
1 WBTS Project – Architecture Guide 1.2

WBTS Project - Architecture Guide 1.2

Updated July 16th, 2011

2 WBTS Project – Architecture Guide 1.2

Table of Contents
Code Style ... 3

System Overview and Architecture .. 4

Application Startup ... 5

Directory Layout .. 5

Components .. 6

Management Service .. 6

wbts.cfg ... 6

DNS Service ... 7

Virtual Hosts Service ... 9

Testing Resources ... 10

Testing Resources URL Mapping ... 13

WBTS Storage System ... 14

Test Case System... 15

Server Side .. 15

Test Case Resources .. 15

Blade System ... 15

Client Side TestCase Object .. 16

The Blade Process Flow (Standard Test) ... 17

The Blade Process Flow (Pre-Test Version) ... 17

The JsBlade Process Flow (Standard Test) .. 18

The JsBlade Process Flow (Pre-Test Version) .. 18

3 WBTS Project – Architecture Guide 1.2

Code Style
This section briefly describes how the WBTS system was coded in its stylistic and syntactical form.

People looking to modify or build off of WBTS should read this section to get an understanding of the

coding style chosen.

Classes – All class names are camel case such as “ClassName”. Method names are lowercase camel case

such as “methodName”.

Class Members – All class members begin with an “m” – denoting that they are member variables -- and

are of camel case such as “self.mMemberVariable”.

Function names – Function names are all lowercase with underscores in between words such as

“function_name”

Method and Function Variables – Like function names, variable names are all lower case with

underscores in between words such as ”variable_name”.

4 WBTS Project – Architecture Guide 1.2

System Overview and Architecture
As with most code these days, WBTS is very much just glue that holds together framework code. In this

case WBTS uses the Twisted framework. The Twisted framework was selected for multiple reasons such

as performance but most importantly because it offers a multitude of pre-written services that are

useful for testing User-Agents.

For people who are not familiar with the Twisted framework, the technology can appear quite daunting.

Especially with the usage of the asynchronous deferred design. It is highly recommended that anyone

wishing to modify WBTS learn the Twisted framework first, which although may take a while to

understand, is a worthy investment. The Twisted documentation can explain in great detail how services

are handled, as such it will not be documented here.

5 WBTS Project – Architecture Guide 1.2

The majority of application logic is housed in the Management Service. As it has access to all of the

various services, you will see a reference of it passed around to various classes on initialization.

Application Startup

As WBTS is a Twisted application you will need to use the “twistd” application to launch it. For Microsoft

Windows based systems the command line would be: “twistd.py -noy wbts.tac” and for Unix based

systems just “twistd -noy wbts.tac”. The system starts in the following manner.

1. “wbts.tac“ calls the wbts.config.wbts_config script to read in the configuration values and

ensure they are sane.

2. Next wbts.wbts_application creates a Twisted multiservice and starts services in the following

order:

a. Management Service (also houses the storage system)

b. VirtualHosts (HTTP and HTTPS)

c. DNS Service

3. If we are a posix based system, we will shed privileges, if configured, to the desired user.

4. Call setServiceParent and begin waiting for events/requests.

Directory Layout

WBTS is laid out in the following structure on the file system.

Directory Description

/wbts/ The wbts application code directory

 /config/ The startup configuration validator

 /dns/ Code for the DNS Service

 /resc/ Resources for data storage

 /storage/ The storage system (currently supports pydictdbs and mongodb)

 /utils/ Various utility modules and functions

 /web/ Contains the code for handling test cases, custom HTTP processors and code that
modifies the twisted HTTP channel.

/data/ The directory to store data if using the PydictDB data store.

/named_root/ The PySourceAuthority files, where each “.py” file contains the records of a single
DNS authority.

/web_root/ Contains the various resources (.html/.css/.js) for the virtual hosts and the
management interface.

 /mgmt/ The html and java script for the management interface

 /shared/ A directory that is shared across all virtual hosts and the management interface.

 /vhost_root/ The directory containing the virtual hosts.

 /vhost{N}/ A directory to be mapped to a domain name. Multiple domain names can map to the
same directory.

6 WBTS Project – Architecture Guide 1.2

Components
WBTS can be broken into a number of different components and services. This section will outline how

these pieces interact as well as the design of each component. Again, the majority of logic is handled by

the Twisted framework and anyone wishing to learn the intricacies of how these services are working is

strongly recommended to read the Twisted documentation and source.

