
Introducing… WBTS
[Web Browser Testing System]

BlackHat 2011

August 3rd, 2011

Uh, what is WBTS?

 Ties in multiple services: Virtual Hosts (HTTP/HTTPS), DNS, remote
logging and management all built into a single system.

 Comes with the “blade” automation system because running tests
manually, kind of sucks.
– Blade is just the name for the in-browser (JavaScript) and external (Python)

scripts.

 Manageable from a web interface (or vim… or emacs if you’re old
school^W).

 All services were built using Python’s stupid fast asynchronous
framework, Twisted. (http://www.twistedmatrix.com)

 Sort of supports 3rd party processors (php/perl)
– I say sort of because I don’t really like either and haven’t tested it beyond the

fact that they run simple test code.

http://www.twistedmatrix.com/

Where can I get it?

 Get the code!
– http://code.google.com/p/wbts/

– http://code.google.com/p/wbts-runner/

http://code.google.com/p/wbts/
http://code.google.com/p/wbts/
http://code.google.com/p/wbts-runner/
http://code.google.com/p/wbts-runner/
http://code.google.com/p/wbts-runner/

Architecture

DNS Service

Virtual Host
Service

WBTS Management
Service

DB Client
Service

[PyDictDB
or

MongoDb]

PySourceAuthority
Files

XML-RPC
Resources

vhost{N} Virtual
Host Directories

XML-RPC
Resources

Test Case
Resources

Test
Results
Store

wbts.cfg
PreTest
Results
Store

Web (console)
Resources

XML-RPC
Resources

XML-RPC
Resources

The blade automation system (quick overview)

 The blade system is for automating browsers to run through our
manually created test cases.

 Consists of server side resources and client side scripts and tools.

 Server side code is simply an XML-RPC interface to list test cases.

 Allows you to exclude individual files or sub directories.

 Implemented in two ways: JsBlade (in browser) and blade.py.

 JsBlade runs through tests by updating an <iframe> src attribute.

 blade.py loads the browser and uses UI automation routines.
– pywin32 for Microsoft Windows

– LDTP for Linux

blade.py structure

blade.py browser nt

posix

chrome.py

ie9.py

{…}.py

chrome.py

chromium.py

{…}.py

blade.py current browser support

Browser OS Method

Chrome Windows Pywin32

IE9 Windows Pywin32

Chrome Linux LDTP

Chromium Linux LDTP

The blade runner process

• Generate Unique ID

• Append it to test case id (the url/filename)

• Load the test case (test runs at this point)

• Call getTestProgress

• No results?

• Poll every few seconds, 4 times.

• If getTestProgress never returns results, call failTest

• Go to next case…

WBTS Test Cases

 So, what does a WBTS test case look like?

 A test case is just a JavaScript object with various properties.

 Two types: simple and pretest.

Property Description

input Either the exact test case input, or a rough outline of what it is.

description A basic description of the purpose of the test.

expected result What the expected result of the test will be

result The result of the test

output The exact output of the test, like the caught exception and it’s
message

test passed A true or false value determining if the test passed or not.

Test Cases – (continued)

 A “simple” test case:

 See http://wbtshost/shared/templates/simple-testcase.html

 Used for the majority of test cases, where the chance of the
interpreter bombing, or something failing horribly is low.

TestCase
object

properties

Runs some
kind of test

Passed/Failed
set output.

Call
tc.saveTest()

http://wbtshost/shared/templates/simple-testcase.html
http://wbtshost/shared/templates/simple-testcase.html
http://wbtshost/shared/templates/simple-testcase.html

Test Cases – (continued)

 A “pretest” test case:

 See http://wbtshost/shared/templates/pretest-testcase.html

 Used only when the chance of the interpreter bombing, or
something failing horribly, will most likely occur.

TestCase object
properties

tc.savePreTest(

<callback>

)

Call back
function is

called.
Test runs…

Passed

/Failed set
output

tc.saveTest()

http://wbtshost/shared/templates/pretest-testcase.html
http://wbtshost/shared/templates/pretest-testcase.html
http://wbtshost/shared/templates/pretest-testcase.html

Using WBTS to help you find bugs.

