
Physical Memory Forensics
for

Files and Cache
Jamie Butler and Justin Murdock

BIOGRAPHY
»  Jamie Butler

•   Director of Research and Development at MANDIANT

•   Focused on Host Analysis and Operating Systems Research

»  Justin Murdock

•   Student in Computer Science at RIT

•   Graduating in August

•   Currently a CO-OP at MANDIANT on the Product Engineering Team

AGENDA
»  Traditional Forensics
»  Traditional Memory Forensics

»  Issues with Traditional Method

•   Missing Data
•   Misattributed Data

»  Utilizing Files

•   Memory mapped files
‒  Binaries

‒  Data

•   Cache
»  Applications

»  Demos

•   MemD5 and data reduction

•   Pulling the Registry Hives from a memory image

•   Pulling a Word document from a memory image
»  New Tool

»  Further Work

TRADITIONAL FORENSICS
»  A host has two primary components

•   Disk

•   Memory

»  Memory forensics is a great way to triage a host

•   The average disk size is growing

•   Memory is relatively small comparatively

•   Intruders need to execute programs

•   An attacker often overlooks or ignores his/her memory footprint

•   Many of the artifacts the kernel uses for bookkeeping can be used for
forensics

TRADITIONAL MEMORY FORENSICS
»  Memory is comprised of two pieces

•   Userland memory

•   Kernel memory

»  Attackers often target userland memory where processes live

•   Easier to get execution

•   More resilient to coding errors

TRADITIONAL MEMORY FORENSICS
»  Process Reconstitution

•   Recover all binaries (EXEs and DLLs)

•   Focused on Virtual Address Descriptors (VADs) comprising the process’
address space
‒  Pointer to the parent

‒  Pointer to the left child

‒  Pointer to the right child

‒  Virtual starting address

‒  Size

‒  CONTROL_AREA (optional)

VAD TREE

TRADITIONAL MEMORY FORENSICS
»  Scan physical memory for evidence of a process (EPROCESS block)
»  Locate the Directory Table Base (DTB) in the EPROCESS for all virtual to physical address

translation
»  Locate the root VAD

»  Enumerate the VAD tree translating each page in the virtual range to its physical location*

»  Alternate approach to VADs: Use the process DTB to attempt to translate across the entire virtual
address space of the operating system

•   Not practical on 64-bit systems

•   Some virtual addresses are global even if they are not used by the process

* Instead of a range, some tools use the PE header for offsets and sizes.

ISSUES WITH TRADITIONAL METHOD
»  Missing Data

•   EXEs and DLLs are Memory Mapped Files
‒  Shared memory across processes

‒  The page table for each process is not fully populated with information about shared
pages

‒  Virtual addresses not in the page table fail to translate to a physical address

‒  Example: Acquiring AcroRd32.exe from the Honeynet Project Challenge 3

 AcroRd32.exe
PID 1752	

File Size in Bytes	 Bytes Acquired with
Traditional

Approach (Ignoring
FILE_OBJECT)	

Bytes Acquired using
FILE_OBJECT	

Ntdll.dll	 708,096	 295,936	 390,656	
Wininet.dll	 656,384	 309,248	 411,648	
User32.dll	 577,024	 234,496	 409,600	

Crypt32.dll	 597,504	 213,504	 367,104	
Ace.dll	 565,248	 394,752	 524,288	

ISSUES WITH TRADITIONAL METHOD
»  Misattributed Data

•   Determining what process is infected is important

•   Processes contain a lot of useful metadata
‒  Username

‒  Creation date

‒  Location on disk

•   Data contained in the file cache appear to be part of every process when
using a brute-force translation method

UTILIZING FILE OBJECTS
»  File Objects represent

•   memory mapped files such as EXEs and DLLs

•   regular data files that are not mapped but contained in memory
‒  Word Documents

‒  PDFs

‒  Registry Hives

»  VADs that describe a range of memory occupied by a file contain a pointer to a Control Area
»  Control Areas have pointers to the associated File Object

»  File Objects contain

•   Device name such as HarddiskVolume1 (commonly C:)
•   Filename (for example: \WINDOWS\system32\kernel32.dll)

•   A pointer to three pointers depending on where the underlying data is contained
‒  ImageSectionObject

‒  DataSectionObject

‒  SharedCacheMap

UTILIZING FILE OBJECTS

IMAGE SECTION OBJECTS
»  Image Section Objects are present on binary memory mapped files

»  The ImageSectionObject is actually a pointer to a Control Area

»  The Control Area has a pointer to the Segment Object

»  The Segment Objects

•   Point back to Control Area – used as a sanity check

•   Contain the size of the Segment and the total number of Prototype Page Table
Entries (PTEs)

•   Segment size == Total PTEs * 0x1000 – used as a sanity check

»  Subsections

•   Represent individual pieces of the file

•   Immediately after the Control Area in virtual memory

•   Point back to Control Area – used as a sanity check

IMAGE SECTION OBJECTS
»  Subsections continued

•   Pointer to an array of Prototype PTEs
‒  Physical address of the page in memory

‒  If the Prototype PTE points back to the Subsection, that page is contained in the file on
disk – not the page file(s)

‒  The number of full sectors (512 bytes) and PTEs (4096 bytes) in the Subsection are vital
when parsing the array of Prototype PTEs

‒  By keeping track of what sector we are at within the file data, we can read the correct
portion of the file from disk if the Prototype PTE indicates it is paged out

