

Network Stream Debugging with Mallory

Jeremy Allen <jeremy.allen@intrepidusgroup.com>

 Rajendra Umadas <raj.umadas@intrepidusgroup.com>

Abstract

Page 2 of 18

Abstract

Testing software for security bugs and flaws that do not use a standard, well known, protocol can

be very challenging. On a time-boxed test where a client and a server, or a set of peers, are the

targets of an assessment, a tester faces tough decisions. When the security tester's tools, such

as debugging proxies, cannot easily Man in The Middle (MiTM) the application’s traffic this

eliminates valuable time the tester could spend attacking the application itself. Very often these

applications are protected with some form of cryptography to provide point-to-point data

protection, SSL being the industry standard for this task. The application that is being assessed

may also be running on a mobile device, which may not provide a friendly environment for

standard testing tools. Testers often spend the early portions of an assessment massaging

application traffic into their favored tool chain for observing, manipulating, decrypting and

generally Man in The Middling the traffic. Wrestling with SSL certificate chains, chaining socks

proxies, spinning up netcat and socat forwarders and configuring HTTP proxies are all common

activities in this phase of an assessment. What is a tester to do?

Contents

Page 3 of 18

Contents

Abstract .. 2

Contents ... 3

Introduction .. 4

Architecture ... 6

Protocols .. 6

HTTP ... 6

HTTPS ... 6

SSH .. 6

UDP .. 7

DNS .. 7

SSL ... 7

Plugins ... 8

HTTP Plugins .. 8

A Plugin Example: Session Hijacking ... 8

Other HTTP Plugins ... 10

Flexibility in Design .. 11

Testing and Debugging ... 13

The GUI ... 13

Rules ... 14

Bibliography .. 18

Introduction

Page 4 of 18

Introduction

Mallory is an idea, and now a tool, that came about due to frustration with many of the tools out

there. There are many well known, and trusted, MiTM tools. These tools often focus on being an

all in one solution: performing ARP poisoning to intercept traffic, routing the traffic, decoding the

traffic and providing data modification facilities for traffic. The constraints placed on tools of this

nature often make them less than ideal for an assessment focusing on one specific application or

protocol. Mallory’s design discards several aspects of many MiTM tools, and focuses on the

transport and application layer aspects of MiTM. Mallory provides a straightforward tool for getting

in between SSL traffic, performing MiTM on it and modifying it in transit. In fact, there is no code

in Mallory for working with Link or Internet layers of the traffic. When Mallory began life, it was to

be an internal tool. The goal was to design a tool, for application assessments, which could

intercept, decrypt and record traffic quickly and easily. Mallory has since grown into a sizeable

security tool that solves many problems security testers encounter when assessing applications.

Additionally, Mallory also provides many traditional MiTM features. We consider Mallory a valuable

addition to our arsenal.

We make several important assumptions about the design and usage of Mallory:

 An entire system must be a dedicated Mallory Gateway

 How the traffic reaches the Mallory system is not something Mallory really cares about

 Mallory will only work with and understand Transport Layer (OSI Model) protocols, primarily

TCP and UDP

 Mallory (currently) runs on Linux and has access to Netfilter connection tracking

 Mallory will be implemented with a high-level language that lets us focus the problem at hand

(Python).

Introduction

Page 5 of 18

Network

Link

Physical

Data Source
Data

Destination

Non-Mallory Gateway

Network

Link

Physical

Victim’s Data

Source

Real

Destination

Mallory Gateway

Transport

Mallory

Apparent

Victim’s

Destination

Apparent Data

Source

Mallory Magic

Figure 1: Non-Mallory to Mallory Gateway Comparison. (Red= Host, Grey= Independent layer, Orange= Data

Consumer/Generator)

These assumptions are not onerous in the age of cheap computing power and readily available

virtualization technology. The assumptions outlined greatly influenced and shaped the

architecture of Mallory.

Another important consideration that shaped the design of Mallory was mobile application testing,

mobile applications often possess characteristics that make them quite difficult to MiTM. There are

many reasons for the degree of difficulty: they might not have configuration options for proxies,

applications might not be proxy aware and running proxies on a device can be challenging given

time constraints. However, most mobile devices can connect to a WiFi access point, and do send

application data over that link. Creating a proxy that could transparently proxy this type of traffic,

and virtually any other traffic on WiFi or Ethernet link, was the original purpose of Mallory.

