
Post Memory Corruption Memory Analysis

Jonathan Brossard - jonathan.brossard�touan-system.om

Seurity Researh Engineer & CEO, Touan System, Frane

Blakhat Brie�ngs Conferene, Las Vegas, 2011

�Normality is the route to nowhere.� � Ridderstrale and Nordstorm

Abstrat. In this artile, we introdue a new exploitation methodology of invalid memory reads and
writes, based on data�ow analysis after a memory orruption bug has ourred inside a running proess.

We will expose a methodology whih shall help writing a reliable exploit out of a PoC triggering an in-
valid memory write, in presene of modern seurity defense mehanism suh as ompiler enhanements
(suh as SSP...), lib protetions (eg: safe heap unlinking), linking and dynami linking enhanements
(full read only GOT and reloations) or kernel anti exploitation features (ASLR, NX...).

In partiular, we will demonstrate how to : �nd all the funtion pointers inside a running proess, how
to determine whih ones would have been dereferened after the Segmentation fault if the proess had
kept exeuting, whih ones are trunatable (in partiular with 0x00000000). In ase all of the above
fail, we will demonstrate how to test for overwrites in spei� loations in order to indiretly trigger a
seond vulnerability allowing greater ontrol and eventually full ontrol �ow hijaking. All of the above
without needing the soure ode of the appliation debugged.

In the ase of invalid memory reads, we will show how to indiretly in�uene the ontrol �ow of exe-
ution by reading arbitrary values, how to trae all the unaligned memory aess and how to test if an
invalid read an be turned into an invalid write or at least used to infer the mapping of the binary.

We will also introdue a new debugging tehnique whih allows for very e�etive dynami testing of
all of the above by foring the debugged proess to fork(). All those steps are realized automatially
and provide a rating of the best read/write loation based on probabilities of mapping addresses (in
the hope to defeat ASLR).

These tehniques were implemented in the form of a proof of onept tool running under GNU/Linux
and Intel arhitetures : pmma1.

Keywords: Exploit automation, post memory orruption analysis, debugging, memory protetions, in-
valid memory writes.

1 The o�ial website of the tool is http://www.pmma.org

Table of Contents

1 Introdution . 3

2 Related work . 4

3 mk_fork() : writing "weird debuggers" for "weird programs" . 5

3.1 Motivation . 5

3.2 Methodology . 6

3.3 mk_fork() implementation . 7

3.4 Limitations . 9

4 Here be dragons : zombie reaping . 9

4.1 Dealing with SIGCHLD . 9

4.2 Proesses grouping . 11

5 Exploiting invalid memory writes . 12

5.1 Finding all the funtion pointers dereferened after an invalid write 12

5.2 Over�ows . 12

5.3 Partial overwrites and pointers trunations . 12

5.4 Disovering unaligned memory reads . 15

6 ASLR and its limits . 18

6.1 E�etive testing of ASLR . 18

6.2 Non Position Independant Exeutables . 21

6.3 Prelinking . 21

6.4 Biased ASLR. 21

6.5 Memory mapping leakage . 22

7 Extending the apabilities of pmma . 26

7.1 Call tables and returns to registers+o�sets . 26

7.2 Searhing for pointers to strutures (ontaining funtion pointers) 26

7.3 Testing exhaustively arbitrary writes . 28

7.4 Testing invalid reads . 29

8 Stak desynhronization . 29

9 Performane onsiderations . 30

10 Conlusion . 30

11 aknowledgements . 30

1 Introdution

Determining exploitability is hard, and writing exploits is hard. In fat, due to theoretial limitations
(id est: "Halting Problem"), those two problems are the two sides of the same oin. Proving unex-
ploitability is infeasible in the general ase, and pratially for the vast majority of omputer programs
atually used nowadays.

In this paper, we will examine exploitability in a systemati way, fousing on what happens in memory
after a bug is triggered, rather than traing or baktraking what has happened before. To the best of
the author's knowledge, this is a new approah.

Our goal is to help exploit (semi)automation by building exploitation models based on onstraints gath-
ered from the environment (in partiular, the presene of seurity ountermeasures suh as ALSR[1℄
or non-exeutable memory[2℄ thanks to kernel[3℄ or hardware[4℄ enhanements, as well as ompiler
enhanements suh as Data Hardening[5℄, FORTIFY SOURCE[6℄ et), and to allow for the pratial
testing of those models in order to (in)validate them.

We will primarily fous on invalid memory write bugs beause of the speial role they play in modern
exploitation. Invalid memory dereferenes in read mode used for the purposes of information leakage
or indiret memory exploitation will also be disussed in this artile.

The main ontributions of this artile are:
- A methodology to disover all the potential funtion pointers inside the address spae of a proess at
any given point in time.
- A methodology to disover all the funtion pointers atually dereferened by a proess from a given
point in time, given a �xed set of input data.
- A methodology to �nd all the funtion pointers exploitable by trunation in ase of an arbitrary write
subjet to onditions (suh as not ontrolling the value being dereferened).
- A methodology to �nd all the unaligned memory reads from a given point in time during the exeution
of a proess.
- A new debugging tehnique whih allows the validation of all of the above, as well as the testing
of arbitrary data modi�ations inside the address spae of a proess in order to ahieve ontrol �ow
hijaking from an arbitrary memory write.

All those tehniques have been implemented in the form of a proof of onept tool for the GNU/Linux
x86 Intel arhitetures. They ould, without any loss of generality, be extended to any operating system
or arhiteture with the exeption of the last debugging tehnique, whih requires the presene of the
fork() system all and is therefore limited to *NIX operating systems2.

This partiular debugging tehnique doesn't require the debugged proess to be restarted using ex-
eve(), and therefore preserves most of the mapping of the appliation (whih may be hard to re-reate
beause of the large entropy used in randomizing a proess' address spae under modern OSes). This
tehnique is also believed to be the most e�etive to ahieve this result (by onstrution) both in terms
of speed and resoures.

Finally, sine overwriting funtion pointers doesn't allow diret shellode exeution anymore beause of
WˆX mappings, we introdue a new exploitation tehnique whih works even under the most seurity
enhaned kernels suh as grseurity. We all it "stak desynhronization". It allows frame faking inside
the stak itself by having a ontrolled funtion pointer return to a arefully hosen funtion prologue
instead of returning to a shellode diretly.
It is worth noting that we do not seek full exploit generation in this whitepaper, the output of our tool

2 Atually, Seurity Researher Mark Dowd made us aware that it may be possible to simulate a fork() under Windows
too... Implementation details would be non trivial though, sine the proess reation mehanism is entirely di�erent.

3

being a roadmap to exploitation rather than exeutable (or soure) ode. This roadmap needs to be
implemented using both ontrol �ow and data �ow analysis of the proess prior to the bug, whih is
fortunately what virtually any existing debugging tool is apable of aomplishing.

2 Related work

Beause of the theorial limitations invoked previously, earlier researh on automati exploitation tend
to fous on numerial rather than analytial solutions. It is indeed less intelletually satisfying (it an-
not be proved that a solution will atually be found in general), but interresting results have been
ahieved nonetheless.

More preisely, they all share a ommon underlying methodology : starting from a given program input
leading to a deterministi memory orruption, they express the onstraints on the input data in order to
have it keep following the very same path (otherwise we're bak to the Halting Problem and in pratie
to path exploration explosion), then turn eah instrution into a set of onstraints, express the desired
result (id est: register set when reeiving a Segmentation fault) in terms of the same onstraints. Then
they solve the equation numerially. Both taint analysis at assembly level (whether an intermediary
language is used[7℄ or not[8℄) and SAT Solvers[9℄[10℄ used on onstraints expressed from C soure seem
to give satisfying results in pratie, eventually modifying the input data to lead to the expeted set of
registers when triggering the bug, thereby leading to exeution of arbitrary ode.

Unfortunately, in pratie the exploits reated using the aforementioned tehniques often do not work
under realisti modern operating systems, in partiular beause the "omplete exploits" generated au-
tomatially omit to take into aount the additional omplexity brought by seurity protetions suh
as non-exeutable memory pages or Address Spae Layer Randomization (ASLR).

If those tehniques seem to give interesting results on simple vulnerabilities suh as stak over�ows
under basi onditions (no stak anaries, no address spae layer randomization and all setions being
exeutable), they annot ope with more omplex vulnerabilities suh as heap over�ows (overwriting
heap meta-data typially require having multiple memory loations set to appropriate values in order
to pass the various lib heks before ahieving a proper arbitrary write in memory) nor do they work
with modern Operating Systems, whih have enhaned kernels and ompiler toolhains to prevent triv-
ial exploitation.

In reality, dealing with those seurity protetions is in itself what most seurity researhers and hakers
alike atually spend their time on when writing exploits. It requires their exploitation methodologies to
be environment-aware, those protetions being implemented at di�erent levels, ranging from ompiler
toolhains enhanements[6℄ to kernel modi�ations[11℄.

In the rest of this artile, we will fous on what happens inside a proess after it triggered a Seg-
mentation Fault , assuming that the ontrol �ow and data �ow analysis of input data leading to this
Segmentation Fault, whih are still the mandatory steps to determine exploitability, an be performed
using ommonly available tools (gdb, valgrind, dmallo, eletrifene,...).

4

3 mk_fork() : writing "weird debuggers" for "weird programs"

3.1 Motivation

An arbitrary anything/anywhere write allows an attaker to overwrite arbitrary data in setions mapped
with writable permissions. In order to ahieve ontrol �ow modi�ation to exeute arbitrary ode, the
most straight forward tehnique is to overwrite a funtion pointer that will later be dereferened during
the normal �ow of exeution.

Depending on the target binary, a few suh pointers may be known without further reverse engineering.
In fat, appliations linked against the GNU lib library ontain de fato suh a pointer : the funtion
pointer assoiated with the .dtors setion. This pointer has long been used[12℄ to exeute arbitrary ode
instead of the legitimate glib destrutors in ase of arbitrary write vulnerabilities, partiularly when
exploiting missing format string vulnerabilities loally.

