 32 byte NUL padded ASCII 

description string. 
29 4 AppId See section 2.2.3.1 
30 60 AppData See section 2.2.3.2 
31 0 Indicates extended 

bitmap. 
 

5.1. 	
   Sensor	
  tag	
  types	
  
A list of discrete values that can be used for SensorType, and the associated units for 
each val_X/Y/Z/T field is provided below  
 

Value Name Units 
0 Reserved Reserved 
1 Velocity Meters/sec 
2 Acceleration Meters/sec/sec 
3 Jerk Meters/sec/sec/sec 
4-99 Reserved  
100 Rotation Degress/sec 
101 Magnetic Tesla 
102-
999  

Reserved  

1000 Temperature Celsius 
1001 Barometer Pascal 
1002 Humidity Percent 
1003- 
1999 

Reserved  

2000 CLOCK (TDOA) Seconds (Offset from GPSTime) 
2001 Phase Degrees (0-360) 
2001+ Reserved  
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As currently defined a valid SENSOR-TAG shall not be any larger than 127 bytes (the 
size of a base_geotag_header plus every currently defined field), or less than 8 
bytes (the size of a base_geotag_header). Any GEOLOCATION-TAG that does not 
include at least a base_geotag_header is invalid. 

 

5.2. Sensor	
  tag	
  notes	
  
All applications which utilize the TDOA_CLOCK or Phase sensor must include an 
AppId. A more detailed explanation of these sensors is given in 10.8 and 10.9. 

 

5.3. Sensor	
  tag	
  example	
  (total	
  velocity)	
  
The following example illustrates how to encode a total velocity of North by North East 
at 5m/s. This would reflect real-world usage of a speed provided from a GPS. 

VECTOR-TAG example 5.3 
Field Name Native Value Encoded (little endian) 
VectorFlags DEFINES_FORWARD:0 

RelativeTo:Earth 
0x0200000 

VectorChars GPS_DERIVED 0x00010000 
Rot-Z 
(heading) 

22.5 (NNE) 0xa0525701 

 
SENSOR-TAG Example 5.3 
Field Name Native Value Encoded (little endian) 
SensorType Velocity (0x0001) 0x0100 
CcVal-T 5.0 0x50954a6b 

 
Detailed examples illustrating velocity and acceleration are provided in 10.3. An 
example illustrating the use of the TDOA-CLOCK field is given in 10.8. 

	
  

	
  
Wireshark decoding of SENSOR-TAG in test packet 
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Scapy decoding of SENSOR-TAG in test packet 
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6. ANTENNA-­TAG	
  	
  
The ANTENNA-TAG is designed to capture as much fundamental knowledge about an 
antenna as possible, while allowing applications the flexibility they need to expand 
upon it in the future.  While only a handful of fields are supported (gain, beamwdith, 
modelname, etc), by unambiguously defining characteristics present in every 
antenna, a minimum level of interoperability can be achieved. The ANTENNA-TAG 
also provides applications the ability to encode application-specific antenna 
information as well. 
  
Like all GEOLOCATION-TAGS, the ANTENNA-TAG begins with a geotag_base_ 
header. The following table describes the bitmask to be used with this tag. 
 

Bit 
(LSB=0) 

Length Name Encoding 
(unit, format) 

    
0 4 AntennaFlags Bitmask, 32-bits 
1 1 Gain dBi, unsigned 8-bit 
2 4 Horizontal beamwidth degrees, fixed3_6 
3 4 Vertical beamwidth degrees, fixed3_6 
4 4 PrecisionGain dBi, fixed3_6 
5 2 BeamID Identifies beam pattern 

(electronically steerable antennas) 
6-25 0 Reserved  
26 32 SerialNumber ASCII only, null padded 
27 32 Modelname ASCII only, null padded 
28 32 DescriptionString ASCII only, null padded 
29 4 AppId See section 2.2.3.1 
30 60 AppData See section 2.2.3.2 
31 0 Indicate extended 

bitmap. 
 

As currently defined a valid ANTENNA-TAG shall not be any larger than 187 bytes 
(the size of a base_geotag_header plus every currently defined field), or less than 8 
bytes (the size of a base_geotag_header). Any GEOLOCATION-TAG that does not 
include at least a base_geotag_header is invalid. 

6.1. AntennaFlags	
  Bitmask	
  
The AntennaFlags bitmask is a 32-bit bitmask indicating various attributes about the 
current antenna and its configuration. There are currently only seven bits defined.  

 
 

Bit Description 
0 Antenna part of MIMO system 
1 Horizontally polarized 
2 Vertically polarized 
3 Circularly polarized (left handed) 
4 Circularly polarized (right handed) 
5-15 Reserved 
16 Electronically steerable antenna 
17 Mechanically steerable antenna 
18-31 Reserved 
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6.2. ANTENNA-­TAG	
  fields	
  
 

Name Description 

AntennaFlags 
A 32-bit bitmask indicating various attributes about the current 
antenna and its configuration. Most useful is polarization and if 
the current ANTENNA is part of a MIMO system. 

Gain Unsigned 8-bit value, dBi.  Not encoded in any fixed point 
format.  (Ranges from 0-255) 

HorizBW Horizontal beamwidth of antenna expressed in degrees. 
Fixed3_6 

VertBW Vertical beamwidth of antenna expressed in degrees. Fixed3_6 

PrecisionGain 
Gain in dBi, expressed as a fixed3_6 (allows expression of 
partial dB). Takes priority over Gain field when both are 
present. 

BeamId 

Electronically steerable antennas have a finite set of unique 
beam patterns. This field encodes exactly which pattern was 
being used.  
16-bit, little endian. Antenna-specific. 

SerialNumber 32 bytes, fixed length, null padded ASCII string.  
Serial Number of the Antenna.  Examples include 00000001. 

Modelname 

32 bytes, fixed length, null padded ASCII string. Applications 
should encourage the encoding of a model name unique to a 
manufacturer. Good examples include: OD9-8, PA24-13, 
DC24HDPF1PF-EZ, SA24-120-16-WB 

DescriptionString 
32-byte NULL padded ASCII description of what this ANTENNA-
TAG is doing. Examples include “Out passenger side door” or 
“Stationary-antenna-1” 

AppId See section 2.2.3.1 
AppData See section 2.2.3.2 

 
 

As currently defined a valid ANTENNA-TAG shall not be any larger than 187 bytes 
(the size of a base_geotag_header plus every currently defined field), or less than 8 
bytes (the size of a base_geotag_header). Any GEOLOCATION-TAG that does not 
include at least a base_geotag_header is invalid 
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6.3. ANTENNA-­TAG	
  usage	
  rules.	
  
Although ANTENNA-TAGs only contain a handful of fields, by following the following 
rules a significant amount of information about the connected antenna can be 
discerned. 

6.3.1. Omni-­‐directional	
  antennas:	
  
ANTENNA-TAG producers should set the HorizontalBeamwidth to 360.0 (360000000, 
or 0x002a7515 (little endian)) for any omni-directional antenna. Similarly, 
consumers interested in discerning between Omni-directional and directional 
antennas should test the HorizontalBeamwidth field for equality with 360.0. 
 
If ANTENNA-TAG producers are observed to be not honoring the 360.0 = Omni-
directional convention, it is permissible for consumers to characterize any antennas 
with HorizBeamwidth >= 270.0 degrees as an Omni. 

 

6.3.2. Modelname:	
  
Applications producing model names should try to encode a uniquely identifying 
model name into the Modelname. If an application is unable to provide a unique 
Modelname, it may generate a generic Modelname using the following scheme.  
 
Generic modelnames shall be of the form:  
 
[GainInDBIdBi-][Internal|Omni|MagMountOmni|Panel|Yagi|Sector|Grid]  
where GainInDBI is apparent. Consumers of Modelnames shall NOT parse them 
for gain values. Producers of Modelnames will NOT include the gain portion in the 
Modelname unless the actual gain field is also present.  

 
Example generic Modelnames include (but are not limited to): 
5dBi-Omni, 8.5dBi-MagMountOmni, 27dBi-Yagi, 15dBi-Panel, MagMountOmni, Yagi, 
Grid. 
 

6.3.3. Fractional	
  gain:	
  
Many antennas have fractional amount of gain (e.g. 8.5dBi). Applications that need 
to encode gain with such precision are encouraged to use both the gain field, as well 
as the PrecisionGain field (which takes precedence). Applications should round 0.5 up 
when filling in the gain field.  

6.3.4. BeamID	
  field:	
  
The BeamID contains vendor-specific values, placed into a standardized field. 
Manufacturers of electronically steerable antennas should encode the relevant 
orientation, beamwidth, gain, etc for a given BeamID in the appropriate fields. 
Vendor aware applications may be able to interpret (BeamID, ModelStr) or (BeamId, 
Appld) data with more fidelity than offered by standardized GEOLOCATION-TAG data.  
 
Applications are discouraged from simply producing ANTENNA-TAGs with only 
BeamIDs (essentially utilizing BeamID as a magic number to identify vendor-specific 
antenna characteristics). Applications making use of BeamID should fill out a 
VECTOR tag with a relative heading and the gain/horizbw field of the associated 
ANTENNA tag. 
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6.4. ANTENNA-­TAG	
  example	
  
The following table provides a concrete example of ANTENNA-TAG encoding. Note 
that this example includes every field for the sake of completeness. The majority of 
applications would include only the gain and horizontal beamwidth fields. 
 

 
 

 

 

 

 

 

 

 

 

 

 

 
Wireshark decoding of ANTENNA-TAG in packet  

 

 

ANTENNA-TAG Example 
Field Name Native Value Encoded (little endian) 
AntennaFlags Horizontal Polarity, 

Electronically Steerable 
0x02000000 

Gain 9 dBi  0x09 
HorizBW 120.0 0x00E22707 
VertBW 30.0 0x80C3C901 
PrecisionGain 8.5dBi 0x20b38100 
BeamID 10 0x0A00 
SerialNumber TST-ANT-00001 “TST-ANT-00001” 
Modelname SA24-120-9  “SA24-120-9_E” 
DescriptionString ExampleDescrStr “ExampleDescrStr” 
ApppId 0x04030201 0x01020304 
AppData  “0x41424344..” 
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scapy decoding of ANTENNA-TAG in test packet  
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6.5. ANTENNA-­TAG	
  caveats.	
  
While the ANTENA-TAG can convey basic properties about antennas, accurately 
describing the characteristics of a specific antenna requires knowing its radiation 
pattern. In theory applications could store their own models of antennas and utilize 
the Modelname to identify particular antennas in their internal database. 
 
This would work well within a single enterprise, but without a centralized Modelname 
authority collisions/disparities on data captured in the wild will quickly mount. 
Organizations are free to try and use the application specific data field to try and 
minimize this problem. 