Management Service
The management service is a web based user interface to make management of WBTS services easy as

well as providing a graphical interface to reviewing test case results. The management of WBTS is done

primarily through services and components that have exposed XML-RPC interfaces.

The MgmtService has a method called “addServiceXRResources” which takes a reference to the service,

the XML-RPC resource class and the URI to map it to within the MgmtService. This allows new services

to easily expose their own methods via XML-RPC.

wbts.cfg
The WBTS Configuration file is in a common Unix configuration file format. It is modified by using

Python’s built in ConfigParser module. It contains multiple sections with the usual key = value format. All

sections are required. For the most part, each value is validated that it is somewhat sane, then assigned

to a “config” dictionary object that contains all configuration parameters. The logic for handling the

HTTP processors (which are used to handle say, PHP script, PL script or the built in twisted RPY script) is

a little more involved. For processors, the key is extension (such as PHP) or file type of the processor and

the value contains either a one or two pieces of information, separated by a comma. The first piece is

the namespace to the class that handles that extension type. For example the configuration line “rpy =

script.ResourceScript” signifies that ”.rpy” files should be parsed by the

7 WBTS Project – Architecture Guide 1.2

twisted.web.script.ResourceScript processor. Because non-twisted processors are supported by WBTS,

an alternate namespace (not twisted.web.*) is also available. It is possible to build custom processors by

adding them to the wbts.web.processors module. For example to support PHP script, you will need to

first add a class to the wbts.web.processors.py script such as the one shown below:

class PHPProcessor(twcgi.FilteredScript):
 filter = '' # Points to the php parser

To have the virtual hosts actually call this processor, you will need to add a line containing not only the

namespace to the processor, but also the path to the executable that will parse it. In our above example

the line would look like this: “php = processors.PHPProcessor,/usr/bin/php”. Note the comma

separating the module’s path and the executable used to actually process the PHP scripts.

For virtual hosts that are defined in the “[VirtualHostMappings]” the hostname is the key, and the value

is the directory where the vhost should be mapped to. In this way, multiple domains can easily be

mapped to the same directory. It should be noted that the vhost directory is appended to the

*WebSettings+ “vhost_root” path. So in the event that: “vhost_root = /opt/wbts/web_root/vhost_root”

and a VirtualHost is mapped such as “attacker.com = vhost1” the full path would resolve

to ”/opt/wbts/web_root/vhost_root/vhost1”. The rest of the configuration is rather straightforward.

The “config” dictionary object is passed to the management service and the various other services

where they can easily access the values.

Since configurations can become quite complex a helper script called “create_config.py” exists in the

same directory as the wbts.tac. This script can be used to quickly and easily generate new configurations.

DNS Service
The DNS service is the twisted implementation of “twisted.names.server.DNSServerFactory”. This

service has been slightly modified to allow for creation of DNS authorities and records which are

available instantaneously after creation. The majority of service logic is found in the wbts.dns_server

module’s WBTSResolverService. This service also supports a client resolver. By assigning an alternate

DNS server, you gain the ability to resolve other records outside of the ones that WBTS has the authority

for. This still allows you to control domains that you don’t actually own, such as www.attacker.com or

www.victim.com, but still resolve other hostnames.

DNS Records

The DNS records are basic Twisted Record_<type> records. However, an “id” parameter is dynamically

added to each record, making it possible to easily find, add or remove them from our running service.

Records of PyAuthoritySource and are loaded from the “named_root” directory assigned in the wbts.cfg

file. An example of an authority file can be seen below:

zone = [
 SOA('attacker.com',
 mname = 'ns1.attacker.com',
 rname = 'root.attacker.com',
 serial = 2003010601,

http://www.attacker.com/
http://www.victim.com/

8 WBTS Project – Architecture Guide 1.2

 refresh = '3600',
 retry = '3600',
 expire = '3600',
 minimum = '3600'
),
 NS('attacker.com','ns1.attacker.com', 3600),
MX('attacker.com', 0, 'mail.attacker.com', 3600),
A('attacker.com', '192.168.3.6', 3600),
A('mail.attacker.com', '127.0.0.1', 3600),
CNAME('ftp.attacker.com','attacker.com', 3600),
CNAME('www.attacker.com','attacker.com', 0)
]

Of course you can always see Twisted’s documentation for a more detailed description of the

PySourceAuthority files and how they are configured. Keep in mind that only a few record types have

been implemented. Currently, WBTS’s DNS service supports the following record types: A, AAAA, MX,

CNAME, NS and of course SOA.