This partiular tehnique, while popular in the early 2000's, has several limitations. First of all, it
assumes the appliation will exit leanly by alling exit(). If the attaker is unable to pursue normal
exeution muh longer after triggering the vulnerability (fairly ommon in ase of heap over�ows, where
heap metadata is irreoverably orrupted and will sooner or later fore the appliation to quit by alling
abort() instead of exit(), hene not alling the normal destrutors), the aforementioned funtion pointer
will not even be dereferened.

Seondly, ahieving arbitrary remote exeution when the appliation is exiting may be a bit late. If the
attaker was to attak a remote servie whih typially only alls exit() when the server shuts down
(whih may literally take years), this attak vetor may not be interesting at all. A arefully oded
setuid appliation may also hose to drop privileges before exiting, hene wasting the attak vetor for
a loal attaker.

Thirdly, guessing the loation of the .dtors setion, while easy if the binary wasn't ompiled as a PIE is
not immediately given in the opposite ase, beause the data setion of the binary is then randomized.
Finally, the appliation may not be linked with glib at all (use of ulib for instane), in whih ase, this
funtion pointer is simply not available. In any ase, it is possible to modify the linking proess through
a sript[?℄ to make the .dtors setion non writable, whih mitigates this attak vetor ompletely. This
is aeptable for the vast majority of appliations sine the use of ustom destrutors is in fat not
widespread.

The seond popular tehnique is to overwrite a pointer in the Global O�set Table (GOT). When alling
proedures whose ode is stored in separate objets suh as shared libraries, the lazy dynami linking
�rst transfers ontrol to the Proess Linkage Table (PLT), whih is a trampoline to the GOT. Over-
writing the GOT entry to say, printf() would allow an attaker to modify the �ow of exeution to an
arbitrary loation when printf() would later be alled anywhere within the appliation. This tehnique
is also attrative sine binaries not ompiled as Position Independent Exeutables (PIE) have their
GOT stored at a �x loation.

Unfortunately for the attaker, reent[5℄ modi�ations to the linker and dynami linker allow3 for the
reloations to be performed entirely during the loading proess. Sine the GOT is then fully resolved,
it an be set read only by a simple all to mprotet(). The net result is that an attaker annot write
to the GOT at all anymore, hene mitigating this attak vetor entirely. This early binding omes
at a performane ost (lazy binding no longer applies, and even referenes that would not have been
used during a spei� run of the appliation are resolved anyways), and is therefore not applied sys-
tematially to all binaries under all Linux distributions. That being said, it is absolutely possible to

3 When ompiling appliations using g, and zith the following �ags: "-Wl -z relro -z now". Using only "-Wl -z relro
" allows for internal reorganization of the setions of the binary, putting the GOT before writable setions suh as
.data and .bss. This prevents GOT overwriting in ase of user ontrolled bu�er over�ows in those writable setions.
Adding the "-z now" option also fores reloations to be performed at load time, and enfore a all to mprotet()
to render the GOT unwritable.

5

reate a toolhain that would enfore those linking options to all the binaries in the system, e�etively
killing this attak vetor entirely. The Gentoo Hardened distribution is suh an instane of a distri-
bution that privileged seurity over performane by enforing this new feature by default on all binaries.

An other pointer prior researhers used in the past is the array of pointers alled by at_exit(). While
it has been shown[13℄ that overwriting a double word in this glib global data ould grant arbitrary
ode exeution, appliations atually using at_exit() tend to be fairly rare. The virtue of this example
is generalize the overwrite of funtion pointers not only in the mapping of the appliation itself, but
also in the writable mappings of the libraries it is linked to. In a way, the present paper an be seen as
an extreme generalization of this tehnique.

If deferening a funtion pointer is indeed a good idea, publily available debuggers do a poor job at
listing them. This is understandable sine what happens inside an appliation after a Segmentation
Fault is of little interest to normal software developers, whose fous is to �x bugs, not to write exploits.
We will therefore without further due introdue a tehnique to automatially detet all the funtion
pointers possibly dereferened by an appliation (inluding its libraries) after a given memory orrup-
tion bug has ourred.

3.2 Methodology

Our methodology is based on the use of ptrae() to debug a proess. We start by either attahing to a
running proess thanks to its pid, or reate a new proess from the ommand line of pmma.

We then wait for the proess to rash, emitting a Segmentation Fault aught by ptrae(). This indeed
assumes that the user of the pmma is able to reate an input to reate an invalid memory aess inside
the proess.

On any given proess, the amount of mapped memory is limited by arhiteture onstraints. In order to
verify if overwriting4 a given double word in memory will in fat modify the �ow of exeution, we start
by listing all the memory loations that are writable (we annot modify non writable loations anyway).
This preliminary phase is performed on a memory snapshot, but performing it after a Segmentation
Fault allows us to have a binary whih looks (in memory) exatly like the proess we'd like to exploit
from a mapping point of view.

We then fore the debugged appliation to fork(). This reates a new proess whih only di�ers from the
original debugged proess by its proess id. In partiular, all the writable memory loations inluding
the heap, or even global data from all the mapped libraries remain exatly the same.

We then overwrite a given writable loation with a dummy value orresponding to a loation non-
exeutable in userland inside the newly reated proess (therefore leaving the original proess intat,
for later use). 0xf1f2f3f4 is a good suh value5. We then lear the signals reeived by the newly spawned
proess and follow its exeution as if a Segmentation Fault didn't just happen.

In ase exeution is transfered to memory loation 0xf1f2f3f4 before the appliation exits, we have
found a proper funtion pointer atually dereferened by the appliation. This is easily detetable as it
will trigger a SIGSEGV signal (the Segmentation Fault being due to an attempt to exeute ode in a
loation normally reserved to ring 0).

If suh is not the ase, we repeat the proess of foring the original debugged proess to fork() and
overwrite an other memory loation with the same dummy pointer.

4 simulating the fat that the previous instrution triggering the Segmentation Fault had led to an arbitrary memory
write instead of simply triggering a SEGFAULT...

5 It is both always pointing to kernel land, regardless of the kernel split in use, and easy to identify.

6

By iterating this way over all of the possible writable memory loations, we an �nd all the funtion
pointers dereferened by the appliation during its normal �ow of exeution.

3.3 mk_fork() implementation

Previous works[14℄[15℄ have shown it was possible to use ptrae to injet an arbitrary library inside the
proess' address spae. We don't need that muh, we'll just injet a small shellode foring the proess
to all fork, and start ptraing the hild.

Let's see how this an be ahieved (ignoring error handling here and unneessary omplexity for the
sake of larity):

/*
*
* fore a proess to fork()
*
* returns the pid of the offspring
*
*/
int mk_fork(pid_t pid){

void *target_addr;
strut user_regs_strut regz;
strut user_regs_strut regs;
strut user_regs_strut regz_new;
int status;
siginfo_t si;
strut w_to_x_ptr *tmp4;
int newpid;
int fork_ok=0,offspring_ok=0;

/*
* prepare hild to perform a fork
*/

// save registers
ptrae(PTRACE_GETREGS, pid,NULL, ®z);

mempy(®z_new,®z,sizeof(regz));

// bakup ontent at addr
getdata(pid, (int)target_addr, bakup_buff, 200);

// replae with fork_stub shellode
write_data(pid,(int)target_addr,fork_stub,10);

// exeute fork_stub
regz_new.eip=(int)target_addr+2;
ptrae(PTRACE_SETREGS, pid,NULL, ®z_new);

/*
* Continue ptraing untill we get both a
* SIGTRAP (parent) or SIGSTOP (hild)

7

*/
fork_ok=0;
offspring_ok=0;
while((!fork_ok)&&(!offspring_ok)){

memset(&si, 0, sizeof(siginfo_t));

ptrae(PTRACE_GETREGS, pid,NULL, ®s);
ptrae(PTRACE_SETREGS, pid,NULL, ®s);

ptrae(PTRACE_CONT, pid, NULL, NULL);
waitpid(-1,&status,P_ALL); // any pid
ptrae(PTRACE_GETSIGINFO, pid, NULL, &si);

// parent ?
if(si.si_signo == 5){

fork_ok=1;
}
// offspring ?
if (status >> 16 == PTRACE_EVENT_FORK) {

ptrae(PTRACE_GETEVENTMSG, pid, NULL, (void*) &newpid);
ptrae(PTRACE_SYSCALL, newpid, NULL, NULL);

}
}

/*
* Clean up the mess
*/
// lear signals
memset(&si, 0, sizeof(siginfo_t));
ptrae(PTRACE_SETSIGINFO, pid, NULL, &si);
ptrae(PTRACE_SETSIGINFO, newpid, NULL, &si);

// restore data
write_data(pid,(int)target_addr,bakup_buff,200);
write_data(newpid,(int)target_addr,bakup_buff,200);

// restore registers
ptrae(PTRACE_SETREGS, pid, NULL, ®z);
ptrae(PTRACE_SETREGS, newpid, NULL, ®z);

return newpid;
}

With fork_stub being a small shellode6 :

;forking shellode:
00000000 6631C0 xor eax,eax
00000003 B002 mov al,0x2
00000005 CD80 int 0x80

followed by 4 bytes 0x whih will trigger a signal 5 (SIGTRAP) when exeuted.

6 The shellodes in this paper will be given assuming a 32b intel arhiteture for illustrative purpose.

8

The operations performed are therefore the following : �rst of, the state of the registers of the de-
bugged appliation are saved. Then, 10 bytes from the debugged proess are baked up, starting from
target_addr (whih is the plae we will use to write and exeute our small shellode. This loation
needs to be mapped in an exeutable loation). Our small shellode is then injeted inside the running
proess. Registers are then modi�ed in the debugged proess so that the next instrution to be exeuted
will be our shellode, and ontrol is passed to this appliation. Upon orret exeution of this shellode,
we will reeive two signals : a SIGTRAP emitted by the debugged proess, and a SIGSTOP emitted
by its newly reated o�spring. We then restore the 10 bytes baked up earlier in both proesses and
restore their registers to the their original state.