Architecture

Page 6 of 18

Architecture

Mallory is a platform for implementing protocol awareness, which will be MiTMed and plugins for

those protocols. Additionally, Mallory supports a GUI that can configure many aspects of Mallory’s

behavior and debug/modify TCP streams. Python is a natural choice because there is a vast

ecosystem for Python and the language is hacker friendly. Every common protocol has an

implementation in Python, most of which can easily be leveraged in Mallory with a little work.

The design of Mallory aims to provide just enough structure for protocols, plugins for protocols,

and tasks like debugging to get the job done without getting in the way or being overly

cumbersome. Most protocols do not work directly with the Debugging GUI, SSL being the notable

exception. Protocols are designed to work with plugins and provide a framework for plugin

development that allows developers to automate and easily implement many common MiTM

features. Mallory is, essentially, a transparent MiTM proxy that resembles other transparent

proxies, such as Squid (Wiki, 2010) and many COTS proxies used by large commercial entities

and government organizations.

Protocols

Protocols are an important concept in Mallory, roughly analogous to common protocols, such as

HTTP, SSL, SSH and other common application layer protocols. They represent one of the

methods Mallory can work with intercepted traffic. Protocols focus on active traditional MiTM tasks

that require full knowledge of how to decode and intercept a network stream to do something

interesting from the MiTMs perspective. A tool that forwards traffic would not be very interesting

from design and implementation standpoint. Mallory protocols decode traffic and encapsulate it

into programmer friendly objects that are easy to manipulate. Once Mallory decodes traffic, it is

accessible to the plugin system, while providing a plugin author with a more abstract view of the

data. There are several protocols already implemented in Mallory. The currently featured

protocols are HTTP, HTTPS, SSL, SSH and DNS. With these core Internet protocols properly

implemented it is possible to decode and understand the traffic of many applications. When none

of the implemented protocols are appropriate or Mallory encounters an unknown protocol the

lower level TCP and UDP protocol implementations are recruited to handle the traffic.

HTTP

The HTTP protocol is a simple protocol in that it is stateless and there is a single request and a

response. Mallory captures both the request and the response and decodes them into objects.

These objects provide access to the key parts of an HTTP request/response, such as the headers

and the body. The protocol also decodes various encoding types, such as chunked encoding. HTTP

is everywhere and was obvious choice for an initial protocol due to its ease of implementation and

the huge base of applications that support and use HTTP for at least some amount of

functionality.

HTTPS

HTTPS is HTTP with SSL mixed in. Many applications use HTTP with SSL and this was also an

obvious protocol to support. It behaves identically to HTTP with regard to HTTP protocol decoding.

SSH

SSH is a more interesting protocol to implement, SSH is primarily an interactive protocol that

requires long running TCP connections. The approach taken with this protocol was to use the

Architecture

Page 7 of 18

Paramiko (Pointer) library. For each intercepted SSH connection an SSH daemon is spawned that

attempts to MiTM the SSH connection. Upon successful MiTMing, the victim’s username and

password (in cases where password authentication is used) are logged. Mallory provides a simple

TCP based server that can then be accessed via telnet or Netcat. This server lists all known

MiTMed SSH sessions and lets the user open a shell on that SSH transport. Because the existing

transport is reused a new channel with a PTY is opened without creating a new connection to the

server. In log files it will only look as though the user has authenticated once. It is also possible

to capture and inject arbitrary content into the SSH session of the victim.

Another feature of interest is that any port forwarded connections can be intercepted via custom

methods to perform tasks, such as MiTM of an SSL connection forwarded via SSH.

Figure 2: SSH MiTM in action. Mallory provides the server on port 20756 by default.