 
The AntennaFlags bitmask has quite a bit of room to grow. If readers have plausible 
uses for the other bits the author would like to know. 
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7. RADIOTAP/802.11COMMON	
  TAGS	
  
Radiotap headers are currently the most widely supported format for storing signal 
strength, channel information, and other 802.11 specific characteristics in a pcap file. 
These headers precede the actual 802.11 header, and are specified in a pcap file by 
setting the DLT to DLT_IEEE802_11_RADIO  (127). Radiotap headers are structurally 
very similar to GEOLOCATION-TAGs in that they both make use of a bitmask to 
indicate which fields are present. Radiotap headers are defined at www.radiotap.org 
[1].  
 
802.11COMMON tags are designed to encapsulate most of the information present in 
a radiotap header, inside of an easier to parse PPI-TAG. This tag is defined by CACE 
in [2], and has been assigned a pfh_type value of 2. 802.11COMMON tags differ 
from GEOLOCATION-TAGS and Radiotap headers in that they are fixed length and 
utilize predetermined values to indicate that fields are not present (in lieu of the 
present bitmask used by radiotap and GEOLOCATION-TAGs). 
 
While the PPI-GEOLOCATION specification recognizes that Radiotap headers are 
prevalent in the wild, formalizing their interaction with the PPI-GEOLOCATION state 
machine is difficult. Therefore, applications implementing the PPI-GEOLOCATION 
processing engine may decide to treat Radiotap headers as logically equivalent to a 
Dot11Common tag. 

  
Non-legacy applications are heavily encouraged to utilize Dot11Common tags to 
store signal strength, channel information, etc. This will minimize the amount of 
ambiguity when the tagged data is run through different engines. 
 
Applications that produce PPI-GEOLOCATION tagged data that do decide to utilize 
Radiotap to encode signal/channel information must not also include a 
Dot11Common tag in the packet. Including both creates an inherently ambiguous 
case in the processing engine. 
 
The following table describes a useful subset of fields present in both 
802.11COMMON tags and Radiotap headers; it is included for convenience only. The 
definition of both 802.11COMMON tags and Radiotap headers are outside the scope 
of this specification. 

 
Name Description Type Size (bytes) 

Rate Data rate in multiples of 500 Kbps 
Invalid value = 0x0000 

Unsigned 2 

Channel-Freq Radiotap-formatted channel frequency, in MHz 
Invalid value = 0x0000 

Unsigned 2 

Channel-Flags Radiotap-forrmatted channel flags: Unsigned  2 
dBm-Antsignal RF signal power at antenna Invalid value = -128 Signed 1 
dBm-Antnoise RF noise at antenna Invalid value = -128 signed 1 
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8. Coordinate	
  Systems	
  
Collection systems can combine GPS and VECTOR tags, defined in sections 3 and 4, 
to precisely define the position and orientation of the system when the tagged packet 
was collected.  Basic systems might use a GPS tag to provide the vehicle position, 
and a VECTOR tag to indicate the vehicle heading or direction an antenna was facing.  

 
More advanced applications may include additional VECTOR fields to provide roll, 
pitch, and heading information. Multiple VECTOR tags can be combined to provide 
detailed information about the vehicle itself, the vehicle’s direction of travel, and the 
relative position and orientation of multiple antennas located on the vehicle. Finally, 
applications can also include sensor tags to indicate velocity and acceleration 
information along any of the provided vectors. 
 
To provide all of this functionality, two coordinate systems are defined: The 
East/North/Up Coordinate System and the Right/Forward/Up Coordinate System.  
The E/N/U system can be though of as an absolute coordinate system, and is 
covered in Section 8.1. It has axes aligned to East, North, and Up, matching 
standard map coordinates.  The E/N/U system is used in any vector that is RelativeTo: 
Earth. 
 
The Relative Coordinate System, covered in Section 8.2, has Right, Forward, and Up 
axes aligned to a specified absolute pitch, roll, and heading provided by a VECTOR 
tag. The Vector tags RelativeTo: field determines exactly which Vector to be used as a 
base for the R/F/U system.  
 
Multiple VECTOR tags can be provided with a single packet, which can establish 
multiple relative coordinate systems.  These multiple coordinate systems are referred 
to as Frames of Reference.  An overview of reference frames is given in Section 8.3, 
and specific algorithms for establishing and updating these reference frames are 
provided in Section 9. 
 
As mentioned in section 4.3, all vectors are RelativeTo one of three frames (Earth, 
Current, or Forward).   

 

8.1. The	
  Absolute	
  East,	
  North,	
  Up	
  (ENU)	
  Coordinate	
  System	
  
The Absolute Coordinate System shown on the left in Figure 8.1 defines a local (X, Y, 
Z) = (East, North, Up) Cartesian system with axes aligned with standard map 
coordinates.  This system is referred to as a local coordinate system, because while 
the directions East, North, and Up are nearly constant over a small area (small in 
Earth terms: hundreds of miles), they all change as the system moves around the 
globe.  For example, the direction Up is horizontal at the equator, but vertical at the 
poles.  The center of the coordinate system is defined at a specific latitude (φ), 
longitude (λ), and altitude, as shown on the right in Figure 8.1, and forms a plane 
tangent to the surface of the Earth. 
 



Geolocation-Tag Specification v2.0       

41  
 

 
Figure 8.1:  The Absolute (East, North, Up) Coordinate System. 

 
Axis Direction Zero defined as: 
+X East 90 degrees clockwise from True North. 
+Y North True North.  
+Z Up Opposite Earth’s gravitational pull. 

 
The origin of the Absolute coordinate system is set by a GPS tag.  At a minimum, 
this tag should provide latitude and longitude, with altitude provided or assumed to 
be ground level. 
 
Once the system position is set using a GPS tag, the system orientation can be 
defined using a VECTOR tag.  The VECTOR tag has Rot-X, Rot-Y, and Rot-Z fields, 
also known as Pitch, Roll, and Heading, which are shown in Figure 8.1.  These 
absolute rotations show the system orientation as rotations about the East, North, 
and Up axes. 
 

Rotation Name Symbol Description 

Rot-X Pitch  

Counter-Clockwise rotation about the X axis.  
When Rot-X = 0, the front and back of vector 
should be parallel to the ground.  When Rot-X = 
90, the vector will be perpendicular to the 
ground, with its nose facing up. 

Rot-Y Roll  

Counter-Clockwise rotation about the Y axis.  
When Rot-Y = 0, the left and right sides of the 
vector should be parallel to the ground. When 
Rot-Y is positive, the right side of the object 
indicated by vector will be lower than the left 
side.  (Right wing down convention) 

Rot-Z Heading 
  

Clockwise rotation about the Z axis.  When Rot-
Z = 0, the vector should be oriented at true 
(not magnetic) North. When Rot-Z = 90, the 
vector will be oriented due East. 
Note: This rotation is clockwise so the rotation 
angle matches a standard compass heading. 
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As an example, Figure 8.2 shows how these pitch, roll, and heading values describe 
the orientation of a vehicle, and how these values establish the Right, Forward, and 
Up axes of the Relative Coordinate System covered in Section 8.2. 

Figure 8.2:  Absolute Roll, Pitch, and Heading describing Vehicle Orientation. 
 

8.2. The	
  Relative	
  Right,	
  Forward,	
  Up	
  (RFU)	
  Coordinate	
  System	
  
The Relative Coordinate System has Right, Forward, and Up axes which track the 
orientation provided by a VECTOR tag. The zeroes of the RFU system depend on 
what the vector has indicated it is RelativeTo: If the Vector is RelativeTo: 
ForwardFrame, then the R/F/U system is aligned with the most recently processed tag 
which has the FORWARD_FRAME bit set.  If the Vector is RelativeTo: CurrentFrame, then 
the R/F/U coordinate system is aligned with the most recently processed Vector tag. 
Vectors which are RelativeTo: Earth use the absolute E/N/U system. 

 
 

Figure 8.3:  The Relative (Right, Forward, Up) Coordinate System. 
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For example, once a GPS tag provides the origin of the E/N/U Coordinate System 
described in Section 8.1, a VECTOR tag could define the orientation of a vehicle by 
providing Absolute Pitch, Roll, and Heading values, as shown in Figure 8.2.  Once this 
vehicle orientation is established, setting the FORWARD_FRAME flag indicates that this 
position and orientation will be used as the origin of a Relative Coordinate system 
that is RelativeTo: Forward. 

 
Figure 8.3 shows the axes of the Relative Coordinate System, as well as how the 
Right, Forward, and Up axes would line up on a vehicle in the example given above.  

 
Once the relative coordinate system is established, additional VECTOR tags can 
provide offsets and rotations on this coordinate system.  If the relative coordinate 
system defines the center of a vehicle, subsequent VECTOR tags may wish to define 
the position and orientation of one or more antennas relative to this vehicle center.  
Figure 8.4 shows the axes of this relative coordinate system in blue, and the start 
and direction of relative Pitch, Roll, and Heading rotations in red.  The axes of the 
newly formed Frame of Reference are shown in green. 

Figure 8.4:  Relative Roll, Pitch, and Heading describing a new Frame of Reference. 
 
 

Figure 8.2 shows how absolute rotations set the orientation of the Right, Forward, Up 
axes relative to the ENU coordinate system.  Figure 8.4 shows how relative rotations 
can define a new set of axes.  The current Right, Forward, Up axes are shown in blue 
in Figure 8.4.  Relative Rotations form the new axes shown in green.  

8.3. Key	
  Frames	
  of	
  reference	
  
A Key frame of reference is a frame of reference that Vector operations may be 
applied to. Currently this is limited to Earth, Current, and Forward.  

8.3.1. Earth	
  Frame	
  of	
  Reference	
  
The Earth frame of reference serves as an anchor for converting relative offsets and 
rotations into absolute terms. The position of the Earth frame of reference is always 
equal to the most recently processed GPS tag. Its orientation is read-only, and uses 
the E/N/U coordinate system defined in 8.1. Any vector which is RelativeTo:Earth is 
oriented on the E/N/U coordinate system. This Reference frame was designed to be 
convenient for humans and digital compass’s to interact with.  
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8.3.2. Forward	
  Frame	
  of	
  Reference	
  
The forward frame of reference is useful for applications that find it convenient to 
create their own local coordinate system. For example, a system of two antennas 
(one in the passenger and driver window), that is also equipped with a digital 
compass that indicates the direction of travel of the vehicle would find it convenient 
to encode the two antennas as 90 and 270 degrees relative to forward. In this case 
the application would first need to provide a vector that gives the current orientation 
of the vehicle.  This vector would set the DEFINES_FORWARD (bit 0 in VectorFlags). 
And the following vectors indicating the orientation of the antennas would set 
RelativeTo: Forward. This case is covered in detail in 10.4 
 
Different systems may choose to align forward to different system components. For 
example, one system may align forward to the front of the vehicle, while another 
may align forward to the direction of an antenna.  It is important to emphasize that 
the DEFINES_FORWARD bit is not indicative of the front of a vehicle, or the direction of 
travel, or any other physical characteristic. (These physical properties are handled by 
the VectorCharacteristics bitmask). 
 