This way, we obtain an almost perfet replia of our original proess to experiment with at will.

3.4 Limitations

.

The main limitation is that all of the Inter Proess Communiation (IPC) and �le I/O an be assumed
to be in unpreditable state in the ontext of the o�spring. The return of any sysall is in fat un-
preditable. This may ause di�erenes in the exeution of the original proess and the o�spring. In
partiular, this may ause the o�spring to exit earlier than the original proess would have beause of
IPC or sysall errors, leading to false negatives in our analysis.

Experimentally, this experimental tehnique works well enough to provide reahable funtion pointers
alled, even though it still misses many that would exist muh later in the �ow of exeution.

The system alls ould probably be reorded in the original proess and faked in o�springs to remove
those problems entirely, thanks fo the ptrae() method PTRACE_SYSCALL. And a further ost in
performane. This idea is further desribed later in this whitepaper under setion 6.5.

4 Here be dragons : zombie reaping

The previously desribed methodology to reate proesses is indeed powerful, but reating unexpeted
hildren to a proess poses several problems if we intend to debug large appliations suh as network
servies or web browsers. In this later ase, we will need to analyze megabytes of writable data, hene
reate millions of hildren. In order to sale under those proportions, dealing with the termination of
the reated o�springs is mandatory.

4.1 Dealing with SIGCHLD

Sine the original appliation will be kept sleeping while we will reate thousands if bot millions of
hildren to test writes in di�erent loations, it won't be able to wait() for the return signal (SIGCHLD)
emitted by eah hild proess reated when exiting. If we don't solve this situation, all those unreeived
signals will prevent the hild proesses from atually terminating, leaving them in a zombie state.

First of, this is a waste of memory and pu yles beause the zombies still have an entry in say,
task_strut in kernel land. Those proesses will also uselessly keep a proess id, whih is a limited
resoure on a omputer. One all the available proess ids will be attributed to hildren proesses even-
tually ending in zombie states, we will not be able to reate new ones at all.

The �rst strategy to avoid zombies is to expliitly have the original proess ask not to be sent SIGCHLD
signals when its o�springs exit. This is fortunately possible under GNU/Linux by using sigation() to
ignore SIGCHLD signals. The kernel will then not bother sending signals to our dormant proess.

9

The C ode to perform this operation is equivalent to:

strut sigation sa = {.sa_handler = SIG_IGN};
sigation(SIGCHLD, &sa, NULL);

This ode needs to be alled only one by our original proess. To perform this operation, we use the
same injetion methodology as with the mk_fork() shellode. Our position independent shellode stub
to perform this system all is the following:

; Sigation shellode: // Zombie reaper
; strut sigation sa = {.sa_handler = SIG_IGN};
; sigation(SIGCHLD, &sa, NULL);

_start:
nop
nop
nop
nop
all fake

fake:
pop ex
add ex,0x18 ; delta to sigation struture

xor eax,eax
mov al,0x43 ; sigation
mov ebx,0x11 ; SIGCHLD
xor edx,edx ; 0x00
int 0x80

db 0x, 0x,0x,0x

; strut sigation sa = {.sa_handler = SIG_IGN};
db 01, 00, 00, 00, 00, 00, 00, 00, 00, 00, 00, 00, 00, 00
db 00, 00, 00, 00, 00, 00, 00, 00, 00, 00, 00, 00, 00, 00
db 00, 00, 00, 00, 00, 00, 00, 00, 00, 00, 00, 00, 00, 00
db 00, 00, 00, 00, 00, 00, 00, 00, 00, 00, 00, 00, 00, 00
db 00, 00, 00, 00, 00, 00, 00, 00, 00, 00, 00, 00, 00, 00
db 00, 00, 00, 00, 00, 00, 00, 00, 00, 00, 00, 00, 00, 00
db 00, 00, 00, 00, 00, 00, 00, 00, 00, 00, 00, 00, 00, 00
db 00, 00, 00, 00, 00, 00, 00, 00, 00, 00, 00, 00, 00, 00
db 00, 00, 00, 00, 00, 00, 00, 00, 00, 00, 00, 00, 00, 00
db 00, 00, 00, 00, 00, 00, 00, 00, 00, 00, 00, 00, 00, 00

Using this tehnique, we don't need to are about pending signals anymore. But sine our weird de-
bugger is spawning so many hildren, we need to ensure that those proesses atually terminate after a
given period of time. And that any proesses that they'd have spawned themselves without our knowl-
edge will also terminate in order to spare omputer resoures.

10

4.2 Proesses grouping

POSIX o�ers a great and little known way to solve this problem. Instead of systraing every reated
hildren and hook grandhildren reation, we an reate proess groups. Those groups are reated for
instane using a all to the sysall setpgid() to reate a new group. All the o�springs of the proess will
then belong to this same group. Instead of killing proesses one by one, we then kill the whole group
using kill(-groupnumber).

There is a non POSIX but very e�ient version of this sysall under Linux7. The prototype of this
funtion is:

int setpgid(pid_t pid, pid_t pgid);

The desription of this funtion, taken from the Linux man page gives:

setpgid() sets the PGID of the proess speified by pid to pgid. If
pid is zero, then the proess ID of the alling proess is used. If
pgid is zero, then the PGID of the proess speified by pid is made the
same as its proess ID. If setpgid() is used to move a proess from
one proess group to another (as is done by some shells when reating
pipelines), both proess groups must be part of the same session (see
setsid(2) and redentials(7)). In this ase, the pgid speifies an
existing proess group to be joined and the session ID of that group
must math the session ID of the joining proess.

By injeting the following setpgid_stub inside a proess, we an fore it to reate a new group:

;
; setpgid(0,0); shellode
;

_start:
nop
nop
nop
nop
mov eax,0x39 ; setpgid
xor ebx,ebx
xor ex,ex
int 0x80

db 0x, 0x

When alled with 0 as a "pgid" group parameter, the proess of the alling proess is used as a group
id, whih is pretty handy as it avoids us to keep trak of pids to groups assoiations.

Using this tehnique in addition to the previous zombie reaping one, we manage to keep the number
of running proesses arbitrary low even when debugging large appliations suh as web browsers. The
Opera web browser (whih is losed soure) was for instane debugged this way to analyze CVE-2011-
1824[16℄.

7 Confere "man 2 setpgid" for di�erenes.

11

5 Exploiting invalid memory writes

In this hapter, we will desribe how pmma an be used to help exploit di�erent sublasses of invalid
memory writes. We will start with the study of fully ontrolled invalid memory writes, where an
attaker ontrols both the destination where to write to, and the ontent being written fully. We will
then envisage other lasses of bugs, where the attaker has less degrees of liberty : the ase of over�ows
in di�erent writable setions, then the one where the attaker doesn't ontrol the data being written,
and the speial sub ase of aligned memory writes.

5.1 Finding all the funtion pointers dereferened after an invalid write

Pmma an be run in two fashions in order to perform an analysis. The �rst one is to attah to a running
proess by providing its pid at the ommand line. It is partiularly suited when auditing proesses like
network daemons. The seond one is by providing pmma the path of an ELF binary and a ommand
line arguments to provide it. In both ases, in its default mode, pmma will then wait for a segmentation
fault to start its analysis.

5.2 Over�ows

Over�ows an be seen as a sublass of arbitrary writes where the write operation is performed sequen-
tially over a given number of bytes (the size of the over�ow). As opposed to the previous sublass of
bugs, the attaker doesn't get to hose where the overwrite is performed. They may though, be able to
ontrol the size of the over�ow and the ontent being overwritten.

Assuming the attaker has ontrol on both the length of the over�ow and the data overwritten, limiting
the sope of the previous audit to the one setion being overwritten will �nd all the relevant funtion
pointers potentially overwritten.

More exploitation strategies are mentioned later in this paper in ase suh a pointer ould not be found.

5.3 Partial overwrites and pointers trunations

Another ommon ase happens when an attaker ontrols fully the loation of the write, but has no
ontrol over the values being written. The tati then used in order to ahieve ontrol �ow hijaking is
to attempt to overwrite a funtion pointer only partially. This tehnique is referred in the literature as
pointer trunation.

Depending on the (unontrolled, hopefully repeatable) value of the data being written, an attaker an
attempt to perform either a lower bytes overwrite or a upper bytes overwrite. The goal is that one
modi�ed, the new funtion pointer still points to a memory setion mapped as exeutable.

In ase the trunated funtion pointer points to the same setion as the original one (typially several
bytes before or after), this de fato implies that the setion is both writable and exeutable8. Obtaining
arbitrary ode exeution is then a matter of having an appropriate shellode, possibly preeded by a
nop sled, mapped at the destination address of the modi�ed pointer.

In ase the trunated pointer points to a di�erent setion, and partiularly when it is modi�ed to point
to a setion whih is exeutable but not writable (suh as the .text of a library or of the main binary
itself), ontrol will be transfered to a loation whih has very little hanes to hold user ontrolled
opodes. In other words, the behavior of the binary from this point is totally not preditable. That
being said, as a last resort strategy, it may be a good option to an attaker in the hope of triggering
almost immediately an other invalid memory aess (whih is very likely), and that this seond indiret

8 Suh mappings still do exist on atual distributions, but the more hardened ones, having a better kernel in terms
of seurity, an prevent suh mappings entirely.

12

vulnerability will give him more ontrol over the data being possibly written (this is not granted and
is largely unpreditable). For this to happen in a deterministi fashion though, the return address has
to remain unhanged between di�erent mappings due to ASLR. This is quite possible in theory, for
instane by returning to a �x .text loation in a non PIE binary.