UDP

Mallory has full support for UDP. Transparently proxying UDP based protocols is an interesting

task for a proxy. UDP is a connectionless, stateless protocol. Any protocol that has or maintains

state on UDP does it with its own state maintenance mechanism. Many of the most famous

examples of UDP based protocols are short-lived request and response oriented protocols, such as

DNS. Some protocols will implement a state mechanism, which usually involves frequent “keep

alive” datagrams to let the client/server know the connection is still active. If the client fails to

send a “keep alive” datagram the server will assume the connection has died and close the

session. Mallory assumes a reasonably long timeout for such “keep alive” datagrams, which

enables Mallory to reasonably proxy almost all UDP based protocols. Currently, the only

implemented UDP protocol for is DNS.

DNS

DNS support in Mallory is limited to A record manipulation. Currently, Mallory supports a mapping

table that will return the IP address specified for a specific DNS A record request. The table supports

wildcard style matching of the queried hostname. This functionality is implemented using the

excellent DNS toolkit for Python: dnspython (dnspython). Due to the extensive dnspython library, it is

possible to extend the DNS functionality rapidly to include other query types, depending on the needs

of the tester. However, this will currently require further development of the DNS protocol. The

common use case for the DNS protocol during testing is to return a local IP address for domain names

that have been statically compiled into, or configured into, a binary or application. Once the traffic is

headed to a local address it can be recorded or the tester may attempt to emulate the server locally

for expedient testing of the application.

SSL

Architecture

Page 8 of 18

SSL support in Mallory is based on the python SSL package, which is in turn implemented using

OpenSSL. Mallory deploys with a Certificate Authority (CA), which is used for all SSL man in the

middle operations. Using previously outlined techniques, a developer can easily use the SSL

protocol as a “mixin” to create custom SSL based protocols. Alternatively, the SSL protocol can be

used naked, with the base TCP protocol implementation in Mallory, to provide a debugging

session for SSL using the Mallory TCP Debugging GUI.

Plugins

The plugin framework provides a standard interface to alter the behavior of protocols at key

points in each protocol. One of the challenges of generalizing plugin architecture is that each

protocol functions differently and has different places where a plugin action makes sense. Any

point in a network flow where a plugin could hook may be a good place to read and modify data,

only read data or only modify data. Each protocol is different. To address this each protocol

generates different events, which the plugin can then respond to depending on the event. To

support plugins each protocol has one protocol daemon. The protocol daemon runs it its own

thread and is responsible for managing the plugins for that protocol. When a plugin must be

instantiated the daemon will instantiate it. The daemon is also responsible for brokering

communication between protocols and plugins. A protocol never directly communicates with a

plugin. This provides the adequate abstraction for plugin architecture, which lets the plugin

developer focus on their plugin.

HTTP Plugins

One of the most common protocols used by applications, even thick clients and other client to

server applications is HTTP. It is everywhere and used in all manner of environments. It was the

first protocol implemented in Mallory. The protocol, primarily, decodes HTTP requests and

responses and provides easy access to the HTTP headers and body. The HTTP plugin has the

opportunity to collect and modify data from requests and responses. Plugins that collect data can

often provide an interesting outlet for programmatic analysis of the data as it flows. Applications

often send sensitive data over HTTP and HTTPS. In particular, session identifiers, Personally

Identifying Information (PII), and username’s and passwords are of interest. A plugin that collects

this data for analysis and observation can be tremendously valuable over the course of an

application assessment. Data modification is another valuable activity in HTTP. In cases where

some logic that is more complex than a regular expression, plugins provide a perfect solution for

a security testers needs. For instance, in many assessments the tester may need to replace

certain values in each request. A plugin easily automates this task. This architecture also lets a

plugin author implement complicated plugins. A plugin could easily implement a feature SSL

stripping tool, such as Moxie Marlinspike’s sslstrip (Moxie). The advantage of a Mallory plugin

versus a stand-alone MiTM tool is easy to see: a plugin author can focus on their idea and code

and not worry with the lower level details of protocol decoding and network handling.

A Plugin Example: Session Hijacking

The session hijacking plugin, currently, collects certain header values (the Host and Cookie

headers) values and stores them in memory. Plugins can store data in any manner they choose:

memory, files, databases, other network services, etc. Plugins are, essentially, python code with

no limitations beyond those presented by the physical hardware. Using another, optional, feature

of the plugin architecture, it also has a listening server that can pass all of the collected headers

to a client. Typically, to hijack a session all that is required is the Host header and the Cookie

Architecture

Page 9 of 18

header. To facilitate session hijacking the plugin collects these two header values for each request

that flows through the proxy. For Mallory and security testing needs, it was straightforward to

implement a browser extension as our initial client agent. The browser extension queries a service

running in the Mallory process. The service returns data formatted in JSON (Wikipedia).