•   Pointer to the next Subsection which represents the next segment of the file

IMAGE SECTION OBJECTS

DATA SECTION OBJECTS
»  Represent certain data files in memory such as Word Documents

»  The Data Section Object points to a Control Area

»  Almost identical to Image Section Objects

»  Should have the same access performance characteristics as binaries because the
content is not stored in the file cache

SHARED CACHE MAP
»  Used to represent file data in the cache

»  Contains the file size

»  Contains the valid data size in the cache

»  Valid data size should never be greater than file size

»  Contains an embedded array of four pointers called the Initial VACB (Virtual Address Control
Block) if the file in cache is 1 MB or less

»  Each VACB represents 256 KB

»  Contains a pointer to an array of VACB pointers for files larger than 1 MB

•   Nested structure whose depth is determined by the file size

•   Files 32 MB or less are represented by a single array (one level)

•   Larger files can reach 7 levels deep [3: 672]

(┌ 𝑙𝑜𝑔↓2 (𝑛) ┐ − 18) / 7

 Where n is the file size

SHARED CACHE MAP

APPLICATIONS
»  File Objects can be found in

•   The process’ handle table

•   The VAD tree

»  Windows Registry Hives

•   Contained in the handle table of the System process

•   Found in the cache

»  PDFs and other data files

•   Also found in the cache

•   Cache is completely managed by the operating system so less reliable source

APPLICATIONS
»  Hashing

•   Lot of data built over decades

•   Can be useful when eliminating things already known (used as a filter)
‒  Operating system files

‒  Third-party applications

•   Previously difficult to use in memory
‒  Not fully using Image Section Objects

‒  Other research previously tried fuzzy hashing or subsets of the file to hash against

•   Using the Image Section Object during live memory analysis we can
calculate an exact hash by accessing the portions that are in memory and the
sections that are paged to disk – MemD5

APPLICATIONS
»  Byte or pattern signatures

•   Classification tools such as VxClass generate byte signatures for families of
malware

•   ClamAV has byte signatures for malware

•   Better binary reconstruction allows these to be used against memory the same
as they would against disk

DEMOS
»  Pulling the Registry Hives from a memory image

»  Pulling a Word document from a memory image

»  MemD5 and data reduction

UPDATED TOOL
»  Memoryze 2.0

•   MemD5

•   Better process acquisition

•   Improved byte signature match

•   Can acquire
‒  Registry Hives

‒  Word documents

‒  Files in cache

•   Improved performance

•   Available soon -
http://www.mandiant.com/products/free_software/memoryze/

FURTHER WORK
»  Caching across different platforms

»  Address Space Layout Randomization (ASLR)

»  The Security Directory in the PE file

REFERENCES
[1] Volatility. Volatile Systems <http://code.google.com/p/volatility/>.

[2] Memoryze (Memory Analyzer). <http://www.mandiant.com/products/free_software/memoryze/>.

[3] Mark E. Russinovich, and David A. Solomon. Windows Internals. 4th ed. Redmond: Microsoft, 2005. Print.

[4] Brendan Dolan-Gavitt. "The VAD Tree: A Process-eye View of Physical Memory."Digital Investigation 4 (2007): 62-64. Print.

[5] The Honeynet Project. "Challenge 3 of the Forensic Challenge 2010 - Banking Troubles The Honeynet Project." Challenge 3 of the Forensic
Challenge 2010 – Banking Troubles. The Honeynet Project. Web. <http://www.honeynet.org/challenges/2010_3_banking_troubles>.

[6] Josh Smith, Matt Cote, Angelo Dell'Aera, and Nicolas Collery. "Forensic Challenge 3: Banking Troubles Solution." Honeynet. Honeynet, 12 May
2010. Web. <http://www.honeynet.org/files/Forensic_Challenge_3_-_Banking_Troubles_Solution.pdf>.

[7] Jesse Kornblum, and Kris Kendall. "Foremost." Foremost. Air Force OSI, 1 Mar. 2010. Web. <http://foremost.sourceforge.net/>.

[8] Moonsols. "Moonsols Bin2dmp.exe." MoonSols Products. Moonsols. <http://www.moonsols.com/products/>.

[9] James Okolica, and Gilbert L. Peterson. "Windows Operating Systems Agnostic Memory Analysis." Digital Investigation (2010): S48-56. Print.

[10] Seyed M. Hejazi, Mourad Debbabi, and Chamseddine Talhi. "Automated Windows Memory File Extraction for Cyber Forensics Investigation."
Journal of Digital Forensic Practice (2008): 117-31. Print.

[11] Harlan Carvey. "Regripper." RegRipper. Web. <http://regripper.wordpress.com/regripper/>.

[12] Brendan Dolan-Gavitt. "Forensic Analysis of the Windows Registry in Memory.“ Digital Investigation (2008): 26-32. Print.

[13] "Finding File Contents in Memory." The NT Insider 11.1 (2004). Print.

[14] Jesse Kornblum. "Identifying Almost Identical Files Using Context Triggered Piecewise Hashing." Digital Investigation 3 (2006): 91-97. Print.

[15] R. B. Van Baar, W. Alink, and A. R. Van Ballegooij. "Forensic Memory Analysis: Files Mapped in Memory." Digital Investigation (2008): S52-57.
Print.

Special thanks to Peter Silberman and Jen Andre

Questions?