It is worth noting that being able to write only the value 0x00000000 is a very ommon suh senario. In
partiular, integer over�ows ourring in iteration ounters of opy loops typially allow an attaker to
write passed the intended limits of a write, possibly to arbitrary loations. But the data being written
then often omes from setion paddings beause a given opy is taking bytes passed the last mapped
bu�er of a setion to re-write them at another loation.

Pmma allows for automati testing of the above sub-ases, taking into aount both lower bytes and
higher bytes trunations. After olleting informations over the mapping of eah setion of the binary,
inluding its permissions, and listing the existing funtion pointers, it is able to determine whih ones
are trunable to point to mapped memory, even aross setions :

--[Validating funtion pointers (relaxed mode):

<*> Dereferened funtion ptr at 0xbfb7ef4 (full ontrol flow hijak)
0xbfb7ef4 --> 0x080e5e58 // repeatability:0/100

<*> Dereferened funtion ptr at 0xbfb80fe (full ontrol flow hijak)
0xbfb80fe --> 0x080e5fa2 // repeatability:0/100

<*> Dereferened funtion ptr at 0xbfb8101 (full ontrol flow hijak)
0xbfb8101 --> 0x0804f94d // repeatability:0/100

...

<*> Dereferened funtion ptr at 0xbfb7ef4 (full ontrol flow hijak)
0xbfb7ef4 --> 0x080e5e58 // repeatability:0/100

<*> Dereferened funtion ptr at 0xbfb80fe (full ontrol flow hijak)
0xbfb80fe --> 0x080e5ea2 // repeatability:0/100

--> total : 186 validated funtion pointers
(and found 8 additional ontrol flow errors)

--[Funtion pointers exploitable by trunation with 0x41424344:
At 0xb70e070 : 0xb70632 will beome 0xb704142 (lower trunated by 16 bits, dest perms:RW)
At 0xb70e40a4 : 0xb70a8f2 will beome 0xb704142 (lower trunated by 16 bits, dest perms:RW)
At 0xb70e080 : 0xb70e5e02 will beome 0xb70e4142 (lower trunated by 16 bits, dest perms:RW)
At 0xb731a030 : 0xb7315da2 will beome 0xb7314142 (lower trunated by 16 bits, dest perms:RW)
At 0xb73230a4 : 0xb732003a will beome 0xb7324142 (lower trunated by 16 bits, dest perms:RW)
At 0xb732803 : 0xb7325a36 will beome 0xb7324142 (lower trunated by 16 bits, dest perms:RW)
At 0xb76a80d8 : 0xb7325bf0 will beome 0xb7324142 (lower trunated by 16 bits, dest perms:RW)

In the previous example taken from an analysis on the text editor nedit under Ubuntu 10.10, 186
funtion pointers atually dereferened were found, after the starting point of the analysis. Assuming
that the value being written is not ontrolled and is (0x41424344)9, 7 of them an be trunated to point
to valid memory. In this run, the destination permission was always reported as "RW", that is both

9 This value is on�gurable from the ommand line, and pmma an also use the value atually being written during
the invalid memory aess leading to the �rst segmentation fault - this is the default.

13

Readable and Writable. In ase the urrent kernel allowed exeution of setions mapped as writable
but not expliitly �agged as writable (id est: the kernel doesn't support the NX feature and doesn't
emulate for this appliation), having a shellode stored at either 0xb70e4142 or 0xb7324142 will result
in arbitrary ode exeution.
For the seek of ompleteness, here is an other example, performed this time with a trunation by
0x00000000 on 4b aligned addresses, on /bin/sudo:

--[Funtion pointers possibly exploitable by 4 byte aligned trunation with 0x00000000:
At 0x08067135 : 0x4008039e will beome 0x40000000 (lower trunated by 24 bits, dest perms:RX)
At 0x08067b29 : 0x40080637 will beome 0x40000000 (lower trunated by 24 bits, dest perms:RX)
At 0x08067b69 : 0x40080639 will beome 0x40000000 (lower trunated by 24 bits, dest perms:RX)
At 0x08067d89 : 0x4007a933 will beome 0x40000000 (lower trunated by 24 bits, dest perms:RX)
At 0x08a8a03d : 0x4007a7a2 will beome 0x40000000 (lower trunated by 24 bits, dest perms:RX)
At 0x08a8a059 : 0x4007a7a5 will beome 0x40000000 (lower trunated by 24 bits, dest perms:RX)
At 0x08a8a241 : 0x4007a7a0 will beome 0x40000000 (lower trunated by 24 bits, dest perms:RX)
At 0x08a8a581 : 0x4007a7a0 will beome 0x40000000 (lower trunated by 24 bits, dest perms:RX)
At 0x08a8b351 : 0x4000013e will beome 0x40000000 (lower trunated by 24 bits, dest perms:RX)
At 0x08a8b90a : 0x40004042 will beome 0x40000000 (lower trunated by 16 bits, dest perms:RX)
At 0x08a8361 : 0x4007a73 will beome 0x40000000 (lower trunated by 24 bits, dest perms:RX)
At 0x08a8761 : 0x4007a77 will beome 0x40000000 (lower trunated by 24 bits, dest perms:RX)
At 0x08a8861 : 0x4007a78 will beome 0x40000000 (lower trunated by 24 bits, dest perms:RX)
At 0x08a8aa1 : 0x4007a7bd will beome 0x40000000 (lower trunated by 24 bits, dest perms:RX)
At 0x08a8d00a : 0x400007a8 will beome 0x40000000 (lower trunated by 16 bits, dest perms:RX)
At 0x08a8d1b9 : 0x4007a7d1 will beome 0x40000000 (lower trunated by 24 bits, dest perms:RX)
At 0x08a8d245 : 0x4000006f will beome 0x40000000 (lower trunated by 24 bits, dest perms:RX)
At 0x08a8d2a2 : 0x400a0001 will beome 0x400a0000 (lower trunated by 16 bits, dest perms:RX)
At 0x08a8d25 : 0x4007a7d2 will beome 0x40000000 (lower trunated by 24 bits, dest perms:RX)
At 0x08a8d2d : 0x404e1d5 will beome 0x40000000 (lower trunated by 24 bits, dest perms:RX)
At 0x08a944e1 : 0x4007a952 will beome 0x40000000 (lower trunated by 24 bits, dest perms:RX)
At 0x08a949e5 : 0x40403fbf will beome 0x40000000 (lower trunated by 24 bits, dest perms:RX)
At 0x08a94b03 : 0x40449040 will beome 0x40449000 (lower trunated by 8 bits, dest perms:RX)
At 0x08a94e02 : 0x4000404a will beome 0x40000000 (lower trunated by 16 bits, dest perms:RX)
At 0x08a95067 : 0x4041540 will beome 0x4041500 (lower trunated by 8 bits, dest perms:RX)
At 0x08a95077 : 0x40415040 will beome 0x40415000 (lower trunated by 8 bits, dest perms:RX)
At 0x08a95087 : 0x40414640 will beome 0x40414600 (lower trunated by 8 bits, dest perms:RX)
...

We an verify that this time, trunations of di�erent sizes are possible, and that the destination address
would be readable and exeutable. It orresponds to the .text of shared libraries, and returning there,
while almost10 guaranteed to lead to exeution of exeutable ode. But the result of returning savagely
to an unexpeted loation is entirely non preditable and needs be tested, for instane using an other
iteration of pmma.

10 It is in fat possible in theory to return to the middle of an opode, hene orresponding to an invalid instrution

14

5.4 Disovering unaligned memory reads

Last but not least, an extreme sub-ase of overwrites ours when an attaker has not only no or little
ontrol over the data being written, but has additional onstraints over where the write loation is
being performed. The author found himself in suh a situation where only the value 0x00000000 ould
be written, and only on 4 byte aligned loations. This atypial ase was due to a opy loop where the
destination was user ontrolled beause of an integer over�ow, but where the destination would always
be a multiple of 4 (many suh memory initialization or opy loops proess 4byte aligned memory zones,
beause ompilers try to keep the data aligned in order to maximize pu e�ieny, and beause the
size of an atomi opy is also a multiple of 4).

Most funtion pointers inside an appliation are aligned on 4 byte boundaries. In this ase, in�uening
the �ow of exeution by trunating a funtion pointer like previously is not possible, due to the ad-
ditional onstraints on the destination. In ase we found an unaligned funtion pointer, this ould be
pratial. Therefore, whenever an unaligned funtion pointer is found, pmma �ags it as remarkable
(but this is honestly quite rare on Intel arhitetures).

In ase no suh unaligned funtion pointers ould be found, those highly hallenging memory orruption
bugs would probably be regarded as never exploitable by most exploit writters. In fat, we believe they
may still be used to in�uene the ontrol �ow of exeution, but indiretly.

Sine an attaker an under those onditions only alter data 4b aligned to be 0x00000000, whih has
little hanes of being interesting, the idea is to manage to overwrite partially a given double word in
memory that will later be read using an unaligned read by the pu. Suh unaligned reads are fairly
rare, but an be listed using a unique tehnique we developped for pmma.