The DEFINES_FORWARD bit is used to specify a convenient local coordinate system for 
an application. Applications may set this bit on multiple vectors if they desire to re-
define this reference frame for any reason. 
 

8.3.3. Current	
  Frame	
  of	
  Reference	
  
The current frame of reference is defined by the most recently processed Vector tag. 
It is a Key frame of reference because it allows applications to specify offsets and 
rotations that are relative to the most recently preceding Vector tag.  
 
In many systems, it makes sense to define Forward as the center of the vehicle, with 
the X (Right) axis aligned with the right side of the vehicle, and the Y (Forward) axis 
aligned with the front of the vehicle.  This is a good starting point to then give the 
relative location and orientation of antennas and other sensors.  However, with 
electronically or mechanically steerable antennas, it is sometimes necessary to 
define the location of the fixed base portion of the antenna as well as the orientation 
of the rotating receive element.  
 
If the base is offset as well as pitched or rolled relative to the vehicle center, it is 
much simpler to give that translation first, and then provide the receive element or 
electronic beam rotation as a second Vector relative to the base.  In particular, if the 
antenna base contains sensors that do not rotate with the receive element, this 
intermediate frame needs to be defined, but marking it as Forward would make it 
more difficult to define the location of additional antennas or sensors.  So in these 
cases, use a Vector RelativeTo: Forward or Earth to first define the antenna base.  
Then, if necessary, use Sensor tags to give any data from sensors located inside the 
base.  Finally, define a Vector RelativeTo: CurrentFrame to give the orientation of the 
rotating receive element relative to the base, and set the Antenna bit in the 
VectorChars flag to indicate this Vector gives a new antenna location.   
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8.4. Non-­Key	
  Frames	
  of	
  Reference	
  
Section 9 indicates that a PPI-GEOLOCATION state machine should store a Reference 
frame that corresponds with every VectorCharacteristic bit (Antenna, Direction of 
travel, Front of vehicle, etc). These Reference frames are provided to all client 
applications as a convenience when any state is queried. The state machine cannot 
be directed to perform operations on any of these frames explicitly. The state 
machine will only apply vector operations to Key frames of reference (Earth, 
Forward, Current). 
 

8.5. Implementation	
  of	
  a	
  Reference	
  Frame	
  
The following pseudocode demonstrates a simple implementation of a frame of 
reference.  
 
struct GPSPos 
{ 
        u_int32_t present; 
        float lon, lat, alt 
   u_int32_t GPSTime, fractionaltime; 
}; 
struct BasicVec 
{ 
        u_int32_t present, VectorFlags, VectorChars; 
        float rotX, rotY, rotZ; //pitch, roll, heading, 

  //in absolute (E/N/U) terms 
}; 
struct SensorData_T 
{ 
 u_int32_t present; 
 float val_X, val_Y, val_Z, val_T val_E; 

.. 
struct FrameOfReference_t 
{ 
        struct GPSPos Pos; 
        struct BasicVec Vec; 

         struct SensorData_T  SensorData[1024]; 
   //Arbitrary application specific data can 

//also be stored here. F.ex, data processed from           
//ApplicationData fields, as well as vel and accel 
 

}; 
FrameOfReference_t Forward_Frame; 
 
A complete frame of reference would include every defined field related to position, 
including timestamps, error levels, rotations in 3-dimensions, and possibly sensor 
data such as velocity and acceleration. However parsers should accept partially 
defined frames of reference, producing a warning only when an operation that 
utilizes an undefined value is encountered. (For example, providing a vertical offset 
when no altitude was specified). For details on handling undefined values see Section 
9.6. 
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8.5.1. Default	
  Frames	
  of	
  Reference	
  
It is important to note that the initial Forward and Current Frame of Reference 
(Defined in section 9) matches absolute ENU coordinates. In other words, the default 
Forward Frame and CurrentFrame is equivalent to a VECTOR tag that is RelativeTo: 
Earth with Rot-X, Rot-Y, Rot-Z, Offset-X, Offset-Y, and Offset-Z all set to 0.  It is also 
important to remember that every time a GPS tag is received, all frames of reference 
should reset to the default state.  Additional implementation details are provided in 
Section 9.  
 

8.6. Converting	
  Relative	
  Offsets	
  and	
  Rotations	
  to	
  ENU	
  Coordinates	
  
Ultimately, all system information needs to be converted to ENU coordinates to allow 
plotting, comparison and processing of data.  Section 8.6.1 describes how rotation 
matrices are formed from absolute and relative rotations.  These rotation matrices 
can then be combined to translate relative rotations back to absolute terms.  The 
resulting matrix is also used to translate relative coordinates back to ENU 
coordinates, as discussed in Section 8.6.2.  Section 8.6.3 gives a practical application 
of these concepts with equations and results.  

 

8.6.1. Computing	
  Rotations	
  
A relative rotation contained in a VECTOR tag can be combined with the reference 
frame it is RelativeTo: to give the absolute orientation of the antenna (or other 
object), but the absolute and relative angles usually cannot simply be added 
together, and the order in which the rotations are applied is critical. 
 
If only absolute and relative heading information is provided (pitch and roll 
are assumed 0), then the two values can be added together directly. 
 
This is also true for other simple cases, but in general, rotations matrices must be 
created representing the reference frame that the current vector is RelativeTo as well 
as the relative rotation. 
 
In the following section we process a relative vector (which we assume in this 
example to represent an antenna) that is RelativeTo: Forward. The Forward frame of 
reference is used to create a rotation matrix . The relative rotation is 
converted into a rotation matrix . 
 
(If the vector had been RelativeTo:Current the math would be identical, but we 
would replace the values used to initialize with those found in 
CurrentFrame).    
 
Both   and  have the form: 

	
  

Where: 
  = Roll  = Vec.RotY 

 = Pitch = Vec.RotX 
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= Yaw  = Vec.RotZ 
 
Therefore 

 
	
  

 
 

A final rotation matrix,  is computed by multiplying  and   

 
 
 

transforms a point or vector from a relative frame (Rel_Vec above) into the 
ENU coordinate system.  
 
The final absolute (E/N/U) rotation angles are:  

 
           

 
 
 
Where  means row a, column b of , and atan2 expects (y,x) input, not 
(x,y)  
 

8.6.2. Relative	
  Offsets	
  
VECTOR tags may store E/N/U or R/F/U offsets to further encode the location of a 
particular element of the system. (E/N/U offsets are of marginal utility, but a 
consequence of allowing vector operations RelativeTo:Earth). R/F/U offsets can be 
specified from either the Current Frame or Forward Frame of reference via the 
RelativeTo: field. Relative offsets specified in R/F/U coordinates can be translated to 
ENU coordinates by storing them in matrix form and multiplying by . An 
example is given in Section 8.6.3. 

 

8.6.3. Example	
  System	
  with	
  Relative	
  Rotation	
  and	
  Offset	
  Computations	
  
This section illustrates one typical system configuration that uses both absolute and 
relative rotations, as well as relative offsets to define the location of individual system 
elements.  The locations of these elements are translated back to absolute E/N/U 
coordinates, using the equations provided in Section 8.6.1, and the Frame of 
Reference structure defined in Section 8.5.   

8.6.3.1. System	
  Definition	
  
Please consider the following system: 
• A vehicle with a 1m wide, 1.5m long roof 
• An INS unit mounted at the center of the roof, providing GPS information as 

well as Roll, Pitch, and Heading information 
• A steerable antenna mounted at the back left corner of the vehicle roof.  The 

antenna can only rotate in the azimuth plane, and provides relative azimuth 
angle feedback as it rotates, and started (0 degree mark) facing the front of 
the vehicle. 



Geolocation-Tag Specification v2.0      
 

48 
 

Figure 8.5:  Example System Orientation and Component Layout 

 

8.6.3.2. System	
  GEOLOCATION	
  Tags	
  
When a packet is received, the system would output one GPS and two VECTOR tags.  
The example below shows the system output if the vehicle was travelling East up a 
steep hill with the antenna pointing towards the right front corner of the vehicle roof: 
 

GPS-TAG 
Latitiude  40.787743° 
Longitude -73.971210° 
Altitude 200.123m 

 
VECTOR-TAG 
VectorFlags Ox03: DefinesForward + RelativeTo:Earth 

Bit 0:  Vector defines the Forward Frame of Reference 
Bit1,2: RelativeTo:Earth 

VectorCharacteristics 0x06 
FRONT_OF_VEHICLE  
DIRECTION_OF_TRAVEL (vector indicates direction of travel) 

Rot-X (Pitch) 30.0° 
Rot-Y (Roll) 10.0° 
Rot-Z (Heading) 90.0° 
Off-R (Right) 0.0 
Off-F (Forward) 0.0 
Off-U (Up) 0.0 

 
VECTOR-TAG 
VectorFlags 0x00 

RelativeTo: Forward  
VectorCharacteristics 0x01  

ANTENNA (vector represents an antenna) 
Heading  (RotZ) 45.0° 
Off-R (Right) -0.5 meters 
Off-F (Forw) -0.75 meters 

 
 
The VectorCharacteristics flags of the first VECTOR-TAG indicate this tag provides the 
vehicle direction of travel as well as the orientation of the front of the vehicle.  The 
VectorFlags indicate that the rotations provided are RelativeTo: Earth, meaning they 
give the orientation of the vehicle in the E/N/U coordinate system. This tag also 
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indicates it should be used as the Forward frame of reference by setting the 
DEFINES_FORWARD_FRAME_OF_REFERENCE bit. 
 
The VectorCharacteristics and VectorFlags flags of the second VECTOR-TAG indicate 
this tag gives the position and orientation of an Antenna, relative to the currently 
defined forward frame of reference. 
 

8.6.3.3. Calculated	
  Rotation	
  Matrices	
  
Using the formula shown in 8.6.1 we can generate the following two rotation 
matrices.  
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Converting	
  to	
  Absolute	
  ENU	
  Rotations	
  
 
 
With computed, we can derive the ENU rotations of the antenna. 

                             Antenna_Absolute.RotY = 28.3 
 
 

 
 
                              Antenna_Absolute.RotX = 14.3 

 

 

                          Antenna_Absolute.RotZ =135.9 
 
 
Which indicates that the antenna was oriented with 14.3 degrees of (absolute) pitch, 
28.3 degrees of (absolute) roll, and was pointed approximately south by south east. 
 