We also create a new basic authority type defined as “MemoryAuthority” for dynamic records. This class

is defined in wbts.dns.authority and just allows us to create a very basic authority without having to

open or parse files but rather assign the necessary records to have the host names immediately

resolvable. (Oddly enough, this type of authority object does not exist in Twisted, hence the reason it

was created.) After a new authority or records have been modified, we need to update the zones or

authorities by calling the WBTSDNSServerFactoryFromService’s updateZones method. Once called, it will

refresh our resolvers and the records will be available from the DNS service.

After changes have been made to records or authorities they usually want to be saved to disk. The

WBTSResolverService also contains the logic for saving or converting “MemoryAuthorities” to the

PySourceAuthority files. This process just pulls out the important information from the records, and

‘stringifies’ it into a proper PySourceAuthority file format. It should be noted this code is really ugly and

should probably be rewritten at some point.

DNS Rebinding

One of the goals of WBTS is to allow for simplifying rebinding style attacks. To do this a special resource

was created and mapped to all the virtual hosts under the URI “rebind”. This resource, defined in

wbts.web.vhost_resources under RebindRequest, allows for a single request to kick off the entire

process. All that is required is the following:

1. A DNS Record that has a TTL of 0.

2. The zone/authority name (attacker.com)

3. The host name (www.attacker.com)

4. The record_type (A)

5. The new value(1.2.3.4)

6. The delay in seconds to flip the record back (5).

http://www.attacker.com/

9 WBTS Project – Architecture Guide 1.2

Since we are modifying records, we need to lock records so that the original value is not lost. This is

done by appending the record we are rebinding to a list of locked records and basically denying any

rebind requests until the record is returned to its original value.

You will not be allowed to rebind to a hostname that is controlled by WBTS. Since the client’s “Host”

header will still point to www.attacker.com (in the above example), WBTS will simply return

www.attacker.com’s contents. This is due to the fact that we are not binding VirtualHosts to their own

interfaces and IP addresses. Unfortunately, when using an alternate DNS server, there appears to be a

problem with twisted.names resolving CNAMEs that are pointing to a system outside of the DNS Servers

authority files. The end result is that currently, we can only do DNS rebinding using A records in

conjunction with using an alternate DNS server.

DNS Management XML-RPC Methods

All resources are defined in the “wbts.dns_server.WBTSResolverXR” and return data in XML-RPC format.

Resource Description

getAlternateDNS Retrieves the alternate DNS server and port.

setAlternateDNS Set’s the alternate DNS server and port.

getNamedRoot Retrieves the directory that the records are stored in.

setNamedRoot Sets the directory to store records in.

reloadAuthoritiesFromDisk Reloads the DNS records from disk.

doesAuthorityExist Checks if the authority (by name) exists

getAuthortiies Returns a list of the currently served authorities.

doesRecordExistForAuthority Checks if a record exists for the authority

getAuthorityRecord Takes an authority name and returns the SOA record.

writeAuthorityRecord Saves record to disk.

writeRecords Writes all records to disk.

getRecordByIdAsDict Takes an authority name and record id and returns a dict object
of the record.

updateRecordForAuthority Updates the authorities record with new values.

createRecordForAuthority Creates a new record for the supplied authority.

removeRecordById Removes the record identified by id from the authority.

createAuthority Creates a new authority record

updateAuthority Updates the authority record (SOA) information.

removeAuthority Removes the authority from the system.

getAllAuthoritiesAsDict Returns all authority records as a dict object.

getAuthorityRecordsAsDict Returns all records for an authority as a dict object.

Virtual Hosts Service
The individual hosts used for testing are made available as virtual hosts. This allows a tester to quickly

and easily test Same Origin Policy issues. The host resources and processors are handled by the

wbts.vhost_server module’s “WBTSVirtualHosts” class.

http://www.attacker.com/
http://www.attacker.com's/

10 WBTS Project – Architecture Guide 1.2

The WBTSVirtualHosts houses all of the virtual hosts. On application startup, its job is to map all of the

processors, shared resources, extensions and the test case related resources to each of the virtual hosts.