The following ode performs those operations:

int monitor_unaligned(int pid){
strut user_regs_strut regz;

keepexe:
// Set align flag
ptrae(PTRACE_GETREGS, pid,NULL, ®z);
regz.eflags |=0x40000;
ptrae(PTRACE_SETREGS, pid,NULL, ®z);

while(1){
siginfo_t si;
memset(&si, 0, sizeof(siginfo_t));

// ontinue traing
ptrae(PTRACE_CONT, pid, NULL, NULL);
wait(NULL);

// display reeived signals
ptrae(PTRACE_GETSIGINFO, pid, NULL, &si);
last_signal=si.si_signo;

siginfo_t si;
memset(&si, 0, sizeof(siginfo_t));

// void error
memset(&si, 0, sizeof(siginfo_t));
ptrae(PTRACE_SETSIGINFO, pid, NULL, &si);

15

// disassemble at urrent eip
har raw[40℄;
memset(raw,0x00,40);

getdata(pid, regz.eip, raw, 40);

har line[400℄;
x86_insn_t insn;/* instrution */

memset(line,0x00,400);

x86_disasm((unsigned har*)raw, 40, 40, 0x00, &insn);
x86_format_insn(&insn, line, sizeof line,intel_syntax);

if(strlen(line)>1){
printf("%08X: %s\n",(unsigned int)regz.eip,line);

}

// display registers
display_regs(line,regz);

// set eip to next instrution
ptrae(PTRACE_GETREGS, pid,NULL, ®z);
regz.eip+=insn.size;
ptrae(PTRACE_SETREGS, pid,NULL, ®z);

// void error
memset(&si, 0, sizeof(siginfo_t));
ptrae(PTRACE_SETSIGINFO, pid, NULL, &si);

goto keepexe;
}

return 0;
}

The idea is to set the unaligned �ag in the EFLAGS register so that any subsequent unaligned memory
aess triggers a signal 7 (Bus Error), as per the intel manuals[17℄. By then disassembing the latest
instrution exeuted, parsing it to retrieve the registers used and performing a all to ptrae() using
the PTRACE_GETREGS request, pmma is able to retrieve the address of all unaligned reads and
writes.

The following example shows how determining all the unaligned memory read and write aess ould
be performed against the OpenSSH daemon running on a Fedora 15 omputer.

[root�fedora-box pmma℄# netstat -atnp|grep ssh
tp 0 0 0.0.0.0:22 0.0.0.0:* LISTEN 7619/sshd
tp 0 0 :::22 :::* LISTEN 7619/sshd
[root�fedora-box pmma℄#

16

In a seond terminal, the auditor initiates a ssh onnetion :

[endrazine�fedora-box ~℄$ ssh loalhost

On the �rst terminal are then listed all the unaligned memory aesses, along with the relevant infor-
mation regarding the instrution exeuted and the value of registers during eah aess:

signo: 7 errno: 0 ode: 1
00BD9FDF: mov [edx-0x4℄, ex
ex= 00000000
edx= 214e57b6

signo: 7 errno: 0 ode: 1
00BDA336: mov ex, [eax+0x6℄
eax= bfb3b08
ex= 0000000a

signo: 7 errno: 0 ode: 1
00BDA339: mov [edx+0x6℄, ex
ex= ae03591
edx= 214e20

signo: 7 errno: 0 ode: 1
00BDA33C: mov ex, [eax+0x2℄
eax= bfb3b08
ex= ae03591

signo: 7 errno: 0 ode: 1
00BDA33F: mov [edx+0x2℄, ex
ex= 60000000
edx= 214e20

signo: 7 errno: 0 ode: 1
00BDA336: mov ex, [eax+0x6℄
eax= 002beb49
ex= 0000000a

signo: 7 errno: 0 ode: 1
00BDA33C: mov ex, [eax+0x2℄
eax= 002beb49
ex= b09f2035

signo: 7 errno: 0 ode: 1
00BDA342: movzx ex, [eax℄
eax= 002beb49
ex= 4a33dae7

signo: 7 errno: 0 ode: 1
00BD5A55: mov [edx-0x3℄, ax
edx= 214e20e4
signo: 7 errno: 0 ode: 1
00BDA339: mov [edx+0x6℄, ex
ex= 0034ff4
edx= 214e208

signo: 7 errno: 0 ode: 1
00BDA33F: mov [edx+0x2℄, ex
ex= 00002d58
edx= 214e208

signo: 7 errno: 0 ode: 1
00BDA336: mov ex, [eax+0x6℄
eax= 002beb53

17

ex= 0000000a
signo: 7 errno: 0 ode: 1
00BDA33C: mov ex, [eax+0x2℄
eax= 002beb53
ex= 382b34a

signo: 7 errno: 0 ode: 1
00BDA342: movzx ex, [eax℄
eax= 002beb53
ex= 5b802b3e

signo: 7 errno: 0 ode: 1
00BD5A52: mov [edx-0x7℄, eax
eax= 00000000
edx= 214e20e4

signo: 7 errno: 0 ode: 1
00BD5A55: mov [edx-0x3℄, ax
edx= 214e20e4
signo: 7 errno: 0 ode: 1
00BD5A52: mov [edx-0x7℄, eax
eax= 00000000
edx= 214e20e4

signo: 7 errno: 0 ode: 1
00BD5A55: mov [edx-0x3℄, ax
edx= 214e20e4

Even if suh unaligned memory aesses are rare, writing 0x00000000 to partially modify a 32 bits
value that will then be read using an unaligned read an trigger seondary bugs inside the appliations,
possibly giving more ontrol over the registers used in this seond operation to an attaker.

6 ASLR and its limits

ASLR is a pretty e�etive way to prevent exploitation, based on statistis. If an attaker an make only
a single try, for instane when exploiting a lient side vulnerability, and if ASLR is fully enfored, then
it may at as a very e�etive mitigation. The publily available debugging tools usually lak setion
based ASLR testing,and when they have this feature, suh as paxtest, they lak the apability to test
the ASLR of a given binary in its entirety. In this hapter, we indent to outline a few limits of ASLR
as well as desribe how ASLR testing has been implemented in pmma.

6.1 E�etive testing of ASLR

As the astute reader may have notied from previous examples, when reporting a �nding, pmma
systematially appends a metri of repeatability, suh as:

<*> Dereferened funtion ptr at 0xbfb7ef4 (full ontrol flow hijak)
0xbfb7ef4 --> 0x080e5e58 // repeatability:0/100

...
<*> Dereferened funtion ptr at 0xb76f4b (full ontrol flow hijak)

0xb76f4b --> 0xb763e20 // repeatability:0/100

This metri atually re�ets the probability of a given mapping to reour at the very same loation.

In order to ompute those probabilities, pmma starts by relaunhing the target binary a great number
of times (100 by default). For eah exeution, it reords the base address of the mapping of eah setion.
The metri displayed along with �ndings is then the highest probability to �nd a given setion at a
partiular address:

18

--[Performing ASLR tests:
[setion:001℄ /bin/su
most probable address:0x08048000, proba=100/100

[setion:002℄ /bin/su
most probable address:0x0804f000, proba=100/100

[setion:003℄ /bin/su
most probable address:0x08050000, proba=100/100

[setion:004℄
most probable address:0x08051000, proba=100/100

[setion:005℄ [heap℄
most probable address:0x0805e000, proba<001/100

[setion:006℄ /lib/ld-2.12.1.so
most probable address:0xb7583000, proba<002/100

[setion:007℄ /lib/ld-2.12.1.so
most probable address:0xb7584000, proba<002/100

[setion:008℄ /lib/ld-2.12.1.so
most probable address:0xb758d000, proba<002/100

[setion:009℄ [vdso℄
most probable address:0xb758e000, proba<002/100

[setion:010℄
most probable address:0xb758f000, proba<002/100

[setion:011℄ /usr/lib/loale/loale-arhive
most probable address:0xb75b6000, proba<002/100

[setion:012℄ /lib/libnss_ompat-2.12.1.so
most probable address:0xb75b8000, proba<002/100

[setion:013℄ /lib/libnss_ompat-2.12.1.so
most probable address:0xb75b9000, proba<002/100

[setion:014℄ /lib/libnss_ompat-2.12.1.so
most probable address:0xb75ba000, proba<002/100

[setion:015℄ /lib/libnsl-2.12.1.so
most probable address:0xb7711000, proba<002/100

[setion:016℄ /lib/libnsl-2.12.1.so
most probable address:0xb7713000, proba<002/100

[setion:017℄ /lib/libnsl-2.12.1.so
most probable address:0xb7714000, proba<002/100

[setion:018℄
most probable address:0xb7718000, proba<002/100

[setion:019℄ /lib/seurity/pam_rootok.so
most probable address:0xb771a000, proba<002/100

[setion:020℄ /lib/seurity/pam_rootok.so
most probable address:0xb771b000, proba<002/100

[setion:021℄ /lib/seurity/pam_rootok.so
most probable address:0xb771000, proba<002/100

[setion:022℄ /lib/libpam.so.0.82.2
most probable address:0xb7727000, proba<002/100

[setion:023℄ /lib/libpam.so.0.82.2
most probable address:0xb7728000, proba<002/100

[setion:024℄ /lib/libpam.so.0.82.2
most probable address:0xb774f000, proba<002/100

[setion:025℄ /lib/libpam_mis.so.0.82.0
most probable address:0xb7751000, proba<002/100

[setion:026℄ /lib/libpam_mis.so.0.82.0
most probable address:0xb7752000, proba<002/100

[setion:027℄ /lib/libpam_mis.so.0.82.0
most probable address:0xb776e000, proba<002/100

[setion:028℄

19

most probable address:0xb776f000, proba<002/100
[setion:029℄ /lib/lib-2.12.1.so
most probable address:0xbf7e4000, proba<002/100

Computing those probabilities in an e�etive way is in itself quite a hallenge : when should one stop
the proess and assume it is fully mapped ? The tehnique should also ope with network daemon that
bind ports and may pose an additional problem. If we exeute say OpenSSH and wait for it to be fully
loaded, reord its mapping and shut it down, the port 22 will not be available immediately for rebinding.

To ope with those problems, pmma attempts to reord mappings right after the proper loading of
the main binary and its assoiated shared libraries. To ahieve this aim, pmma runs the appliation
while debugging it using the PTRACE_SYSCALL request of ptrae(). This allows pmma to be made
aware of any system all performed by the debugged proess. It then maintains a list of system alls
used during the loading of an appliation:

int allowed_sysalls[℄={3,5,6,11,33,45,91,125,192,197,243};
/*Those sysalls are used during exeve() and loading :

read 3
open 5
lose 6
exeve 11
aess 33
brk 45
munmap 91
mprotet 125
mmap2 192
fstat64 197
set_thread_area 243*/

Whenever a system all performed by the debugged proess doesn't belong to this white list, pmma
assumes that exeution has already been transfered to the entry point of the appliation, and that
the loading has therefore entirely been done. It then reords the base address of eah setion of the
mapping and kills the debugged proess.