8.6.4. Converting	
  offsets	
  to	
  ENU	
  Coordinates	
  
In order to convert offsets into E/N/U coordinates first construct a matrix 
representing the offsets IN R/F/U coordinates. 
 
 
 
 
 
 
Convert  to East, North, Up coordinates, by multiplying by  
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 can be interpreted as follows: when the car is facing East at the given pitch 

and roll, the antenna is 0.69 meters to the West, 0.49 meters to the North, and 0.3 
meters below the center of the vehicle roof.  The final absolute location of the 
antenna on the Earth is the combination of the current GPS latitude, longitude and 
altitude information with this vector. 



Geolocation-Tag Specification v2.0      
 

52 
 

 

9. Processing	
  GEOLOCATION-­TAGs	
  	
  
The following section illustrates in detail how GEOLOCATION-TAG processing should 
be handled. It is not expected that every application will implement this algorithm in 
its entirety; however applications that deviate from the following interpretation will 
be viewed as not compliant with the PPI-GEOLOCATION tag standard.  
 
A reference implementation of this algorithm, py-ppi-geo-state, is expected to be 
available in the PPI-GEOLOCATION SDK. Developers may wish to refer to the code 
for implementation details. While every effort is made to keep this document and the 
implementation synchronized, the reference implementation should be seen as the 
definitive authority on the described state machine. 

 

 
 

 
 

9.1. Global	
  GEOLOCATION-­TAG	
  state	
  
The following diagram depicts all of the state that is required to be tracked by a 
GEOLOCATION-TAG processor. This state includes internal representations of the 
most recent ANTENNA and 802.11COMMON tag, as well as the three Key Reference 
frames. A second set of reference frames, ones that correspond to each 
VectorCharacteristic (Antenna, Direction of Travel, Front of vehicle, etc) is also 
tracked. These are stored for the convenience of client applications. The state 
machine does not use these non-key frames of reference as the input of any 
operation.  
 
It is expected that the internal representation of GEOLOCATION-TAGS preserve the 
present bitmask to determine whether or not a value has been defined yet.  A field 
that is not present is said to be undefined. 
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9.2. Reference	
  Frames	
  
Vector tags are combined with GPS tags to define Reference frames. The following 
rules apply to all reference frame variables maintained by the GEOLOCATION-TAG 
processor. 
 

• All reference frames are reset to their default values at the start of each packet 
and upon successful processing of any GPS tag. 

• The default values for all frames of reference, excluding the Earth Frame, are 
Off-X=0, Off-Y=0, Off-Z=0, Rot-X=0, Rot-Y=0, Rot-Z=0.  This makes the 
default axes for all non-Earth frames identical to the Earth frame.  

9.2.1. Key	
  reference	
  frames	
  
 
Earth_Frame: Frame of reference where the Pos value is always equal to the most 
recently processed GPS tag. The Vector portion of Earth frame is immutable, and 
always represents the E/N/U system described in section 8.3.1.  
 
Curr_Frame This reference frame is updated with the offsets and rotations of the 
most recently encountered Vector tag. As such, Curr_Frame contains the most recent 
orientation and position processed by the GEOLOCATION-TAG processor. Applications 
can check the VectorCharacteristics of this field to determine what this vector 
indicates (See 10.6 for an example of this). 
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By default, Off-X=0, Off-Y=0, Off-Z=0, Rot-X=0, Rot-Y=0, Rot-Z=0.  This makes all  
reference frame axes identical to the Earth frame of reference until they are 
updated. 
 
Forward_Frame: This reference frame is updated with the offsets and rotations of 
the most recently encountered Vector tag that has the VectorFlags.DEFINES_FORWARD 
bit set.  

 
This frame of reference is designed to allow applications to create their own 
convenient local R/F/U based coordinate system. It is described in 8.3.2 and an 
example of using it is provided in 10.4.  

9.2.2. Non-­‐Key	
  reference	
  frames	
  
The GEOLOCATION-TAG processor tracks the following reference frames. They are all 
updated when the appropriate bit in VectorCharacteristics is set. These are tracked 
as a convenience for end-user applications; the state machine itself will not use 
these values as input into any operation. 

 
Antenna_Frame: Indicates the orientation of the most recently processed vector 
with the VectorChars.ANTENNA bit set. 

 
DOT_Frame:  This value contains the most recent frame of reference indicated by a 
VECTOR with the VectorChars.DIR_OF_TRAVEL bit set.  
 
FOV_Frame: Indicates the orientation of the most recently processed vector with 
the  VectorChars.FRONT_OF_VEHICLE bit set 
 
AOA_Frame: Indicates the orientation of the most recently processed vector with 
the  VectorChars.ANGLE_OF_ARRIVAL bit set 
 
Transmitter_POS: Indicates the position of the most recently processed vector  
with the  VectorChars.TRANSMITTER_POS bit set (See example 10.10 for details). 
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9.3. Sensor	
  Data	
  
An arbitrary amount of sensor data can be attached to any reference frame. This 
data is stored in a tree-based hierarchy. This hierarchy of this tree is designed to 
propagate sensor information in a way that is relevant (and well defined) to 
applications. 
 
Consider the case of a velocity tag that is stored with the Forward frame of 
reference. In this case a Vector tag that represents an antenna is also provided. The 
antenna frame is marked as RelativeTo:Forward. In all likelihood the antenna is 
moving at the same velocity as the reference frame it is RelativeTo. The following 
algorithm, implemented in the PPI-GEOLOCATION state machine attempts to 
propagate this information in a meaningful manner, while still giving applications as 
much flexibility as necessary to store a variety of sensor data. 
 

 
 

The following algorithm, implemented inside the PPI-GEOLOCATION state machine 
attempts to bridge this gap, in a manner that is convenient to both GEOLOCATION-
TAG producers and consumers. 
 

• Sensor data that precedes all Vector tags is attached to the Earth frame of 
reference.  

• Sensor data which follows any Vector tag is attached to all frames of 
reference that are updated by the most recently preceding Vector tag, (This 
means the smallest possible subset of updated frames is CurrentFrame). 

• Any vector which is RelativeTo: a key frame of reference inherits all sensor 
data from the key frame it is RelativeTo. 

 
Readers implementing their own PPI-GEOLOCATION tag processor are encouraged to 
review the reference implementation and ensure equivalent parse trees. 
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9.4. GEOLOCATION-­TAG	
  state	
  machine	
  variables	
  
All PPI-GEOLOCATION tag processors must keep track of whether a field in a given 
variable was initialized to its default value, or if it represents data actually provided 
by a tag. Fields that are backed with user data are said to be defined. Fields which 
are initialized with values from the state machine are un-defined. This relationship is 
straightforward, except in the case of vectors which are computed RelativeTo:  key 
frames of reference which contained undefined values. In this case the rules in 
section 9.6.1 are applied.  
 
Unless stated otherwise, all values are set to 0 and undefined at initialization time. 
The following section iterates over each variable, and describes when it is initialized 
and updated. 

9.4.1. Curr_Signal	
  
Internal representation of the most recently processed Dot11Common tag. This is 
where applications look to see the signal strength, channel, etc. 

9.4.1.1. 	
  Initial	
  values:	
  
Initialized on: PACKET_START 
AntSignal, AntNoise are initialized to -128 and undefined (This is used to indicate 
unknown in Dot11Common tags) 
All other Curr_Signal fields are initialized to zero and set to undefined. 

9.4.1.2. Updated	
  on:	
  
Successful processing of any Dot11Common-tag causes all fields in Curr_Signal to be 
updated. Applications that parse Radiotap headers would update all Curr_Signal 
fields upon successfully parsing of Radiotap headers. 

9.4.2. Curr_Antenna	
  
Internal representation of the most recently processed ANTENNA-TAG. This is where 
applications look to see the beamwidth, gain, etc of the antenna the packet was 
received on. 

9.4.2.1. 	
  Initial	
  values:	
  
Initialized on: PACKET_START 
Gain is initialized to 5 dBi, 
HorizBw is initialized to 360.0 
All other  Curr_Antenna fields are initialized to zero and set to undefined. 
(The motivation for default gain/beamwidths is to provide consistent defaults across 
various implementations when no antenna data is present.) 

9.4.2.2. Updated	
  on:	
  
Successful processing of any ANTENNA-tag causes all fields in Curr_Antenna to be 
updated. 

9.4.3. Reference	
  frames:	
  
Initialized on: PACKET_START, GPS_TAG 
Represents various frames of reference in the state machine.  

9.4.3.1. 	
  Initial	
  values:	
  
Initialized on: PACKET_START, GPS_TAG. 
All fields set to zero and undefined on PACKET_START. 
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Processing of GPS TAGs cause the Position field of all reference frames to be 
updated, and the vector field of all frames other than Earth reset to zero and 
undefined. 

9.4.3.2. Updated	
  on:	
  
Curr_Frame: 
 Position is updated on processing of any vector (ApplyOffsets). 
 Orientation is updated on processing of any vector (ApplyRotations). 
 Sensor data: handled according to 9.3. 
Forward_Frame: 

Position is updated on processing of any vector with DEFINES_FORWARD bit in 
VectorCharacteristics set (ApplyOffsets). 

 Orientation is updated on processing of any vector (ApplyRotations). 
 Sensor data: handled according to 9.3. 
Earth_Frame: 
 Position is updated on processing of any GPS tag. 
 Orientation is immutable, set to E/N/U coordinate system. 
 Sensor data: handled according to 9.3. 
 
Non-key-Frames (Antenna, DOT, FOV, …): 
Non-key reference frames are updated any time a vector is processed with the 
applicable VectorCharacteristic bit set. 
 
 Position is updated on processing of any applicable vector (ApplyOffsets). 
 Orientation is updated on processing of any applicable vector 

(ApplyRotations). 
 Sensor data: handled according to 9.3. 
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9.5. PPI-­GEOLOCATION	
  TAG	
  processing	
  overview	
  
While section 9.4 precisely describes the circumstances when each PPI-
GEOLOCATION variable is modified, this section gives a brief description of what 
happens to a PPI-GEOLOCATION tag is processed. This description is supplementary 
to the definitions in 9.4 

9.5.1. GPS-­‐TAG	
  processing	
  	
  
When A GPS-TAG is processed it causes every frame of reference to take on the 
supplied value in the position field. They also reset every frame of references vector 
to their default values. 