 Besides memory corruption, what else is there?
– Same Origin Policy Bypass – attacker.com meet bank.com

– Header Injection – X-MOBILEID=NOTME123

– Cookie handling issues – Set-Cookie: alljpcookie=1234; domain=.co.jp;

– Parser Issues - <scr\xef\xbb\xbfipt>alert(123)</script>

– Architectural/Design Issues – CSS knows where I’ve been :/

– File Handling Vulnerabilities – input type is a radio, no wait… now it’s a file! oh
noes! document.forms[0].submit(); *

– URI Handler Issues –mailto://"%20--run=“something.exe“

– Protocol Implementation Issues – My cert comes with null bytes

– Trust Issues with Component Interactions – Applets are Safe, Really

SOP Bypass Testing with WBTS

 Make use of the HeaderSetter resource to create arbitrary response
headers.
– Pass the header data as a query parameter to any resource/testcase:

 http://attacker.com/shared/resources/somefile.html?encode=b64&headers=aGV

hZGVyMTogdmFsdWUxCmhlYWRlcjI6IHZhbHVlMg==

 Use the RedirectResource to create custom redirects.
– Supports any response code, not just the default 301.

– Can include funky bytes by base64 (encode=b64) or url (encode=url) encoding:

 http://attacker.com/redirect?code=302&loc=http://victim.com/forbidden.html

 Use the TestCase objects methods for testing cross domain
accessibility:
– tc.readOriginData(iframe, origin)

http://attacker.com/headerSet/somefile.html?encode=b64&headers=aGVhZGVyMTogdmFsdWUxCmhlYWRlcjI6IHZhbHVlMg
http://attacker.com/headerSet/somefile.html?encode=b64&headers=aGVhZGVyMTogdmFsdWUxCmhlYWRlcjI6IHZhbHVlMg
http://attacker.com/redirect?code=302&loc=http://victim.com/forbidden.html

Header Injection with WBTS

 Use WBTS’s /showRequest resource to view raw request data.

 Make use of the TestCase helper functions to parse/analyze such as:
– tc_parsehdrs_for_crlf(xhr, tc);

create element with
newlines

call tc.sendRequest
to showRequest

tc_parsehdrs_for_crlf
is called

parse response for
header

call saveTest

Testing Cookie Handling with WBTS

 Use the showRequest resource to view the raw request data.

 Use sub-domains and the WBTS DNS service for testing
domain/scoping related issues.

 The TestCase object will automatically clear cookies before and
after tests begin.

Testing Parser Issues with WBTS

 Make use of the getOutput resource as it allows insertion of
arbitrary text to be echoed back.
– Example: http://attacker.com/getOutput?q=asdf

 Use savePreTest if you think the parser will break prior to your test
executing.
– Look at /testcases/misc/parser/utf-8-bom-in-script-tag.html as an example.

http://attacker.com/getOutput?q=asdf

File Handling Vulnerabilities

 Types of file handling functionality to test.
– HTML Forms

– File Download

– Cookies (Yes Cookies)

– Caching

– file:// URI handler

 Newer APIs that deal with files should definitely be targeted.
– File API

– File API: Writer

– Indexed DB

– WebStorage

– Web SQL

Testing File Handling with WBTS

 Unfortunately…. Unable to handle file uploading easily via
automation.

 Use the formSubmit (test_type =“upload”) resource for viewing the
uploaded files contents.

 Use the ability to set arbitrary headers (HeaderSetter) for testing
file downloads:
– http://attacker.com/shared/resources/4x4.png?headers=content-

disposition:%20attachment

– * Use encode=b64 if you need to pass attachment; filename=…

http://attacker.com/shared/resources/4x4.png?headers=content-disposition: attachment
http://attacker.com/shared/resources/4x4.png?headers=content-disposition: attachment
http://attacker.com/shared/resources/4x4.png?headers=content-disposition: attachment

Testing URI Handlers with WBTS

 Requires rather manual processes.

 Use the RedirectResource or HeaderSetter resources to create
redirects and custom headers to test URI handlers.

Protocol Implementation Issues with WBTS

 WBTS won’t really help with testing protocols as it is at a much
lower level.

 WBTSHTTPChannel *could* be extended/modified for testing low
level

 Plans to implement…
– An FTP server

– A WebSockets service

Testing Trust Issues in Browsers with WBTS

 Use the DNS system for testing cross origin leakiness.

 Use the various resources to test how components react to different
headers.