The net bene�t of this tehnique is to allow for a very e�etive reording of mappings. The only map-
pings pmma would atually missed are those performed muh later during exeution suh as pluggings
or shared libraries mapped by the appliation itself.

Finally, that the same aim an be reahed in a simpler way by putting a breakpoint on the entry point
of the binary11.

11 Thanks to Ivanlef0u for this idea.

20

6.2 Non Position Independant Exeutables

As mentioned before in this artile, binaries not expliitly ompiled as position independent exeutables
do not have their setions randomised (only their share libraries if any, their heap and stak are).

If Linux distributions biased towards seurity instead of performane suh as Gentoo Hardened with
grseurity kernels enfore PIE ompilation on every single binary of the system, this is hardly the ase
for the vast majority of the Linux distributions.

Mainstream distributions suh as Fedora or Ubuntu only impose PIE ompilation on a arefully hosen
set of binaries. Typially only network deamons.

It means that even setuid binaries suh as /bin/su or network lients suh as web browsers are not
ompiled as position independent exeutables, and have therefore some setions not randomized. This
may not seem too bad at �rst sight, but it really means that when looking for a �x pivoting address
inside the appliation, an attaker is guaranteed to �nd some. This may be used not only to write 100%
reliable ret2plt bootstrap shellode in ase of stak over�ows, but also sometimes return to the .text of
the binary as explained earlier in ase of pointer trunations. We will see that this weakness an also be
used to infere the mapping of the whole appliation when attempting to leak the layout of the binary
towards the end of this hapter.

6.3 Prelinking

Prelinking is a time saving feature, employed notably by default on Fedora. It allows for faster loading
of appliations by preomputing the loation of the shared libraries inside a proess, and hardoding
those loations on disk.

The Fedora prelinking is renewed every two weeks thanks to a ron job. It means that during 14 days,
the mapping of the shared libraries of a given proess are entirely deterministi. Under pmma, this
means that the probability assoiated with the mappings of a given setion fo a shared library will be
of 100%.

Fedora's doumentation expliitly mentioned this behavior[18℄ and onludes that the risk is aeptable
sine the mapping of shared library is hosen randomly every two weeks. In partiular it will di�er from
mahine to mahine. We will see later in this hapter the limits of those assumptions : if an attaker
ould somehow retrieve the mapping of a given proess at a given point in time, he would then know
the mapping of subsequent exeutions of this same binary for some time.

6.4 Biased ASLR

Finally, it is worth mentioning that some distributions have very biased ASLR, due to improper kernels.
This allows for probabilisti exploitation of binaries.
Here is an example of an analysis performed by pmma on Ubuntu 10.10 with a kernel 2.6.32-26-generi:

--[Performing ASLR tests:
[setion:001℄ /bin/ping
most probable address:0x08048000, proba=100/100

[setion:002℄ /bin/ping
most probable address:0x08050000, proba=100/100

[setion:003℄ /bin/ping
most probable address:0x08051000, proba=100/100

[setion:004℄
most probable address:0x08052000, proba=100/100

[setion:005℄ [heap℄
most probable address:0xb76a7000, proba<003/100

21

[setion:006℄ /lib/tls/i686/mov/libnss_files-2.10.1.so
most probable address:0xb76a9000, proba<003/100

[setion:007℄ /lib/tls/i686/mov/libnss_files-2.10.1.so
most probable address:0xb77e7000, proba<003/100

[setion:008℄ /lib/tls/i686/mov/libnss_files-2.10.1.so
most probable address:0xb77e8000, proba<003/100

[setion:009℄
most probable address:0xb77ea000, proba<003/100

[setion:010℄ /lib/tls/i686/mov/lib-2.10.1.so
most probable address:0xb77eb000, proba<013/100

[setion:011℄ /lib/tls/i686/mov/lib-2.10.1.so
most probable address:0xb77ee000, proba<014/100

[setion:012℄ /lib/tls/i686/mov/lib-2.10.1.so
most probable address:0xb77fe000, proba<013/100

[setion:013℄ /lib/tls/i686/mov/lib-2.10.1.so
most probable address:0xb77ff000, proba<013/100

[setion:014℄
most probable address:0xb7800000, proba<003/100

[setion:015℄ /lib/tls/i686/mov/libresolv-2.10.1.so
most probable address:0xb7810000, proba<003/100

[setion:016℄ /lib/tls/i686/mov/libresolv-2.10.1.so
most probable address:0xb7812000, proba<003/100

[setion:017℄ /lib/tls/i686/mov/libresolv-2.10.1.so
most probable address:0xb7813000, proba<003/100

[setion:018℄
most probable address:0xb782e000, proba<003/100

[setion:019℄
most probable address:0xb782f000, proba<003/100

[setion:020℄ [vdso℄
most probable address:0xbfa7d000, proba<002/100

In this analysis, pmma was able to report that some shared libraries suh as the lib atually have a
given base address for their mapping muh more probable (up to 13% of the time) than expeted.12.
If upgrading to a more reent kernel shipped by Ubuntu �xes this partiular problem, it fundamentally
means that ustom kernels ompiled by system administrators not su�iently knowledgeable about
seurity an lead to weak ASLR.

6.5 Memory mapping leakage

Previous researhes[19℄[20℄, and in partiular the 2010 WTFuzz exploit against IE8 under Windows
7[21℄ whih won the pwn2own ontest have shown that using JavaSript and a heap over�ow to over-
write the NULL terminator of a Javasript string, it was possible for an attaker to be given more
information than he should have aessed (when reading from the string in question). If the leaked
bytes (whih may be in random quantity, up to the next NULL byte) ontained a pointer to data in
other setions, then the attaker ould infer the loation of a mapping of a given setion inside the
running proess (from JavaSript itself) and trigger a very preise seond write to obtain arbitrary ode
exeution.

To further generalise this tehnique, let's take a step bak and look at the problem from a kernel's
stand point. Essentially, all the information sent to an attaker use only a few system alls. Namely
sys_write() and sys_soketsysall(). The later o�ers a few di�erent requests and now handles what
used to be all the other soket related system alls, suh as sys_onnet(), or sys_send(). Let's have a
look at the ode of this system all in kernel 2.6.39 soure ode13:

12 The analysis also shows that the ode, data and read only data segments of ping are not randomized at all, but
this was atually expeted given that this binary isn't ompiled as PIE.

13 Sample ode taken from net/soket.

22

2234 SYSCALL_DEFINE2(soketall, int, all, unsigned long __user *, args)
2235 {
2236 unsigned long a[6℄;
2237 unsigned long a0, a1;
2238 int err;
2239 unsigned int len;
2240
...
2247
2248 /* opy_from_user should be SMP safe. */
2249 if (opy_from_user(a, args, len))
2250 return -EFAULT;
2251
2252 audit_soketall(nargs[all℄ / sizeof(unsigned long), a);
2253
2254 a0 = a[0℄;
2255 a1 = a[1℄;
2256
2257 swith (all) {
2258 ase SYS_SOCKET:
2259 err = sys_soket(a0, a1, a[2℄);
2260 break;
2261 ase SYS_BIND:
2262 err = sys_bind(a0, (strut sokaddr __user *)a1, a[2℄);
2263 break;
2264 ase SYS_CONNECT:
2265 err = sys_onnet(a0, (strut sokaddr __user *)a1, a[2℄);
2266 break;
2267 ase SYS_LISTEN:
2268 err = sys_listen(a0, a1);
2269 break;
2270 ase SYS_ACCEPT:
2271 err = sys_aept4(a0, (strut sokaddr __user *)a1,
2272 (int __user *)a[2℄, 0);
...
2287 ase SYS_SEND:
2288 err = sys_send(a0, (void __user *)a1, a[2℄, a[3℄);
2289 break;
2290 ase SYS_SENDTO:
2291 err = sys_sendto(a0, (void __user *)a1, a[2℄, a[3℄,
2292 (strut sokaddr __user *)a[4℄, a[5℄);
...
2327 default:
2328 err = -EINVAL;
2329 break;
2330 }
2331 return err;
2332 }

23

In a nutshell, to all sys_soketall, eax has to worth 102, then ebx spei�es whih partiular all is to
be performed, aording to the following requests, de�ned in inlude/linux/net.h:

26 #define SYS_SOCKET 1 /* sys_soket(2) */
27 #define SYS_BIND 2 /* sys_bind(2) */
28 #define SYS_CONNECT 3 /* sys_onnet(2) */
29 #define SYS_LISTEN 4 /* sys_listen(2) */
30 #define SYS_ACCEPT 5 /* sys_aept(2) */
31 #define SYS_GETSOCKNAME 6 /* sys_getsokname(2) */
32 #define SYS_GETPEERNAME 7 /* sys_getpeername(2) */
33 #define SYS_SOCKETPAIR 8 /* sys_soketpair(2) */
34 #define SYS_SEND 9 /* sys_send(2) */
35 #define SYS_RECV 10 /* sys_rev(2) */
36 #define SYS_SENDTO 11 /* sys_sendto(2) */
37 #define SYS_RECVFROM 12 /* sys_revfrom(2) */
38 #define SYS_SHUTDOWN 13 /* sys_shutdown(2) */
39 #define SYS_SETSOCKOPT 14 /* sys_setsokopt(2) */
40 #define SYS_GETSOCKOPT 15 /* sys_getsokopt(2) */
41 #define SYS_SENDMSG 16 /* sys_sendmsg(2) */
42 #define SYS_RECVMSG 17 /* sys_revmsg(2) */
43 #define SYS_ACCEPT4 18 /* sys_aept4(2) */
44 #define SYS_RECVMMSG 19 /* sys_revmmsg(2) */

So, to monitor all the data leaving the proess and possibly reahing an attaker, being it over sokets,
�les, ttys or any other mean, all we need to pay attention to is sys_write() (sysall 4 under Intel
x86 arhitetures), and sys_soketall() (sysall 102 under Intel x86 arhitetures) for a few arefully
hosen sub-alls: sys_send(), sys_sendto(), sys_sendmsg().