 

9.5.2. VECTOR-­‐TAG	
  processing	
  	
  
VECTOR-TAGs are used to precisely define a location (via on offset) and/or an 
orientation (via the rotation fields).  As shown in the Figure below, when both offsets 
and rotations are present, offsets are applied first.  Offset X,Y, and Z values are 
aligned to the axes of whichever key frame of reference the Vector is RelativeTo.  
This offset point becomes the origin of the new Current Frame, and any rotations are 
then applied in the order Heading, Pitch, Roll, centered at this origin.  Detailed 
information on applying rotations is given in Section 8.6.1 
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9.5.3. SENSOR-­‐TAG	
  processing	
  
When a SENSOR-TAG is processed it is attached to one or more reference frames 
according to the algorithm described in 9.3 

9.5.4. ANTENNA-­‐TAG	
  processing	
  	
  
Processing an ANTENNA-TAG causes Curr_Antenna to be Updated. There are no side-
effects, and no other variables are modified. 

9.5.5. DOT11COMMON-­‐TAG	
  processing	
  	
  
Processing a Dot11Common TAG causes Curr_Signal to be Updated. There are no 
side-effects, and no other variables are modified. 

9.5.6. Invalid	
  tags	
  
It is possible to craft invalid GEOLOCATION-TAGS; either through invalid lengths, 
invalid fixed point values, and other avenues. Applications encountering any parsing 
error (other than referencing an undefined value, covered above) should stop 
processing the current tag, revert GlobalState to the values stored previous to 
encountering the erroneous tag, and continue processing on the next tag.  

9.6. Undefined	
  values	
  	
  
PPI-GEOLOCATION state machines must be able to distinguish between values that 
were provided as initial defaults, and values that are actually derived from user data. 
Values that are derived from user data are said to be defined. In most cases there 
is a simple relationship between variables in the PPI-GEOLOCATION state machine.  
 
For example, Curr_Antenna.HorizBw is given an initial value of 360, but it set to 
undefined As soon as an antenna tag is processed with the HorizBw field, the 
variable will be updated and marked as defined. This simple relationship holds true 
for all variables except the vector portion of reference frames.  Since vectors can be 
computed relative to other vectors, and any one of the 6 rotation variables involved 
can be undefined, the following rules are used. 
 

9.6.1. Definedness	
  of	
  ReferenceFrame.Vec	
  
 

1. Any rotations not present will be assumed 0 and marked undefined in the 
resulting Reference Frame.  

 
2. If two vectors are combined that BOTH provide ONLY Heading, ONLY Pitch, or 

ONLY Roll, then the provided Heading, Pitch or Roll will be defined, and the 
other two rotations will be assumed 0 and marked undefined in the resulting 
Reference Frame.  

 
3. Otherwise, if two vectors that both have at least one rotation present are 

combined, then if any Pitch, Roll, Heading value for either of the two vectors 
was undefined, all three will be undefined in the resulting Reference Frame.   

 
The application of rule 2 allows many applications only concerned with heading to get 
the desired results from the state machine, while rule 3 allows applications to 
validate that all the inputs were present to reliably compute the vector used in the 
reference frame. 
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9.6.2. Undefined	
  altitudes	
  
Applications encountering packets with no altitude or altitude_g field must assume 
they were captured at ground level. More precisely: when a frame of reference has 
an undefined Pos.altitude and an undefined Pos.altitude_g field, applications shall 
treat the altitude as ground level. 
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10. Applications	
  
The most obvious use for GEOLOCATION-TAGS is to provide a standardized way for 
802.11 capturing utilities to encode GPS and orientation information. Assuming a 
fully filled out set of GEOLOCATION-TAGS, the visualization system can know exactly 
when and where a packet was captured, including the orientation of the antenna and 
the antenna in use. Supplementary sensor information can also be provided, which 
allows the precise expression of velocity, acceleration, temperature, and can easily 
be expanded to include application specific data. It is the author’s hope that by 
commoditizing the storage of this information interest will develop around building 
geo-location systems that can interoperate with common tools. 

	
  	
  	
  Common	
  use	
  cases	
  
The following section identifies the most common use-cases for GEOLOCATION-
TAGS. It starts out with the simplest cases to encode and moves on to more difficult 
examples. Although not every conceivable combination is expressed below, the most 
useful cases should be covered. Applications are encouraged to imitate one of these 
use-cases in order to maximize compatibility. A pcap file that illustrates all of these 
examples is included in the SDK. 

10.1. GPS	
  	
  Only	
  
Many applications today store GPS meta-information out-of-band of packets captured 
during a survey. These applications could be easily modified to output this 
information in-line with the pcap file by using a GPS-TAG. The following scenario 
walks through the state of a GEOLOCATION-TAG processor that encounters such 
input. 
 

GPS-TAG  
Latitiude  40.787743° 
Longitude -73.971210° 

 
 
Processing this single tag results in the following GEOLOCATION-STATE table. 
A (u) next to a name indicates that the current value is undefined, a value provided 
by or derived from a default. 

Antenna_Frame 
Position 
Defined: Lon,Lat 
Lat/Lon   40.787743°, -73.971210° 
Vec 
Defined: None 
Rot-X (Pitch) (u) 0 
Rot-Y (Roll) (u) 0 
Rot-Z (Heading) (u) 0 

Curr_Antenna (defaults) 
Defined: None 
AntennaFlags (u) 0x00 
Gain (u) 5 
Horizbw (u) 360.0 
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Curr_Sig (undefined) 
Defined: None 
Antsignal (u) -128 (unknown, from initialize_defaults) 
Antnoise (u) -128 (unknown, from initialize_defaults) 
 
Curr_Frame and ForwardFrame are identical to Antenna_Frame 
 
Since no ANTENNA-TAG was included, the defaults specified in 9.4.2.1 were used to 
populate Curr_Antenna. 
 
The preceding GEOLOCATION-STATE indicate that there is an omni-directional 
antenna pointed due north (AntennaFrame.rotZ=0) located at the position described by 
the GPS-TAG. However, the rotation information is marked as undefined (since it did 
not come from any user data). Antenna characteristics as well as signal strength are 
also marked as undefined in the state machine.  The visualization output shown 
below is based only on variables in the state machine that are marked as defined.  
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10.2. GPS	
  +	
  VECTOR	
  +	
  ANTENNA	
  +	
  RADIOTAP	
  
This case represents a common scenario where the collection system has a single 
omni-directional antenna on the top of the vehicle. 
  

GPS-TAG  
Latitude  40.787743° 
Longitude -73.971210° 

 
 VECTOR (Antenna) 
VectorFlags 0x02  

RelativeTo:Earth 
VectorChars 0x01 (Antenna) 
Rot-X: (Pitch) 90 
Rot-Y: (Roll) 0 
Rot-Z: (Heading)  0  
DescriptionString Antenna-1 orientation 

 
ANTENNA-TAG  
AntennaFlags 0x02 

Bit 1: Horizontal-Polarity 
Gain 8 dBi  
HorizBW 360.0 
Modelname 8dBi-MagMountOmni 

 
RADIOTAP   
Antsignal -80 dB 
Antnoise -110 dB 
channel 6 

 
The addition of a Vector-Tag, ANTENNA-TAG and Radiotap header results in the 
following updated GEOLOCATION-STATE 
 

Antenna_Frame 
Position 
Defined: Lon,Lat 
Lat/Lon   40.787743°, -73.971210° 
Vec 
Defined: Rot-X/Y/Z 
Rot-X: (Pitch) 90 
Rot-Y: (Roll) 0 
Rot-Z: (Heading) 0 

Curr_Antenna  
Defined: AntennaFlags,gain,horizbw,Modelname 
AntennaFlags 0x02 

Bit 1: HORIZONTALLY_POLARIZED 
Gain 8 
horizbw 360.0 
Modelname 8dBi-MagMountOmni 
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Curr_Sig  
Defined: Antsignal,Antnoise,Channel 
Antsignal -80 
Antnoise -110 
Channel 6 

 
 

 
 
In the image above the visualization system renders signal strength as a color coded 
and scaled line, where orientation is determined by AntennaFrame.Vec. 



Geolocation-Tag Specification v2.0       

65  
 

 

10.3. Directional	
  of	
  travel	
  +Velocity	
  +	
  one	
  directional	
  antenna	
  
In this case we illustrate a common configuration of one directional antenna pointed 
out the passenger side window of a moving car. This requires the introduction of two 
VECTOR-TAGs; one for the direction of the car, and one for the antenna. Note that 
the second VECTOR tag utilizes rotations RelativeTo:ForwardFrame. Also note the 
introduction of the Rot-X field in the vehicle’s VECTOR TAG; the system is now 
recording a 10 degree incline. This example also introduces the sensor tag.  
 

GPS (vehicle position) 
GPSFlags 0x02 

1:GPS_FIX  
Latitude  40.787743° 
Longitude -73.971210° 

 
VECTOR (vehicle orientation) 
VectorFlags 0x03  

Defines_Forward 
RelativeTo:Earth (Rotations in E/N/U Coordinates) 

VectorChars 0x06 
1:DIRECTION_OF_TRAVEL  
2:FRONT_OF_VEHICLE  

Rot-X: pitch 10.0° 
Rot-Z: heading 22.5° (NNE) 

 
Sensor (Velocity) 
SensorType Velocity 
Val_T 20.0 m/s 

 
VECTOR (right antenna orientation) 
VectorFlags 0x04 

RelativeTo:ForwardFrame 
VectorChars 0x01 

Bit 0:ANTENNA 
Rot-Z: heading 90.0 (90 degrees right, relative to forward)  

 
 ANTENNA (right antenna) 
Antennaflags 0x02 

Bit 1: HORIZONTALLY_POLARIZED 
Gain 9 dBi 
horizbw 120 
Modelname SA24-120-9 

 
 802.11COMMON1  (right antenna signal) 
Antsignal -75 dB 
Antnoise -110 dBi 
channel 6 
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The GEOLOCATION-STATE generated from processing the preceding five tags is 
shown below. 
 

Forward_Frame* 
Position 
Defined: GPSFlags,Lon,Lat 
GpsFlags 0x02: GPS-FIX 
Lat/Lon  40.787743°, -73.971210° 
Vec 
Defined: VectorFlags,VectorChars,RotX,RotZ 
VectorCharacteristics 0x06 

FRONT_OF_VEHICLE  
DIRECTION_OF_TRAVEL  

Rot-X: Pitch 10.0° 
Rot-Y: Roll (u) 0°  (comes from initialize_defaults) 
Rot-Z: Heading 22.5.° (NNE) 
SensorData (Velocity) 
Val-T 20.0 m/s 

  *DOT_Frame, FOV_Frame contain identical values. 
 