Figure 3: The Session Hijacking plugin implements a simple TCP server that always returns one HTTP
response. The response returned is JSON data that can be returned to any client that wishes to acquire the

host and cookie value pairs. For security reasons only clients from localhost are allowed to connect.

Currently, an extension is implemented for Chrome. This extension queries the service by sending

it a standard HTTP GET request. It then formats this data in the browser to perform the session

hijacking. The chrome extension has been configured to work outside of the same-origin-policy of

the Chrome browser and thus is able to set a cookie for any domain.

Architecture

Page 10 of 18

Figure 4: The chrome extension in action. This lists all of the cookies Mallory has captured and lets the user

select the cookie they wish to apply.

The flow for using this extension is to review the list of captured cookies and identify the

appropriate cookie/host pair. The user then clicks the radio button and then the Apply button (not

shown in the figure). The user must have the targeted domain open in a tab. When the apply

button is clicked the cookies for that host are set from the extension and the page is reloaded.

Session hijacking in three easy clicks. This is very valuable for testing certain behaviors of a

session management system. For assessments that focus on web applications consumed from

mobile device users, this feature makes it easy for the tester to load the application in a standard

browser and use a typical HTTP proxy tool chain for testing the web application. Additionally,

demonstrating this extension and plugin is an effective reminder of the risk of XSS and poor

session management mechanisms.

 Other HTTP Plugins

There are many other HTTP plugins. Another key plugin example, mostly done for the

entertainment of Mallory’s authors, was the “upside down Internet” plugin. Implemented in a very

small amount of code, this plugin flips images upside down using the Python Imaging Library

(PIL). We developed this plugin to highlight the Python code ecosystem, ease of plugin

Architecture

Page 11 of 18

implementation, and to make web application penetration testing more entertaining. The figure

below shows the effect of this plugin running.

Figure 5: Upside down Internet. There are many creative data modification uses for the plugin system.

Flexibility in Design

Another key consideration when designing any software system is flexibility. Striking a good

balance between design, refactoring and simply getting things done is a continual struggle for a

programmer. There must always be a balance, and the Mallory architecture is kept relatively

clean to create a platform that allows protocols and plugins to be implemented with an intuitive

API for the protocol. Protocols require more work to implement as they span a huge variety of

tasks and purposes. Mallory provides a protocol implementation with connected and ready to go

source and destination socket objects. What the protocol does with those sockets is up to the

protocol implementer. Many Python libraries that implement protocols expect, or can at least use,

sockets that are ready to go.

One of the key aspects of the design is that each protocol has the opportunity to respond to

certain critical events in the life of a TCP stream. These events are: server socket creation

(SSCREATE), client socket after accept (CSACCEPT), client socket after server socket creation

(CSAFTERSS), start data forwarding for client to server (STARTC2S) and start data forwarding for

server to client (STARTS2C). The first three events deal with socket initialization and give a

protocol implementer a chance to modify the socket itself, such as wrapping it in a custom

cryptography protocol that is transparent to the data forwarding methods. The latter two events

each run in their own thread and forward the data in the indicated direction. It is important to

note that there are two threads, while there is only one protocol instance for those two threads.

Because of this, thread safety considerations are of critical importance when reading or writing to

member objects of the protocol instance.

One example of this architectural flexibility in action is the HTTPS protocol. It is a mixin of the

HTTP and SSL protocols, mixins in python are usually some form of multiple Inheritance. The

Architecture

Page 12 of 18

figure below illustrates the simplicity of wrapping any protocol in SSL. That is the approach taken

in the Mallory HTTPS protocol.

Figure 6: The HTTPS plugin. This plugin is a mixin and does not actually implement any methods. All of the
required methods are inherited from the HTTP and SSL protocol implementations. The inheritance is

performed on the class declaration, seen on line 6

This gives an author great flexibility in implementing a protocol. For example, if a Mallory

developer has implemented a protocol, but an application has wrapped that protocol in SSL, using

a program such as Stunnel (Hatch) or linking against and using OpenSSL (OpenSSL) internally,

the developer can mix in the SSL protocol to created “secured” versions of the protocol.