The main idea is to proeed as following: �rst of, make the original proess fork() one. Unlike
with previous tehniques, we then let the original proess run, and monitor it using the ptrae()
PTRACE_SYSCALL request, whih allows us to break every time the proess will perform a sys-
tem all. We reord all the system alls exeuted, as well as their return data and values. We now have
a referene run to ompare subsequent experiments with.

Then, we make the saved o�spring and make it fork(). We overwrite the �rst writable loation in mem-
ory with dummy data. We then trae its exeution thanks to the same ptrae() PTRACE_SYSCALL
request. Everytime this proessattempts to exeute a system all, we ompare it's input registers with
the one of the original proess. If the sysall to be exeuted is either sys_write(), or sys_soketall()
with a relevant sub-all, we verify if the data to be proessed di�ers from the one of the original proess.

Three ases may arise : the amount of data sent may di�er. If it is now larger, we have found a loation
in memory, whih, when overwritten, fores the appliation to send more data than expeted bak to
the attaker. This would be the ase when overwritting for instane a variable stored in a read/write
setion, and used as the length argument in the following statement:

write(3,&buff,length);

The seond ase happens when the data is entirely di�erent, beause for instane we would have
overwritten a pointer to the bu� variable in the previous ase.
The third ase is when both the data and the length di�er entirely, for instane when overwritting
a pointer to bu� and then alling the pointer to data and then alling the following system all via
sys_soketall():

sendto(sokfd,&buff,sizeof(buff),0);

24

In all of those ases, we an atually with a pretty high auray verify if an interresting memory leak
oured, whih will allow an attaker to dedue the mappings of the binary. For this ondition to our,
the leaked data (either new trailing bytes, or entirely di�erent data sent bak to the attaker) needs to
ontain a pointer to any setion in the binary. Beause of the way ASLR is performed under Linux (all
the setions but heap and stak being translated by a onstant o�set), knowing a single pointer to the
main binary or to a shared library will result in knowledge of the almost whole mapping. To disover
the loation of the heap or stak, we would need in addition to �nd a pointer to the heap (possible)
and the stak (less realisti) in the data sent to the attaker. This is really only a matter of parsing
the new data sent by the proess, and math potential pointers against the memory addresses of eah
setion in its address spae.

We mentioned earlier that one of the biggest limitation of pmma is the fat that system alls performed
by o�springs ould provide a di�erent result than in the original proess provided the same inputs
(beause sokets will now be losed, �le desriptors in unde�ned states...). Sine we have now desribed
a method to reord the system alls performed by the original proess, it is possible to fake them in the
o�springs (by using the ptrae() PTRACE_SYSCALL until a system all is to be alled, and modify
the ouput registers and optionally their assoiated data before adjusting eip : we don't even need to
atually perform a real system all). The main inonvenient of this tehnique is the fat that some
system alls pass data in non standard ways (eg: sys_soketall()). We ould extend pmma to know
how eah sysall expets and modi�es data, but there are about 300 of them in a modern Linux kernel,
and they are arhiteture spei�. Also, using PTRACE_SYSCALL has a non negligeable overhead in
terms of performane.

25

7 Extending the apabilities of pmma

We have so far foused on exploitation of invalid memory writes through the use of funtion pointer.
Pmma is apable of muh more, and the apabilities o�ered in terms of exploitation modeling by the
mk_fork() tehnique haven't been fully explored yet. In this hapter, we will desribe a few distintive
features of pmma.

7.1 Call tables and returns to registers+o�sets

Pure funtion pointers are not the only way to diretly modify the �ow of exeution of an appliation
given an arbitary write bug. For exemple, rediretion of the ontrol �ow via all tables and diret
modi�ations of the ontrol �ow based on the value of a register, suh as jmp [eax+0xdeadbeef℄ or
all [ebx+0x0f33babe℄ ould be in�uened in ase an attaker ould perform a ontrolled write when
exploiting an invalid write vulnerability.

Pmma is also able to detet the ourrene of suh senarios when attempting to write to di�erent
loations in the writable setions of an appliation. When reporting ontrol �ow modi�ations, it
will di�erentiate the ase where the value it has written to memory is the exat address later being
dereferened (labeled as "diret ontrol �ow hijak"). and the ase where the it di�ers ("indiret ontrol
�ow bug"):

...
<*> Dereferened funtion ptr at 0xb73e08 (full ontrol flow hijak)

0xb73e08 --> 0xb734e54e // repeatability:2/100

<*> Dereferened funtion ptr at 0xb73de0a4 (full ontrol flow hijak)
0xb73de0a4 --> 0xb73d19aa // repeatability:2/100

<-> Triggered an indiret ontrol flow bug when writing at 0xb73df000
(ret value=0xf1f338 is unmapped)
0xb73df000 --> 0xb73bf000 // repeatability:2/100

<-> Triggered an indiret ontrol flow bug when writing at 0xb73df2b0
(ret value=0xf1f8ef7 is unmapped)
0xb73df2b0 --> 0xb7348000 // repeatability:2/100

...
--> total : 186 validated funtion pointers

(and found 8 additional ontrol flow errors)

In the previous example, the addresses where exeution was attempted by the appliation (0xf1f338
and 0xf1f8ef7) beause of an indiret ontrol �ow bug are very lose to the remarkable test value used
(0xf1f2f3f4), whih is a string indiator that the appliation in fat added an o�set to this base value
inside a register before attempting to jump (or all) the orresponding address.

7.2 Searhing for pointers to strutures (ontaining funtion pointers)

Sine all setions do not always share the same amount of entropy, in partiular when biased ASLR
has been deteted, it is tempting to attak the worst proteted setions �rst. In ase funtion pointers
were found only in the best randomized setions, pmma is able to perform yet an other analysis in
order to maximize the e�etiveness of exploitation.

Instead of attaking funtion pointers diretly, it may be worth searhing for pointers to data strutures
in other setions (the more heavily randomized ones) ontaining funtion pointers.

26

The attak senario would then be the following : instead of overwriting a funtion pointer diretly,
overwrite the pointer (whose address is less randomized) to the struture to point to a user ontroled,
writable loation. Then fake the struture in this loation, and eventually dereferene the funtion
pointer.

The onditions for this attak to work are quite realisti in many ases. For instane, data strutures
ontaining funtion pointers reated by the appliation itself are typially stored on the heap, whih
is always heavily randomized, and not a good target for a blind overwrite in terms of probability. But
if those funtion pointers are in fat stored in a linked list, that the �rst pointer of the liked list is
stored on the proper data setion of the appliation, and that the loation of this �rst pointer an be
guessed (for example beause the binary isn't PIE), then overwriting the �rst pointer to point into a
user ontrolled bu�er in the data setion itself would do the trik.

In order to detet pointers to strutures ontaining funtion pointers, pmma �rst parses the writable
setions of the binary and searh for possible pointers to other writable setions. Those will be the
andidate pointers.

Then, it reates a new mapping inside o�springs reated by mk_fork(). Those mapping should never
be read or written to under normal onditions sine they have been arti�ially reated. Then pmma
modi�es one pointer andidate per o�spring to point to the beginning of the new mapping.

In ase this modi�ation triggers an invalid memory aess in exeution, pmma dedues it has in fat
overwriten a pointer to a struture ontaining a pointer atually dereferened.

The reated mappings also ontain a partiular pattern of bytes, whih helps in identifying at whih
o�set inside the mapping a funtion pointer is being dereferened.

The algorithm to reate a new mapping inside an o�spring relies on the injetion of a small stub
shellode to alloate memory via mmap(). The main idea of injeting a shellode in a debugged proess
should be pretty familiar to the reader by now. The reation of the mapping then only requires to read
the return address of mmap(), whih is indeed stored into eax.
The shellode used to ahieve a proper memory alloation is given below:

;
; old_mmap(NULL, 4096, PROT_READ|PROT_WRITE, MAP_SHARED|MAP_ANONYMOUS, 0, 0) shellode:
;

_start:
nop
nop
nop
nop

xor eax, eax
xor ebx, ebx
xor ex, ex
xor edx, edx
xor esi, esi
xor edi, edi

mov bx, 0x1000 ; 1 page
mov l, 0x3 ; PROT_READ|PROT_WRITE
mov dl, 0x21 ; MAP_SHARED|MAP_ANON

push eax
push eax

27

push edx
push ex
push ebx
push eax

mov ebx, esp
mov al, 0x5a ; sys_mmap
int 0x80

; eax ontains address of new mapping

db 0x, 0x, 0x, 0x

A typial analysis by pmma would then look like:

--[Searhing pointers to datastrutures with funtion pointers

** Pointers to +W setions: 15928

<*> Dereferened a funtion pointer inside a struture when writing at 0x094568e4
(ret value=0xffffffff) // repeatability:1/100

<*> Dereferened a funtion pointer inside a struture when writing at 0x094616f
(ret value=0xffffffff) // repeatability:1/100

<*> Dereferened a funtion pointer inside a struture when writing at 0x094a960
(ret value=0xffffffff) // repeatability:1/100

<*> Dereferened a funtion pointer inside a struture when writing at 0x094aa10
(ret value=0xffffffff) // repeatability:1/100

<*> Dereferened a funtion pointer inside a struture when writing at 0x094aab8
(ret value=0xffffffff) // repeatability:1/100

<*> Dereferened a funtion pointer inside a struture when writing at 0xbfb81098
(ret value=0xffffffff) // repeatability:0/100

--> total : 6 funtion pointers identified inside strutures

In this example, the return value is 0x����, whih orresponds to the padding of our newly reated
mapping. It is therefore not possible to immediately dedue from the mapping pattern at whih o�set
inside this new mapping, the funtion pointer was loated.