Antenna_Frame 
Position 
Defined: Lon,Lat 
Lat/Lon 40.787743°, -73.971210° 
Vec 
Defined: VectorFlags, VectorChars, RotX ,RotZ,  
VectorCharacteristics 0x01 

Bit 0: ANTENNA 
Rot-X: Pitch (u) 0.0  
Rot-Y: Roll  (u) 10.0  
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Rot-Z: Heading (u) 112.5° (ESE) 
SensorData (Velocity) 
Val-T 20.0 m/s (Inherited from Forward_ Frame)  

 
Examining AntennaFrame.Vec field we see that 10° of pitch relative to the vehicle is 
equal to 10° of roll to the antenna. This is consistent with an antenna pointed out the 
passenger window of an up-hill travelling car.  Notice that since Roll was not included 
in the vector tag that created ForwardFrame, roll was not defined in 
ForwardFrame.Vec. Therefore when the state machine combined the antenna vector 
with ForwardFrame according to 9.6.1 it marked all of the Vec fields in 
AntennaFrame as undefined. 
 
We can follow the propagation of the velocity Sensor tag throughout the frames of 
reference in this example. The tag was originally attached to the ForwardFrame, and 
since the second vector tag was RelativeTo:Forward, the sensor data propagated to 
AntennaFrame as well. 
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10.4. Two	
  static	
  directional	
  antennas	
  with	
  offsets	
  
This case is similar to the previous, except that we now have two antennas 
connected to two independent interfaces capturing the same packet. (How an 
application verifies that this was indeed the same packet before tagging it in this 
manner is outside the scope of this document.).  
 
Assume for simplicity that the vehicle is exactly 1.5 meters wide, that the GPS 
Antenna is located 0.2 meters above each antenna (on the roof), and that each 
antenna is forward 0.6m of the GPS antenna. If we wanted to encode all of this 
precisely, we would do it as follows. 
 

 
 

GPS (vehicle position) 
GPSFlags 0x02 

1:GPS_FIX  
Latitiude  40.787743° 
Longitude -73.971210° 
Altitude_g 2.0m 

Note the use of altitude_g here: We specify the height of the roof of the car as 2.0m 
from ground. It is recommended that ground based applications utilize the 
altitude_g field rather filling in altitude results from a GPS receiver, as altitude 
readings may vary significantly in values and precision in real world conditions. 
Alternately, applications may simply leave altitude out, which should cause all 
applications processing geolocation-tags to assume ground level. 
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VECTOR (vehicle orientation) 
VectorFlags 0x03  

Defines_Forward 
RelativeTo:Earth (Rotations in E/N/U Coordinates) 

VectorChars 0x06 
1:DIRECTION_OF_TRAVEL  
2:FRONT_OF_VEHICLE  

Rot-X: pitch 10.0° 
Rot-Z: heading 22.5° (NNE) 

 
Sensor (Velocity) 
SensorType Velocity 
Val_T 8.5 m/s 

 
Sensor (Acceleration) 
SensorType Acceleration 
Val_T 0.5 m/s2 

 
The velocity and acceleration values tell us that the car was travelling through the 
intersection when this packet was captured.  
 

VECTOR (right antenna orientation) 
VectorFlags 0x04 

RelativeTo:ForwardFrame 
VectorChars 0x01 

Bit 0:ANTENNA 
Rot-Z: heading 90.0 (90 degrees right, relative to forward)  
Off-X: (Right) 0.75m 
Off-Y: (Forward) 0.6m 
Off-Z: (Up) -0.2m 

 
 

 ANTENNA (right antenna) 
Antennaflags 0x02 

Bit 1: HORIZONTALLY_POLARIZED 
Gain 9 dBi 
horizbw 120 
Modelname SA24-120-9 

 
 802.11COMMON1  (right antenna signal) 
Antsignal -75 dB 
Antnoise -110 dBi 
channel 6 
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Lets examine the values of the GEOLOCATION-STATE at this point. 

Forward_Frame 
Position 
Defined: GPSFlags,Lon,Lat,Alt_g 
GpsFlags 0x02: GPS-FIX 
Lat/Lon/Alt_g:  40.787743°, -73.971210°, 2.0m 
Vec 
Defined: VecFlags,VectorChars,RotX,RotZ 
VectorCharacteristics 0x06 

FRONT_OF_VEHICLE  
DIRECTION_OF_TRAVEL  

Rot-X: Pitch 10.0° 
Rot-Y: Roll (u)  0° (This is a default) 
Rot-Z: Heading 22.5.° (NNE) 
SensorData (Velocity) 
Val-T 8.5 m/s 
SensorData (Acceleration) 
Val-T 0.5 m/s2 
 
Forward_Frame was defined by the combination of the first GPS-TAG and the first 
VECTOR-TAG.  We also have acceleration and velocity information from the sensor 
tags.  
 
Antenna_Frame’s position has an offset of  (.75m right, .6m forward, 0.2m down) of 
the position stored in Forward_Frame.pos. Converting these offsets into the E/N/U 
coordinate system (as shown in 8.6.4) we arrive at: (0.93m East, 0.29m North,  
-0.09 Up). Applying the E/N/U offsets to the original lon/lat/alt leads to the results 
listed in Anntenna_Frame.pos  
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Antenna_Frame, CurrFrame 

Position 
Defined: Lon,Lat,Alt_g 
Lat/Lon/Alt_g:  40.7877459, -73.9711987, 1.8m 
Vec 
Defined: VectorChars,RotX RotZ,  
VectorCharacteristics 0x06 

FRONT_OF_VEHICLE  
DIRECTION_OF_TRAVEL  

Rot-X: Pitch (u) 0.0   
Rot-Y: Roll (u) 10.0  
Rot-Z: Heading (u) 115.5° (ESE) 
SensorData (Velocity)  (Inherited from ForwardFrame) 
Val-T 8.5 M/s 
SensorData (Accel)  (Inherited from ForwardFrame) 
Val-T 0.5 M/s2 
 
Examining AntennaFrame.Vec field we see that 10° of pitch relative to the vehicle is 
equal to 10° of roll to the antenna. This is consistent with an antenna pointed out the 
passenger window of an up-hill travelling car. We can see that all of the rotation 
fields on Antenna frame are undefined, due to rule 3 of section 9.6.1. 
 
Curr_Antenna and Curr_Signal are trivially derived from their respective tags. 

Curr_Antenna 
Defined: AntennaFlags,gain,horizbw,Modelname 
Undefined: Vertbw,PrecisionGain,BeamID, ... 
AntennaFlags 0x02 

Bit 1: HORIZONTALLY_POLARIZED 
gain 9 
horizbw 120.0 
Modelname SA24-120-9 

Curr_Sig 
Defined: Antsignal, Antnoise, channel 
Undefined: … 
Antsignal -75 
Antnoise -110 
channel 6 
 
If we were to plot out all of the information present so far, it would look similar to 
the illustration in 10.4 
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Moving on to the next set of tags we have: 
 

VECTOR (left antenna orientation) 
VectorFlags 0x00 

RelativeTo:ForwardFrame 
VectorChars 0x01 

Bit 0:ANTENNA 
Rot-Z: heading 270.0 (degrees right, relative to forward)  
Off-X: (Right) -0.75m 
Off-Y: (Forward) 0.6m 
Off-Z: (Up) -0.2m 

 
 ANTENNA (left antenna) 
Antennaflags 0x02 

Bit 1: HORIZONTALLY_POLARIZED 
Gain 9 dBi 
horizbw 120 
Modelname SA24-120-9 

 
 802.11COMMON1  (left antenna signal) 
Signal -95 dB 
noise -118 dBi 
channel 6 

 
 

The VECTOR-TAG changes both Curr_Frame and Antenna_frame to reflect the offsets 
and rotations indicated.  Instead of slightly north-east of our initial point, we are 
slightly north-west. And since this antenna is 180 degrees opposite the first, the 10 
degrees of roll are in the opposite direction. 
 

Antenna_Frame, CurrFrame 
Position 
Defined: GPSFlags, Lon, Lat, Alt_g 
Lat/Lon/Alt_g: ( -0.75R, 0.60F, 0.20U)-->(-0.45E, 0.87N,-0.09U) 

40.7877521, -73.9712145, 1.8M 
Vec 
Defined: VectorFlags,VectorChars, RotX RotZ, Off-R/F/U 
VectorCharacteristics 0x06 

FRONT_OF_VEHICLE  
DIRECTION_OF_TRAVEL  

Rot-X: Pitch(u) 0.0°  
Rot-Y: Roll (u) -10.0°  
Rot-Z: Heading (u) 292.5° (WNW) 
SensorData (Velocity)  (Inherited from ForwardFrame) 
Val-T 8.5 m/s 
SensorData (Accel)  (Inherited from ForwardFrame) 
Val-T 0.5 m/s2 
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Of course Curr_Sig and Curr_Antenna are updated accordingly, resulting in the 
following diagram. (Signal strength has been colored/scaled to reflect intensity), and 
the offsets were of such a small scale they are difficult to see. 

 
The above screenshot conveys most of this information, although seeing the offsets 
and pitch is difficult due to scale. 
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10.5. Electronically	
  steerable	
  antenna	
  
This case is similar to that of 10.2, except that the ELECTRONICALLY_STEERABLE_ 
ANTENNA bit in the AntennaFlags is set. Antennas of this type can electronically 
steer their beam, resulting in many packets captured at approximately the same 
time/location/ but varying rot-Z values for the antenna.  In this case we tagged a 
packet while the antenna was electronically steered 120 degrees from the front. 
(Astute readers will note the presence of the BeamID field in the ANTENNA-TAG. This 
16-bit value should uniquely identify every possible beam pattern present for a given 
antenna.)  
 
 

GPS (vehicle position) 
GPSFlags 0x02 

Bit 1:GPS_FIX  
Latitiude  40.787743° 
Longitude -73.971210° 

 
VECTOR (current orientation of electrically-steered antenna) 
VectorFlags 0x03  

Defines_Forward 
RelativeTo:Earth (Rotations in E/N/U Coordinates) 

VectorChars 0x01 
Bit 0:ANTENNA 

Rot-Z: heading 120.0 (degrees right, relative to forward) 
 

 ANTENNA (Electronically steerable) 
Antennaflags 0x00010002 

Bit 2:  HORIZONTALLY_POLARIZED 
Bit 16: ELECTRONICALLY_STEERABLE 

Gain 12 dBi 
horizbw 60 
BeamID 0xF1A1  (Vendor specific) 
Modelname ElectronicallySteerableExAntenna 
AppId 0x04030201  

 
 802.11COMMON1  (electronically steerable antenna signal) 
Signal -75 dB 
noise -110 dBi 
channel 6 
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10.6. Mechanically	
  steerable	
  antenna	
  
This case is similar to 10.5 except that it illustrates that the forward frame of 
reference may differ from the capturing systems “intuitive” notion of forward. This 
example utilizes three different VECTOR-TAGs. One to define the forward frame of 
reference, one to define the direction of travel/front of vehicle, and finally a relative 
vector to describe the orientation of a mechanically steered antenna. 
 
The motivation for this case is a mechanically steered antenna positioned out the 
rear of a vehicle, thus the servo’s definition of forward is out the back of the car. In 
this case the mechanically steered antenna is 75 degrees past the zero mark. 