Testing and Debugging

Page 13 of 18

Testing and Debugging

When a protocol is available or known and it is common, the job of testing and debugging an

application using it is much less complicated. When the application is employing an unknown

protocol, it is often significantly more difficult to assess the application in a time-boxed

assessment. Not only must the tester reverse engineer the protocol, but they must also assess

the application and what it does. Just viewing the traffic can become a significant challenge. One

of the frustrations of the author’s of Mallory was that most tools required, at a minimum, socks or

HTTP proxy support, or the ability to control the IP address of the server a client tried to connect

to. In many cases, these constraints are impractical or can be time consuming, if the tester must

reverse engineer and patch a binary just to change a destination address. One of Mallory’s key

features is the ability to easily debug, and modify, data from any TCP stream. Mallory has a rule

system to refine the data sent to the Mallory debugging client. The rule system also supports a

data modification system known as the “Muck Pipe”.

The GUI

A GUI can dramatically simplify some tasks. Mallory supports a simple XML RPC interface for all

debugging clients. The debugger (Note: The debugger is called such even though it supports

many features that are not very debugging-like) receives all of the traffic it is configured to

receive and gives the user a chance to view, and modify it. There are two views available for the

data: text or hex. In many protocols a text view of the data is inappropriate (the protocol

supports null bytes). However, the text view has its uses. The figure below illustrates the

standard GUI interface in Text Edit mode.

Figure 7: Text view mode of an HTTP GET Request

And now, the same request viewed in Hex Edit mode.

Testing and Debugging

Page 14 of 18

Figure 8: An HTTP Get Request in Hex Edit Mode

The user interface controls if data is intercepted or automatically sent. If the TCP debugger does

not automatically send it, the user must send each set of stream bytes by clicking the send

button, or pressing the S key. This provides one of the essential features of Mallory and provides

a fast way to both view and edit the data. Tools like Wireshark (Wireshark) already provide an

excellent view only functionality for a data passing through a MiTM gateway, but it does not

provide a method to pause and modify the data that flows through it. This is the TCP debugger’s

job.

Rules

Early in the design of GUI, it became apparent that controlling what streams Mallory sends to the

debugger would be important. There were two options considered: IPtables rules or an internal

rule system for Mallory. The internal system is the current design. With IPTables the assumption

is that the user would pick and choose specific IPs and ports and that is all that would get sent to

Mallory. One of the key factors for the internal rule system is that it is significantly easier to use

for quick rule changes and several other planned features have been incorporated into the rule

system (including the muck pipe). Additionally, Mallory can be used for an entire interface

(logging data and running data modification rules), while only sending a select set of traffic to the

debugger. A rule is a set of matching conditions for data that has no configured protocol (using

the base TCP protocol handler for unknown traffic). Each rule has an action or rule type. Mallory

executes the action when the conditions for the rule match. Rules are stored in an ordered list

and each rule has the option of terminating the processing or the rule list or passing through to

allow lower priority rules to match. The pass through option for rules lets multiple different rules

types such as a Muck (data modification rule) rule and a Debug rule (send to the debugger) to

match the same data. The screen capture below shows the various options that rules can match

on.

Testing and Debugging

Page 15 of 18

Figure 9: Rule specification GUI.

The rule creator provides a friendly interface to edit, apply, delete, and otherwise configure rules

in Mallory. All rules have a number of configurable options. Firstly, a set of matching conditions

are available: direction, address, port and payload contents. The rule must also have a type, and

if it is a Muck rule it must have a MuckPipe transformation. MuckPipe transformations are sed-like

regular expressions that can transform the data using the Python regular expression system.

Binary transformation is possible. The ordering of rules is important, if a rule is not pass through

and it is a match for the incoming data the rule system stops processing rules. Note: rules can be

saved in ruleconfig.py or edited in the GUI, ruleconfig.py is for persistent/permanent rules. Below

is an example rule that sends all traffic to the debugger.