Testing Resources

1. ShowRequest - While developing the various test cases, it was quickly realized that Twisted did

not really support a method for looking at the raw request data that was sent to the server

(think TRACE method.) To implement this ability, the default HTTPChannel needed to be

modified. The WBTS implementation of the HTTPChannel can be found in

wbts.web.channel.WBTSHTTPChannel. All the modification does is create a buffer to store the

each individual received line data every time “lineReceived” is called. Since Keep-Alives will keep

the data of multiple requests, we need to split out the data from the previous request into

separate value called “last_request.” This works out well because the “allContentReceived”

method will be called after each individual request, regardless if we have a connection with

multiple requests in a single channel.

2. RebindRequest – The details of this are described in the DNS Section under DNS Rebinding.

11 WBTS Project – Architecture Guide 1.2

3. GetResourceInfo – This resource takes a single parameter “info”. If the info parameters value is

“path” then it will respond with WBTSs shared directory path (as seen from the local file system).

This is useful for tests which require file:// urls where the file system is either the same, or WBTS

is running on the same machine as the target browser.

4. SubmitTestForm – This resource is for when a test requires information that is sent to a form.

The resource will simply read in the posted form results and create the test case object. The raw

output will be read from the WBTSHTTPChannel and assigned a variable. This resultant page of

the form post will create the test case object and submit the results back automatically. The

page template is in the ” web_root/shared/resources/test_form.template.html” file.

5. GetQueryOutput – This resource will echo back data inside of an HTML page. A request with the

“q” parameter will have the value inserted into an HTML page two times. This is useful for

testing cross-site related issues when it is possible to have some influence of data returned in a

page. The page template is in the” web_root/shared/resources/query_output.template.html”

file.

6. HeaderSetter – This resource is actually a custom static.File resource. It is mapped to the entire

shared directory as well as the testcase directory. Although it is used for serving files, its primary

function is for allowing custom response headers to be injected dynamically. This is done by

overriding the getChild method of the resource to look for the “headers” parameter. A full list of

required parameters can be found in the below table.

7. RedirectRequest – A lot of same origin policy issues can be directly attributed to mishandling of

HTTP redirect messages. This resource was built to aid in testing various redirect style bugs. It

allows you to create custom redirect codes and locations.

Parameter Description

testcase_url The test case URL with the client_id in the URI as a
query parameter. It will be parsed out
automatically into testcase/client_id

description A description of the test

input The input to the test

expected_result The expected result

type_type The test that is being performed, either “header”
or ”upload”

Parameter Description

headers A single string containing multiple headers separated by
CRLF characters. (example:
headers=header1:%20value1%0d%0aheader2:%20value2)

encode This tells the HeaderSetter resource how the ‘headers’
parameter was encoded. The valid options for encoding a
location is either ‘b64’ (base64 encoding) or ‘url’. By
default, encode is set to URL as spaces must be encoded
on the query line.

12 WBTS Project – Architecture Guide 1.2

8. SavePreTest – This resource is used for saving test results prior to a test case being executed.

The reasoning is that some test cases may never actually complete, for example calling some

method which causes an internal error which causes the rest of the script to fail and not execute.

The pre-test results are saved in a temporary document store ”pretest_results”. A process exists

to take the pre-test data and populate it into the result document store, in the event that the

automation system gives up. Using this pre-test resource is not mandatory, and can be safely

ignored unless a test is known, or has a high chance of failing miserably. Note, that prematurely

killing the blade runner (either JS or python versions) will cause the pretest data to be stuck in

the pretest document store. This store is cleaned out on start of the WBTS service.

9. FailTest – This resource will fail a test that exists in the pre-test document store. It takes a single

parameter, the test case URL with the client_id as a query parameter. It will parse out the test

case and the client id and move the pre-populated, failed version of the test into the real results

document store and finally, removing the record from the pretest store.

Parameter Description

loc The location to be redirected to (example:
http://google.com)

code The HTTP response code the server should use.
While a client may check 301 response codes to see
if they are same origin, what about 307…?

encode This tells the RedirectRequest resource how the
‘loc’ parameter was encoded. The valid options for
encoding a location is either ‘b64’ (base64
encoding) or ‘url’.

Parameter Base 64
encoded?