 
GPS (vehicle position) 
GPSFlags 0x02 

1:GPS_FIX  
Latitiude  40.787743° 
Longitude -73.971210° 

 
VECTOR (vehicle orientation, direction of travel) 
VectorFlags 0x02 

RelativeTo:Earth (Rotations in E/N/U Coordinates) 
VectorChars 0x06 

1:DIRECTION_OF_TRAVEL  
2:FRONT_OF_VEHICLE  

Rot-Z: heading 22.5.(NNE) 
 
VECTOR (forward frame of reference (back of vehicle) 
VectorFlags 0x03  

Defines_Forward 
RelativeTo:Earth (Rotations in E/N/U Coordinates) 

VectorChars 0x00 
Rot-Z: heading 202.5°(SSW) 

 
VECTOR (mechanically steerable antenna orientation) 
VectorFlags 0x00 

RelativeTo:Forward  
VectorChars 0x01 

1:ANTENNA 
Rot-Z: heading 75.0° 

 
 ANTENNA (Electronically steerable) 
Antennaflags 0x020002 

Bit 2:  HORIZONTALLY_POLARIZED 
Bit 17: ELECTRONICALLY_STEERABLE 

Gain 12 dBi 
horizbw 60 
Modelname 12dBi-Panel 
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 802.11COMMON1  (steerable antenna signal) 
Antsignal -77 dB 
Antnoise -110 dBi 
channel 6 
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Note that the heading in AntennaFrame is marked as defined. This is because rule 2 in 
section 9.6.1 has been applied.  

 
Note that the original vector that indicated direction of travel is contained in 
DOT_Frame. It is omitted for brevity.  

Forward_Frame 
Position 
Defined: GPSFlags,Lon,Lat 
GpsFlags 0x02: GPS-FIX 
Lat/Lon  40.787743°, -73.971210° 
Vec 
Defined: VectorChars,RotZ 
Rot-X:Pitch (u) 0°  (This value comes from initialize_defaults) 
Rot-Y:Roll   (u) 0° (This value comes from initialize_defaults) 
Rot-Z: Heading 202.5° (SSW) 

Antenna_Frame, Curr_Frame 
Position 
Defined: GPSFlags,Lon,Lat 
GpsFlags 0x02: GPS-FIX 
Lat/Lon  40.787743°, -73.971210° 
Vec 
Defined: VectorFlags,VectorChars,RotZ 
VectorChars 0x01 

1:ANTENNA 
Rot-X: Pitch (u) 0°  (This value comes from RFU2ENU) 
Rot-Y: Roll   (u) 0°  
Rot-Z: Heading 277.5° (WSW) 
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10.7. Drifing	
  boat	
  
This example is included for sake of completeness; Imagine a boat at sea oriented 
toward the north east, with one antenna off the starboard (right) side, drifting due 
West. In this case the direction of travel is West, the front of the vehicle is North East, 
and the antenna orientation is South East. This would be encoded with three different 
VECTOR tags, each with a specific bit in VectorChars set. This situation would look 
something like the following. 
 

 
 

The goal of this example is to illustrate why applications should pay attention to how 
they parse and set VectorCharacteristics. 
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10.8. Time	
  of	
  arrival	
  analysis	
  	
  
 

This example illustrates how to utilize the TDOA-CLOCK Sensor to encode timing and 
position values with sufficient precision that an angle of arrival can be computed based 
on time of flight using two antennas, or a position solution can be found using three 
antennas. 
 
In this case two antennas are positioned 50 meters apart on Soldier field.  Each 
portion of the collection system shares a synchronized clock with nano-second 
resolution.  Since the distance between the antennas is significant, they are marked 
with GPS-Tags. Applications can encode distances with millimeter precision by utilizing 
the offset field of Vector-TAGS if necessary.  
 
 

GPS-TAG (ant1) 
GPS-Flags 0x80 

8:Manual input mode 
Latitude   41.861885 
Longitude -87.616926 
GPSTime Nov 02 2010  17:58:39   
FractionalTime .20 

 
 VECTOR (first antenna) 
VectorFlags 0x02 

RelativeTo:Earth (Rotations in E/N/U Coordinates) 
VectorChars 0x01 

Bit 0:  Antenna 
Rot-X: (Pitch) 90.0 
DescriptionString Antenna-1 orientation 

 
SensorData (TDOA_CLOCK)   
ScaleFactor -9 
Val-T 60.8754 (sec)  
AppId 0x04030201 

 
ANTENNA-TAG 1  
Gain 5 dBi  
HorizBW 360.0 
AntennaFlags Bit 1: Horizontal-Polarity 1 
Modelname 8dBi-Omni 
DescriptionString Signal 1 

 
 802.11COMMON1  (ant1 signal) 
Antsignal -60 dB 

 
This is the first time we have seen a Sensor tag that utilizes the ScaleFactor field. This 
sensor indicates that the shared clock is set to 10-9 *60.8754 secs. (To get an absolute 
time this value can be added to the GPSTimestamp field in the GPS-TAG; however 
most applications using TDOA_CLOCK will be only interested in the deltas between 
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them.) The preceding tags define a precise location and time when the packet was 
received.   

 
 
The following tags describe the second antenna, where the packet was received 118 
ns later. 

 
 

GPS-TAG (ant2) 
GPS-Flags 0x10 

7:Manual input mode 
Latitude 41.861904 
Longitude -87.616365 
GPSTime Nov 02 2010  17:58:39   
FractionalTime .20 

 
 VECTOR (second antenna orientation) 
VectorFlags 0x02 

RelativeTo:Earth (Rotations in E/N/U Coordinates) 
VectorChars 0x01 

0:  Antenna 
Rot-X: (Pitch) 90.0 
DescriptionString Antenna-1 orientation 

 
SensorData (TDOA_CLOCK)   
ScaleFactor -9 
Val-T 178.124 (Secs)  
AppId 0x04030201 

 
ANTENNA-TAG 2 
Gain 5 dBi  
HorizBW 360.0 
AntennaFlags Bit 1: Horizontal-Polarity 1 
Modelname 8dBi-MagMountOmni 
DescriptionString “Bottom Right of field” 

 
 802.11COMMON1  (ant1 signal) 
Antsignal -80 dB 

 
Again, the field to note is the TDOA_Clock which is set to 10-9 *178.124 secs 
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By taking the delta between the two clocks we can determine that when the wave 
arrived at t1, it took 118 ns to reach t2. Light travels approximately 35 meters in 
118ns , which means that when the wave had arrived at t1 it still had 35 meters to 
travel to t2.  
 
dt = 178 – 60 = 118ns 
b = 118ns * (3e8ms) 
b = 35.35 meters 
 
Given that we know the distance between both antennas, and given that we know 
the distance the signal had to travel after encountering t1 to arrive at t2, we can 
perform the following calculation to compute the angle of arrival at t2. 
 
cosθ = b/a = 35.35 / 50.0 
cosθ = 0.707 
θ = acos(0.707) = +/-45° 
 

 
 
Solving gives two possible values for Theta (+/-45°).  This ambiguity can be 
resolved using additional AOA measurements from other antennas.  The simplest 
approach is to have a third antenna located off-axis from the other two, from which 
another AOA can be computed and the intersection performed.  
 
Applications which perform this type of analysis are encouraged to consider 
performing their own analysis and outputting the resulting angles and distances, as 
demonstrated in example 10.10 
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10.8.1. Timing	
  analysis	
  details	
  
It should be emphasized that this specification does not dictate precisely when in the 
802.11 packet reception the synchronized TDOA_CLOCK sensor should be set. This is 
an implementation detail left to the collection system. As such, any application that 
makes use of the TDOA_CLOCK field must also store an AppId that can be used to 
differentiate products. This will help avoid mistakenly comparing clock values which 
are not actually synchronized. 
 

	
  



Geolocation-Tag Specification v2.0      
 

84 
 

10.9. AOA	
  example	
  
The PPI-GEOLOCATION specification allows applications to encode synthesized values, 
such as the angle of arrival or the computed position of a transmitter. Both of these 
features are accomplished by using the appropriate vector characteristics. 
 
In the following example, an AOA is computed from a single location (perhaps by 
utilizing a phased array system). Setting the appropriate vector characteristic in the  
vector tag is used to indicate than the vector represents an AOA. 
 
Applications are free to synthesize AOA data from whatever source(s) they feel are 
appropriate.  As such, applications that set the AOA vector characteristic must also 
include an AppId, to help differentiate results. 
 
 

GPS-TAG (ant2) 
GPS-Flags 0x10 

7:Manual input mode 
Latitude  41.861904 
Longitude -87.616350 
GPSTime Tue May 17 09:40:32  
FractionalTime .20 

 
 VECTOR (antenna orientation) 
VectorFlags 0x02 

RelativeTo:Earth (Rotations in E/N/U Coordinates) 
VectorChars 0x09 

0:  Antenna 
Rot-X: (Pitch) 90.0 
DescriptionString Antenna-1 orientation 

 
 VECTOR (Angle of arrival) 
VectorFlags 0x02 

RelativeTo:Earth (Rotations in E/N/U Coordinates) 
VectorChars 0x08 

3: Angle of arrival 
Rot-Z: (Heading) 323.4 
Err-rot: 10.0 (10 degrees margin of error) 
AppId 0x04030201 

 
ANTENNA-TAG  2 
Gain 5 dBi  
HorizBW 360.0 
AntennaFlags Bit 1: Horizontal-Polarity 1 
Modelname 8dBi-MagMountOmni 
DescriptionString “Bottom Right of field” 

 
 802.11COMMON1  (ant1 signal) 
Antsignal -80 dB 
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Providing Angles of arrival and signal strength can be useful to applications which not 
only need to know the direction of a transmitter, but how strong the signal is from a 
given position. 
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10.10. TRANSMITTER_POSITION	
  example	
  
Similar to AOA, applications can choose to encode not just the position of the 
collection system and the angle to the transmitter, but they can choose to encode 
what they have computed to be the position of the transmitter. In the following 
example the collection system has computed a position of a transmitter, and is 
encoding the distance to it from the collection system as an offset.40 
 
 

GPS-TAG (ant2) 
GPS-Flags 0x10 

7:Manual input mode 
Latitude 41.861904 
Longitude -87.616350 
GPSTime Tue May 17 09:40:32  
FractionalTime .20 
AppId 0x04030201 

 
 VECTOR (antenna orientation) 
VectorFlags 0x02 

RelativeTo:Earth (Rotations in E/N/U Coordinates) 
VectorChars 0x1001 

0:  Antenna 
12: Human derived 

Rot-X: (Pitch) 90.0 
DescriptionString Antenna-1 orientation 
AppId 0x04030201 

 
 VECTOR (Forward, Angle of arrival) 
VectorFlags 0x02 

RelativeTo:Earth (Rotations in E/N/U Coordinates) 
VectorChars 0x09 

1: Defines_Forward 
3: Angle of arrival 

Rot-Z: (Heading) 323.4 
Err-Rot: 10.0 
AppId 0x04030201 

 
 VECTOR (Transmitter Position) 
VectorFlags 0x00 

RelativeTo:Forward  
VectorChars 0x10 

5:TRANSMITTER_POSITION 
Off-Y: (Forward) 40 meters 
Err-Off: 2.0 meters 
AppId 0x04030201 

 
ANTENNA-TAG  2 
Gain 5 dBi  
HorizBW 360.0 
AntennaFlags Bit 1: Horizontal-Polarity 1 
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Modelname 8dBi-MagMountOmni 
zDescriptionString “Bottom Right of field” 
AppId 0x04030201 

 
 802.11COMMON1  (ant1 signal) 
Antsignal -80 dB 

 
 

 
 
 
This set of tags contains the most useful set of information. It allows the 
GEOLOCATION-ENGINE to know where the packet was captured, what angle it was 
captured at, the computed distance to the transmitter, and the signal strength the 
packet was received at when it arrived at t2. This data also contains error estimates 
on the angle of arrive (2nd vetor tag, err_rot), and distance to the transmitter (3rd 
vector err_off). 
 