7.3 Testing exhaustively arbitrary writes

Sine pmma has the apabilities to make the debugged proess fork() at will, it an exhaustively
attempt to overwrite all the writable addresses mapped inside a given proess, in the hope to trigger
invalid memory aess in exeution mode. This proess is not only slow and resoure onsuming, but
pmma annot attempt to overwrite all those loations with all of the more than 4 billion possible
values a 32b register allows. In onsequene, this option is kept as a last resort in ase all of the other
strategies failed. It is nonetheless pratial to overwrite all the possible loations inside a given proess
with a prede�ned remarkable value.

28

This feature may seem anedotal at �rst sight. But it is urrently the only way for pmma to �nd the
pointers assoiated with unresolved proedure reloations. The alternative would be to run all audits
with an LD_BINDNOW environment variable set in order to fore resolution by the dynami linker
at load time. Unfortunately, this isn't pratial for analysis of network daemon, at least not without
restarting them. In addition, the use of LD_BINDNOW would indue modi�ations inside the writable
mappings of the binary and would no longer re�et its atual state in real exploitation onditions.

7.4 Testing invalid reads

Invalid reads by themselves do not allow diret modi�ation of the ontrol �ow. They an nonetheless
be interesting, depending on how this partiular memory read is handled inside the appliation. If the
value read by the faulting instrution is user ontrolled (meaning : the appliation an be fored to
read from a given address in memory whih is user ontrolled), it may trigger indiret invalid memory
aesses either in exeution or write modes. A trivial example would be an appliation using the value
just read as a ounter in ex to perform a memory opy. By setting this register to a very large value,
an attaker would indiretly ause an invalid memory aess in this loop.

Testing for suh indiret problems aused by an invalid read is fairly straight forward : by setting the
register in whih the value is read to multiple values in di�erent o�springs of the debugged proess, it is
possible to detet if they would eventually result in an invalid memory aess more interesting (either
in write or exeution mode) later one, simply by ptraing the o�spring and disassembling the faulting
address in ase a Segmentation Fault was deteted.

There again, testing the 22ˆ32 possible values o�ered by modest 32b proessors is most probably a
bit overkill. Testing on a thousand of evenly spaed values aross the searh spae is muh more time
saving and would spot most indiret vulnerabilities anyways.

8 Stak desynhronization

For the most part, we have foused so far on where to write in memory in order to ahieve a modi�a-
tion of the ontrol �ow. It is about time we also onsider the question of what to write. In other word,
to onsider what an hijaked funtion pointer should be modi�ed to point to.

In ase writable setions are found to be exeutable, and at least one is both reasonably ontrolled and
not too randomized, the answer is quite simple : opying a nop sled and shellode in at this position
would grant an attaker arbitrary ode exeution. This is how exploitation has been ahieve for about
15 years.

But this senario is beoming less and less likely, in partiular beause writable setions are not exe-
utable anymore thanks either to PaX or pu NX-like bits. In partiular, the heap, whih is the only
setion that an be made almost arbitrary big (whih would help in making the exploit probabilistially
better thanks to a lassi heap spray) is not ommonly exeutable anymore under GNU/Linux.

In order to overome those problems, we suggest to return, not to a writable setion, but to a arefully
hosen funtion prologue. This indeed requires that suh a prologue is either available in a non ran-
domized setion (.text of the binary if ompiled without PIE14), or at an address we an predit (for
instane thanks to a memory leak indued by a previous memory write, like explained earlier in this
paper).

By returning to a hosen funtion prologue, an attaker will get to hose by how muh he will modi�ed
the stak pointer. If they ontrol a large bu�er in the stak and an reate fake stak frames in it,
then he an default bak to more standard stak-smashing-like exploitation (ret2lib, ret2plt or ROP
depending on randomization and ompilation options).

To the best of our knowledge, this methodology has never been publily disussed.

14 We saw earlier PIE doesn't apply to non network daemons on most distributions yet, for performane reasons

29

9 Performane onsiderations

Pmma starts its analysis by dumping to disk all the mapped setion of the analysed binary for easier
study. This preliminary phase is partiularly ostly.

The other phase whih is really ostly in terms of performane is parsing all setions mapped as writable,
list their potential pointers to other setions, and verify if they point to valid assembly instrutions
by disassembling the destination bytes. The ost of this phase is O(n), where n is the size of writable
memory inside the proess.

Finally, for eah potential funtion pointer disovered, pmma will reate a new proess, overwrite the
test pointer with a known value and run the proess. This phase is in O(p), where p is the number of
potential funtion pointers disovered.

Experimentally when looking for funtion pointers, an analysis performed by pmma ranges from a
few seonds when analysing /bin/ping to about one hour when analysing the Opera web browser when
rashing after performing a ertain amount of heap sparying (resulting in a total of 1.3Gb or memory
mapped, among whih more than 1.2Gb is writable memory). The average analysis is of several minutes
for most network daemons.

It is worth noting that urrently, the tests on o�springs are run sequentially one after the other. But in
fat, this is not neessary, wether sysall faking is in use or not. In the near future, we hope to modify
pmma to run those tests in parallel instead of running them sequentially.

10 Conlusion

We have brie�y presented in this artile new exploitation tehniques, or sometimes extension of existing
ones, and detailed how they ould be tested automatially against a target binary vulnerable to invalid
memory aesses.

We have exposed how to reate exploitation models thanks to a new debugging tehnique post memory
orruption, in order to automatially study the exploity of sub lasses of the invalid memory write bug
lass.

Our proof of onept tool, pmma, doesn't write exploits itself. Instead, its goal is to analyze all the en-
vironment onstraints of a given system and provide its user with the best possible attak methodology
for a given vulnerability, generalizing many attak vetors and taking into aount all the small details
(kernel behavior, ompiler versions and �ags, stati and dynami liking options, set of shared libraries
used...) that need be taken into aount to write an e�etive exploit for a given target nowadays. Given
the number of tatis available in the literature that work only on very spei� oasions (suh as
spei� distributions), the exploitation strategies o�ered by this tool shall prove valuable to attakers
(exploit writers) and software developers or system administrators alike ("is this vulnerability a�eting
my system or software exploitable by the state of the art of exploitation theory on my partiular setup
?").

11 aknowledgements

The author would like to thank in no partiular order #bustiati, #soial, #grseurity, #ruxon,
#blakse, THC/TESO, pipas, spender, twiz, bliss, silvio, andrewg, mery, gamma, bsdeamon, addis,
izik, xort, redsand, sbz, deadbyte, the grugq, phil, emmanuel, msuihe, the Hakito Ergo Sum (HES)
team, the HES Programming omitee, the HES speakers and friends, the /tmp/lab hakerspae, Mark
Dowd, Meder Kydyraliev, the CBACert for their tehnial ontributions, ideas and peer reviews. The
Touan System team, his family and his girlfriend, for their enouragements, and their patiene.

30

Referenes

1. PaXTeam: (http://pax.grseurity.net/dos/aslr.txt)
2. PaXTeam: (http://pax.grseurity.net/dos/noexe.txt)
3. PaXTeam: (http://pax.grseurity.net/)
4. AMD: (http://support.amd.om/us/proessor_tehdos/24593.pdf)
5. Drepper, U.: (Seurity enhanements in red hat enterprise linux)
6. Jelinek, J.: (http://g.gnu.org/ml/g-pathes/2004-09/msg02055.html)
7. BBSDaemon: Dynami program analysis and software exploitation, from the rash to the exploit

ode. (Phrak magazine)
8. Bania, P.: Spiderpig. Tehnial report (2008)
9. Cristian Cadar, Daniel Dunbar, D.E.: Klee: Unassisted and automati generation of high-overage

tests for omplex systems programs. Tehnial report (2008)
10. Thanassis Avgerinos, Sang Kil Cha, B.L.T.H., Brumley, D.: (Aeg: Automati exploit generation)
11. Henderson, R.: (http://g.gnu.org/ml/g-pathes/2005-05/msg01193.html)
12. loalore, D..: (/bin/su exploit : http://www.exploit-db.om/exploits/209/)
13. Hertz: (at_exit() loal exploit)
14. Anonymous: Runtime proess infetion. (Phrak magazine)
15. Stealth: (http://stealth.openwall.net/loal/injetso-0.52.tgz)
16. Brossard, J.: Opera : Selet size arbitrary null write, tssa-2011-02, ve-2011-1824 (2011)
17. Intel: Intel 64 and ia-32 arhitetures software developer's manual. In: Volume 3A: System Pro-

gramming Guide. (2008)
18. van de Ven, A.: (Limiting bu�er over�ows with exeshield)
19. Mark Daniel, Jake Honoro�, C.M.: (Engineering heap over�ow exploits with javasript)
20. Chen, Y.: (Using information leakage to avoid aslr+dep)
21. Vreugdenhil, P.: (Internet explorer 8 on windows 7 exploit form the pown2own ontest 2010)

31

	Post Memory Corruption Memory Analysis
	Jonathan Brossard - jonathan.brossard@toucan-system.com
	Introduction
	Related work
	mk_fork() : writing "weird debuggers" for "weird programs"
	Motivation
	Methodology
	mk_fork() implementation
	Limitations

	Here be dragons : zombie reaping
	Dealing with SIGCHLD
	Processes grouping

	Exploiting invalid memory writes
	Finding all the function pointers dereferenced after an invalid write
	Overflows
	Partial overwrites and pointers truncations
	Discovering unaligned memory reads

	ASLR and its limits
	Effective testing of ASLR
	Non Position Independant Executables
	Prelinking
	Biased ASLR
	Memory mapping leakage

	Extending the capabilities of pmcma
	Call tables and returns to registers+offsets
	Searching for pointers to structures (containing function pointers)
	Testing exhaustively arbitrary writes
	Testing invalid reads

	Stack desynchronization
	Performance considerations
	Conclusion
	acknowledgements