Description

testcase_url No The URL of the test case.

target_host Yes The target hostname

user_agent No

The user agent (taken from the request
header.)

testcase No The test case name (the filename)

expected_result Yes

The expected result of the test (as determined
by the testcase)

input Yes The input that was used for the test case (as
determined by the test case)

description No A description of the test case

client_id No The client id, which is parsed out of the URL
(?client_id=<id>)

test_passed No A Boolean value for if the test passed or not
(as determined by the test case)

Parameter Description

testcase_url The URL of the test case.

http://google.com/

13 WBTS Project – Architecture Guide 1.2

10. SaveTest – This resource is used for saving the results of a test case. For each test case, the

following information will be saved to the “test_results” document store. It should be noted

that not all parameters are required.

Testing Resources URL Mapping

The below table summarizes the URL mappings of the testing resources. Please see the

WBTSVirtualHosts _addTestingResources method if you wish to add your own.

Resource URI Mapping

ShowRequest /showRequest

RebindRequest /rebind

GetResourceInfo /resourceInfo

SubmitHeaderTestForm /submitHeader

GetQueryOutput /getOutput

RedirectRequest /redirect

SavePreTest /tc/savePreTest

FailTest /tc/failTest

SaveTest /tc/saveTest

Parameter Base 64
encoded?

Description

testcase_url No The URL of the test case.

target_host Yes The target hostname

user_agent No

The user agent (taken from the request
header.)

testcase No The test case name (the filename)

expected_result Yes

The expected result of the test (as determined
by the test case)

input Yes The input that was used for the test case (as
determined by the test case)

output Yes The output data from the test case.

description No A description of the test case

test_passed No A Boolean value for if the test passed or not
(as determined by the test case)

14 WBTS Project – Architecture Guide 1.2

Virtual Host Management XML-RPC Resources

Only a few methods are exposed to the Virtual Host Management service.

Resource Description

getVirtualHostList Returns a list of virtual hosts

addVirtualHost Takes a domain name and a path and creates a new virtual host. Note
directories are NOT created and must exist on the system.

addVirtualHosts Takes a dictionary of {domain:path} virtual hosts and creates them.

removeVirtualHost Removes the mapping of the virtual host.

WBTS Storage System
WBTS can be configured to use either a local PyDictDB or a MongoDB data store. If you wish to

implement your own storage system, see the storage.py module for the base class to extend. There are

two primary objects a Database and a Table. The Database class is primarily concerned with handling

saving/loading/connecting. The table class is for dealing with the data itself.

 Storage System XML-RPC Resources

For the management side of the DB, the WBTSStorageXR class exposes the data store’s methods to

other services.

Resource Description

get_type Returns the data store type (mongo/pydict)

find_one Takes a db name and a search key (dictionary {col:value}) and returns only
the first record.

find Takes the db name and alternatively a starting point (int) and a limit of
records to return (int) and alternatively a search key (dictionary
{col:value}) and returns all records found within skip:limit

count Takes a db name and returns the number of records in the specified db.

insert Takes a db name and a record to insert (dictionary of {col:value}).

remove Takes a db name and a search key and removes all records found.

drop Takes a db name and drops all data/data store from our service.

save Only used for WBTSPydictDB, saves the data as a pickled data file to disk.

15 WBTS Project – Architecture Guide 1.2

Test Case System
The test case system is a collection of server side and client side code which allows for multiple forms of

automation. Some browsers, in particular mobile ones, make it difficult to automate with an external

application. For this reason a “web only” (i.e. java script) version of automation was implemented. The

test case resources are built using the XML-RPC methods that. People looking to parse the test case

information should look at using the default python xmlrpclib module.

The test cases themselves are single files. For the most part they are written in HTML. However, tests

requiring more interactivity can be built using any of the defined processors (.rpy/.php etc). The test

cases are found in the “web_root/shared/testcases“ directory and mapped to each virtual host as

“/testcases/”. Test cases are broken into their individual test types (such as header tests, object based

tests, various browser regression tests, etc.) and put into their own sub-directories. The test case id is

the filename itself. So it is strongly recommended to make the file names as unique as possible.

Server Side

Test Case Resources

The test case system is mapped to all WBTS virtual hosts under the ‘/cases’ URI. As stated above, all of

the resources return data in XML format.