Applications that perform TDOA analysis are strongly encouraged to encode their 
results in this format. 
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10.11. Dead	
  reckoning	
  with	
  accelerometers	
  	
  
PPI-GEOLOCATION tags can support accelerometer-based applications in two 
manners. In the first case, the application itself performs integration on the 
acceleration data, and outputs packets tagged at the appropriate location. This can be 
accomplished either with GPS-tags, or with Vector offsets. This case is similar enough 
to those previously presented to need no further explanation. 

 
Alternately, the application can output a stream of sensor data that is used by a 
GEOLOCATION-TAG processing engine to compute the position a packet was captured 
at. While it is possible to encode all of the relevant information into a PPI-
GEOLOCATION tagged packet capture, doing so requires the processing application to 
remember state across individual packets. As such, applications that wish to perform  
this integration go above and beyond the rules specified in the PPI-GEOLOCATION 
state machine, and therefore may be application specific. 
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11. Implementers	
  notes	
  
The following section is intended to help implementers answer common questions 
about the GEOLOCATION-TAG specification. 

11.1. What	
  is	
  the	
  current	
  version	
  of	
  this	
  specification?	
  
2.0.0 represents the first widespread distribution of this specification. New 
applications should use this version, and should set the geotag_ver field to 2 as well. 

11.2. My	
  GPS	
  outputs	
  a	
  heading	
  and	
  speed.	
  Why	
  can’t	
  it	
  go	
  in	
  the	
  GPS	
  TAG?	
  
All heading information should be stored in a VECTOR-TAG. Please craft a VECTOR-
TAG, fill in the Rot-Z (Heading)  field, and set the VectorCharacteristics.DIRECTION_OF 
_TRAVEL bit appropriately. You should also set Bit 8 in VectorCharacteristics (GPS_ 
DERIVED). 
Velocity is stored in Sensor tags. Please see 10.3 for details on this use case. 

11.3. So	
  I’ve	
  got	
  this	
  VECTOR-­TAG.	
  What	
  does	
  it	
  represent?	
  
Vectors can represent many things (vehicle orientation, antenna orientation, etc). 
Check the VectorCharacteristics field to be sure. Alternately, just utilize the provided 
state machine and it will handle this all for you by providing a frame of reference for 
each characteristic. 

11.4. When	
  should	
  I	
  set	
  the	
  DEFINES_FORWARD	
  bit?	
  
Any application that wishes to define its own local coordinate system must set the  
DEFINES_FORWARD bit to initialize it.  Example 10.4 illustrates the most intuitive 
use of the forward frame of reference. Example 10.6 illustrates another use of the 
forward frame of reference. 

11.5. Can	
  a	
  single	
  packet	
  set	
  DEFINES_FORWARD	
  more	
  than	
  once?	
  
Yes. If an application decides that it easier to encode a system with more than one 
R/F/U coordinate system it may redefine Forward_Frame at any time. Applications 
that find themselves doing this may find it more convenient to encode information 
RelativeTo:CurrentFrame. 

11.6. I’ve	
  got	
  this	
  super-­fancy	
  TDOA	
  based	
  system.	
  	
  How	
  is	
  it	
  supported	
  by	
  
this	
  specification?	
  	
  
TDOA  based systems can either encode the relevant position/timing information and 
allow a post-processor to perform the triangulation work. (See Ex 10.8), or they can 
encode the results of the triangulation. If possible, applications that perform this sort 
of geo-location are encouraged to perform their own triangulation and to  encode their 
results in a manner similar to that presented in 10.10 

11.7. I’ve	
  got	
  this	
  super-­fancy	
  accelerometer	
  based	
  system.	
  Can	
  I	
  encode	
  it	
  
with	
  this	
  format?	
  

Applications that perform dead-reckoning with accelerometers that wish to support 
this specification are encouraged to perform integration at the application level and 
encode the results in a GPS-TAG or vector offset.  
 
Applications may encode raw acceleration information as well as heading information 
using Sensor tags, however the specification does not specify a standard way to 
handle the state that much be stored across individual packets. Applications that 
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pursue this direction are encouraged to contact the maintainer of this specification, 
so that a cross-platform solution can be agreed upon. 

11.8. I	
  want	
  to	
  encode	
  some	
  data	
  in	
  	
  PPI-­GEOLOCATION	
  TAG,	
  but	
  don’t	
  
have	
  a	
  packet	
  to	
  insert	
  it	
  into.	
  What	
  should	
  I	
  do?	
  

Many applications need to write a steady stream of sensor data (position, 
acceleration, time, etc). These applications are encouraged to produce PPI-
GEOLOCATION tagged packets with 0 in the pfh_datalen field. 
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12. Wireshark	
  dissector	
  examples	
  
Wireshark contains dissectors for all of the described PPI-GEOLOCATION tags. This 
makes it a valuable tool in development and testing of PPI-GEOLOCATION  aware 
applications. However, it should be emphasized that the included dissctors do not 
implement a PPI-GEOLOCATION state machine. Therefore there is no easy way to 
perform vector operations reliably, or to query the state of a PPI-GEOLOCATION tag 
state machine as is parses the input packet. The following examples are for illustration 
only; proper interpretation of a PPI-GEOLOCATION tagged packet requires the 
implementation of a PPI-GEOLOCATION state machine.  

12.1. Basic	
  geo-­fencing	
  	
  
Basic geo-fencing can be performed using a display filter with wireshark. It should be 
emphasized that wireshark does not contain a compliant ppi-geolocation state 
machine, and therefore there is no simple way to perform the appropriate vector 
operations (for example, offsets). However, rough filtering based on GPS tags can be 
performed in the following manner. 
 
((ppi_gps.lon <= -155.01) && (ppi_gps.lon >= -155.03) &&  

   (ppi_gps.lat >=   19.01) && (ppi_gps.lat <=   19.03)) 
  

12.2. Beamwidth	
  filtering	
  
 

Another useful filter: Only looking at data captured with an Omni-directional antenna 
where the packet was received with a signal value > -75 db.  
 
(ppi_antenna.horizbw == 360) && (radiotap.dbm_antsignal > -75) 
 
Or, if dot11common tags are in use 
 
(ppi_antenna.horizbw == 360) && (ppi.80211-common.dbm.antsignal > -75) 

12.3. Heading	
  filtering	
  
 

The following filter illustrates the functionally of a VECTOR TAG by only displaying 
packets that were captured on an antenna which was pointed Northeasterly.  
 

 (ppi_vector.vflags.relative_to == 0x01)&& ppi_vector.chars.antenna == 1)  
(ppi_vector.err_rot <= 50) && (ppi_antenna.horizbw < 360) && 
(ppi_vector.heading <= 60 && ppi_vector.heading >= 30) && 

 
The first line line explicitly checks for rotational coordinates that are Relativeto: 
Earth, and that the vector represents an antenna. The test for a reasonably low 
rotation error is to avoid processing packets that may have been tagged with to 
much error (perhaps magnetic interference with a digital compass).  The beamwidth  
test is to make sure we are only processing packets with a directional (not Omni-
directional) antenna.  
 
This example shows the limitations of processing PPI-GEOLOCATION tags without an 
appropriate state machine. It is difficult to write a filter that can perform a similar 
check if the antenna Vector is RelativeTo:Forward or Current. 
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13. Future	
  work	
  
While this specification hopes to provide a solid base for interoperability among 
vendors, it has some known limitations. The following issues will be addressed in the 
future. Vendors who are interested in any of these areas are encouraged to contact 
the maintainer of this specification.  
 

13.1. MIMO	
  support.	
  	
  
Although the current specification explicitly handles multiple antenna and signal 
strength fields, the current support is based around duplicate packets being captured 
on independent interfaces.  MIMO support could be added by indicating that each 
Antenna, 802.11COMMON tag par indicates a spatial stream. The other option is an 
attempt at standardizing the CACE 802.11N related tags interaction with the 
GEOLOCATION-STATE machine. Both options are currently under consideration.  
 
Vendors with concerns or suggestions regarding the best way to integrate MIMO 
support are encourage to contact the maintainer of this specification. 
 

13.2. Accelerometer	
  based	
  support	
  
Acceleration information can be stored in Sensor-tags. However, the current iteration 
of the specification does not dictate how state should be carried across packets. 
Currently, the best way for accelerometer based applications to utilize this 
specification is to perform the integration at the application level and output data 
that is already tagged with the computed position.  
 
 
 
. 
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14. Administrivia	
  
Inquiries, comments, and any other feedback regarding this standard should be 
directed to jellch@harris.com 

14.1. Future	
  updates	
  
The current maintainers reserve the right to make minor changes to the 
GEOLOCATION-TAG processing algorithms as implementations proceed. These 
changes will not cause a version bump in the base geolocation-tag header. Only 
updates that would cause parsing errors, or the addition of very significant 
fields will increment the version field. 

14.2. Authors	
  
This specification was primarily authored by Jon Ellch of Harris corporation. It was 
technically reviewed by Mike Troutman and Bob Riemenschnieder.  

14.3. Revision	
  history	
  
2.0.0: Added sensor tag, cleaned up state machine, moved velocity/acceleration. 
1.2.0: Dropped all minor revisions. This should simply be called 1.2.0  
1.2-d20: Draft widely circulated; 

14.4. References	
  
1) CACE PPI specification, http://www.cacetech.com/documents/ 
2) Radiotap specification, http://www.radiotap.org/ 

 
 