{

 "name":"default",

 "action":rule.Debug()

}

Figure 10: Default debug rule that sends all traffic to the debugger. Rules are not pass through by default.

Testing and Debugging

Page 16 of 18

For any rule match item that is not included in the rule configuration, it is assumed to be a

wildcard configuraiton and will match any criteria for that incoming stream. If the tester only

wanted data that was sent from the client to a server, the following modification could be made:

{

 "name":"default",

 "action":rule.Debug(),

 "direction":"c2s"

}

Figure 11: Debug rule specificity increased to match only on the client to server direction

Rules can also match on IP address, TCP destination port and payload contents (simple string

matching).

Muck Pipe Rules

The MuckPipe is similar to features in other MiTM proxies and was designed to be very quick and

simple to create in the tradition of Unix command line stream editor sed. The MuckPipe is a rule

action that executes when a rule is matched and a properly formed Muck aaction is assigned to

the rule. A MuckPipe is a series of sed-like stream edits that the rule system executes on a

stream. Below is an example of a MuckPipe Rule that will remap the upper case “A” key to the

upper case “B” key for the VNC protocol:

{

 "name":"c2s_vnc",

 "direction":"c2s",

 "port":"5900",

 "action":rule.Muck(["\x04\x01\x00\x00\x00\

 x00\x00\x41/\x04\x01\x00\x00\x00\x00\x00\x42/g"]),

 "passthru":"true"

}

Figure 12: MuckPipe transformation to remap keys in VNC. This would be executed in the client to server

direction to remap the key the client sent. Note that this is a rule specification in the persistent ruleconfig.py,

which is where long term / permanent rules can be saved.

The syntax is not easy to spot with all of the backslashes milling about. Below is a more simple

MuckPipe rule for HTTP clients that strips gzip and deflate strings from a client, which tells the

server the client can’t handle compressed content. When the content comes back from the HTTP

server it will, hopefully, be uncompressed for easy modification.

Testing and Debugging

Page 17 of 18

{

 "name":"http_muck_mangle_c2s",

 "port":80,

 "action":rule.Muck(["gzip,deflate/ /1","deflate/ /1","gzip/ /1"]),

 "direction":"c2s"

}

Figure 13: Note the syntax is “regular expression match”, then forward slash, then “replacement”, then

forward slash, then “number of times to replace”.

There are two key points to note about a MuckPipe rule. It can apply multiple regular expressions

(for those familiar with Python you will notice the second rule is actually three strings in a list,

which applies three separate muck pipe transformations). The second point is that each muck

pipe rule has a count of how many times it will match, and replace, data. Lower case g means

global and a number means exactly this many replacements. The second rule,

http_muck_mangle_c2s only runs once to avoid modifying anything but header content if it

matches. (If the header does not have this and the HTTP request body did, that content could get

mangled). The muck pipe provides a programmatic way to make edits. This allows the tester

great flexibility in replacing session identifiers, modifying values and performing other repetitive

editing tasks on the fly.

Bibliography

Page 18 of 18

Bibliography

DNS Python. (n.d.). Retrieved July 5, 2010, from DNS Python: http://www.dnspython.org/

Hatch, B. (n.d.). Stunnel Landing Page. Retrieved July 1, 2010, from Stunnel: http://www.stunnel.org/

Moxie. (n.d.). SSLSTRIP. Retrieved July 5, 2010, from SSLSTRIP:

http://www.thoughtcrime.org/software/sslstrip/

OpenSSL. (n.d.). OpenSSL Landing Page. Retrieved July 5, 2010, from OpenSSL Project Page:

http://openssl.org/

Pointer, R. (n.d.). Python Paramiko. Retrieved from Python Paramiko: http://www.lag.net/paramiko/

Wiki, S. (2010, February 19). Interceptipn Proxy. Retrieved July 5, 2010, from squid-cache wiki:

http://wiki.squid-cache.org/SquidFaq/InterceptionProxy

Wikipedia. (n.d.). JSON. Retrieved July 5, 2010, from JSON: http://en.wikipedia.org/wiki/JSON

Wireshark. (n.d.). Wireshark Home Page. Retrieved July 1, 2010, from Wireshark:

http://www.wireshark.org/