Class.Method URI Mapping Description

TestCases.xmlrpc_getTestTypes /cases/getTestTypes Returns a list of all directories found
in the shared test case directory.

TestCases.xmlrpc_ getCasesOfType /cases/ getCasesOfType Returns all cases (except those files
found in the excluded.txt file) found
in the subdirectory of “test_type”
where test_type is a specified
argument.

In the sub-directories of the top level ‘/testcases/’ path you may include a text file called ‘exclude.txt’.

The purpose of this file is to allow excluding files (one per line) from being returned in the getTestCases

or getCasesOfType XML-RPC methods. This is useful for when you have supporting files that are not

accessed directly or if you wish to remove specific tests. If you wish to exclude an entire directory (and

all of its sub directories) just append a / to the end of the directory name. So to exclude the “junk”

folder you would add “junk/” or “junk\” to its own line in the “exclude.txt” text file. Please note this file

can exist in any directory. If you wish to exclude certain “css” test cases, please put the “exclude.txt” file

inside of the css directory.

Blade System

The blade automation system resource is mapped to the ‘/cases’ URI. A single method (getTestProgress)

is available for checking the progress of test cases. Using a configurable timer to determine when to go

to the next case is not the best method for running through multiple test cases (however, this method is

supported in the external blade application). Because of this, a method exists for the blade client to

send in a client id and test case id to check up on the browsers progress of a particular test. The blade

16 WBTS Project – Architecture Guide 1.2

system can continually check to see when the test case data has been recorded on the server side, and

trigger the browser to move on to the next case after a certain period of time.

It is possible that a test case may cause the browser to hang or stop responding. In the event that this

happens the pre-test functionality can be used. You can fill out TestCase object with data such as the

description, input information, client id and other supporting information and prematurely send it to the

server. This information is stored in a temporary document, hard coding the test as failed. Next the test

can be executed, and the JsBlade or Blade system can check if the test worked by calling getTestProgress

with the test case and client id. If the test did indeed fail, the failTest method will take the information

from the temporary data store and move it into the final results store, after which it will remove it from

the temporary data store.

Class.Method URI Mapping Description

TestCases.xmlrpc_getTestProgress /cases/getTestProgress Takes the testcase
(filename) and client id,
and checks if the result
exists in the results
document. It will return a
1 for exists, a 0
otherwise.

TestCases.xmlrpc_failTest /cases/failTest Takes the test case
(filename) and client id,
and initiates the fail test
sequence. (Copying the
pretest data if it exists
into the final document
store and removing it
from the pretest store)

Client Side TestCase Object
The heart of the client side test case system can be found in the testcase.js file found in the

“web_root/shared/scripts” folder. This object is created once per test case. The test case data is

encoded using the built in java script escape function. It should be noted that only browsers which

implement JavaScript maybe used with WBTS. Thankfully, these days it is quite hard to find a browser

that does not support JavaScript. However, attempts were made to use standard functions that should

work on the majority of browsers.

The test case object has methods that allow you to pass in a callback, provided you need to check the

results of a specific test. For example, say you wish to test which headers may be added and would like

to see the exact client request. By calling the ‘/showRequest’ resource, you can get the response data

and, using JavaScript, parse out the pertinent data. Then you would assign the response data to your

test case object and record it using the “saveTest” method. In the event that you believe a test will

cause the interpreter to fail, but would like to determine that the client browser at least started the test,

you can use the “savePreTest” method and save all the details prior to running the test. This method

17 WBTS Project – Architecture Guide 1.2

takes a call back which you can use to call into your test function. After you run your test, you then use

the same test case object’s “saveTest” method to save the results and remove it from the temporary

document store.

The Blade Process Flow (Standard Test)
1. The blade client is started with a target virtual host, the browser type, and other client side

configuration values.

2. The browser instance is automatically started (or connected to if an emulator is used).

3. The blade client connects to the WBTS host and gets a list of test cases.

4. The blade client generates a unique id (client_id)

5. The blade client starts up its own monitor looping call for closing pop-ups and dialog boxes.

6. The blade client loads the first test case URL, but appends ?client_id=<client_id> to the end of

each test case URI and tells the browser to start loading that URL.

7. The test case is run in the browser and fills out the TestCase java script object with the results.

This includes the current URL with the “?client_id=<client_id>” data.

8. The test case uses the XmlHttpRequest object to send the test case object’s data to the server.

9. The server parses out the test case results, and parses out the client_id and adds that to the

result document store.

10. The blade client asks the WBTS server the progress of test case for that client_id.

a. The WBTS server checks to see if the result for client_id for that test case exists.

b. If it exists, it will respond with 1, if it does not exist it, it responds with 0.

11. If the test was not complete, poll every 3 seconds for 3 iterations. On the final iteration, move

on to next test logging locally which test case failed.

The Blade Process Flow (Pre-Test Version)
1. Follow steps 1-7 from the standard test version.

2. The JavaScript method “savePreTest” is called to temporarily store the results. This method

contains an argument for a call back which is passed a function or method to run after the

pretest data is saved.

3. The call back method/function is called and the test is run.

4. The test case then calls the “saveTest“ method and sends in the results to the server.

5. The server parses out the test case results, and parses out the client_id

6. It takes the client_id/testcase information and checks if there is data in the pretest document

store and adds that to the result document store.

7. The blade client asks the WBTS server the progress of test case for that client_id.

a. The WBTS server checks to see if the result for client_id for that test case exists.

b. If yes, respond with “1”, if no, respond with “0”

8. If the test was not complete, poll every 3 seconds for 3 iterations. On the final iteration, call

‘failTest’ with the testcase URL (containing the client_id parameter/value). This tells the WBTS

server to copy over the pre-test results into the results table and delete the pre-test data.

18 WBTS Project – Architecture Guide 1.2

The JsBlade Process Flow (Standard Test)
The JsBlade is a java script implementation of the blade automation system. Basically, it’s a single java

script file called “runner.js” found in the “/shared/scripts” path.

1. Browse manually to the “/bladei.html” or “/blade.html” pages to load the blade runner page.

2. JsBlade will automatically load the available test types

3. Chose a test type from the pull down list

4. Manually click Start to start the tests.

5. The JsBlade object will create a unique id

6. The cases of the selected type (from the pull down list) will be retrieved from the getTestTypes

resource.

7. The iframe / frame element’s src attribute will be updated with the testcase url plus an

appended client_id parameter and the generated client_id value.

8. After one second, the jsblade object will call the /cases uri with a getTestProgress request,

passing in the client_id and the testcase.

9. If a 0 is returned, then it will call setTimeout, checking again in 2 seconds. If that fails again, then

4 seconds, then 4 seconds again finally giving up and moving on to the next case. However, if

getTestProgress returns a 1, the jsblade object will immediately go to the next case.

10. After all cases have been visited the script will finish.

The JsBlade Process Flow (Pre-Test Version)
1. Follow steps 1-7 as outlined above in the Standard Version.

2. The test case sets up the JavaScript “TestCase” object and populates the various required data.

3. The JavaScript method “savePreTest” is called to temporarily store the results. This method

contains a argument for a call back which is passed a function or method to run after the pretest

data is saved.

4. The call back method/fuction is called and the test is run.

5. The test case calls then calls the “saveTest“ method and sends in the results to the server.

6. The server parses out the test case results, and parses out the client_id

7. It takes the client_id/testcase information and checks if there is data in the pretest document

store. and adds that to the result document store.

8. The blade client asks the WBTS server the progress of test case for that client_id.

a. The WBTS server checks to see if the result for client_id for that test case exists.

b. If yes, respond with “1”, if no, respond with “0”

9. If the test was not complete, poll every 3 seconds for 3 iterations. On the final iteration, move

on to next test. After one second, the jsblade object will call the /cases uri with a

getTestProgress request, passing in the client_id and the testcase.

19 WBTS Project – Architecture Guide 1.2

10. If a 0 is returned, then it will call setTimeout, checking again in 2 seconds. If that fails again, then

4 seconds, then 4 seconds again finally giving up and moving on to the next case. However, if

getTestProgress returns a 1, the jsblade object will immediately go to the next case.

11. After all cases have been visited the script will finish.

20 WBTS Project – Architecture Guide 1.2

DOCUMENT HISTORY Date Author Version

Initial Draft 9/20/2010 Isaac Dawson 1.0

Minor modifications/fixes 9/21/2010 Isaac Dawson 1.1

Minor modifications,
updated to reflect new
architecture

7/16/2011 Isaac Dawson 1.2

