
Recurity Labs GmbH
http://www.recurity-labs.com

2010-07-05

Preventing Adobe Flash Exploitation

Blitzableiter - a signature-less protection tool

Abstract

Adobe Flash is the most widely deployed Rich Internet Application (RIA) platform. The large

population, coupled with design and implementation weaknesses, makes Flash an attractive target for

client-side exploitation as well as online fraud using Flash advertisements. The protection tool

“Blitzableiter” implements a new approach to counter both attack types by using file format

normalization and dynamic Flash code modifications. While the current implementation targets Adobe

Flash, the author believes that the general approach is applicable to other complex file formats that

are often used to carry out client-side attacks.

Author

Felix 'FX' Lindner

Head of Recurity Labs

Recurity Labs white-paper

Preventing Adobe Flash Exploitation

1 Introduction
Rich Internet Application platforms, such as Adobe

Flash, Microsoft Silverlight and Sun JavaFX currently

play an important role in the dynamic presentation of

online content. The Adobe Flash run-time

environment, also known as Flash Player, is installed

on 97%1 of computers and mobile devices used for

web browsing and many popular web sites employ

Flash for implementing dynamic content

presentation.

The large distribution of the Flash run-time makes it

an attractive target for client-side attacks. Most

commonly, the attacker identifies and exploits a

vulnerability in the parsing code of Adobe Flash by

creating an intentionally malformed file, which results

in an exploitable memory corruption when viewed

with a Flash enabled web browser.

Another area of concern is the use of Flash files for

banner advertisements and third party applications

on modular web sites. In this case, the native

functionality of Flash is used to present apparently

innocent content when submitting the application to

the web site or advertisement network for review.

After the Flash file is accepted and distributed on the

site or advertisement network, it will change its

behavior and pull personal information from its

surrounding web site or forward the user to a

malware distribution site. Several popular online

news media sites2 suffered from incidents with

malicious banner advertisements.

1 http://riastats.com/, July 2010

2 Handelsblatt.de and Zeit.de
(http://www.heise.de/security/meldung/Schaedliche-
Werbebanner-auf-Handelsblatt-de-und-Zeit-de-2-Update-
921139.html), New York Times
(http://www.nytimes.com/2009/09/15/technology/internet/15ad
co.html?_r=3)

Therefore, a defense approach must cover both

types of attacks in order to be applicable for both end

users and web site operators.

2 Overview of the Attack Surface
The file format used by Adobe Flash is called the

SWF (pronounced “swiff”) format. Originally

developed by FutureWave Software, it was

subsequently expanded by Macromedia and Adobe.

The file format can carry a variety of content types,

including graphic objects, type sets for font

rendering, sound and video data as well as code for

the virtual machines provided by the Flash run-time.

The current specification3 of the file format covers

SWF version 10, which still supports all data

structures from previous versions.

Internally, the format is split into so-called Tags,

which then carry a certain type of content. Tags are

simple Type-Length-Value container data structures.

Adobe specifies 63 different Tag types, each

carrying a variety of often complex and nested data

structures. Flash authoring tools or SWF generators

often use additional undocumented Tag types to

include proprietary data in the output file.

Since SWF is a multimedia presentation format, it

can include a range of other media formats, such as

MP3, various video formats as well as PNG, JPEG

and GIF images.

The Flash Player provides two independent and

incompatible virtual machines, for which the SWF

format can carry byte code. The virtual machines are

called Adobe Virtual Machine (AVM) 1 and 2

respectively. The AVM1 is historically grown since

SWF version 3 with the subsequent expansion of

Flash's functionality. SWF version 9 introduced the

3 http://www.adobe.com/devnet/swf/pdf/swf_file_format_spec_v
10.pdf

Recurity Labs GmbH – http://www.recurity-labs.com

2/6

Preventing Adobe Flash Exploitation

new AVM2, which is based on ECMA-262 with some

modifications made by Adobe. Both AVMs are stack

machines, which interpret and run byte code

provided within the SWF file. AVM2 is capable of

Just-in-Time compilation of byte code into native

machine code. A flag in the File Attributes Tag of a

SWF file indicates which virtual machine is to be

used when the the file is loaded for rendering.

Both virtual machines provide access to an API and

Flash internal classes, which allow the byte code to

communicate with the web browser, manage

browser independent local storage and initiate direct

network communication with third party systems. The

AVM2 also allows dynamic loading of additional byte

code, which can be used to emit code at run time.

Neither of the two virtual machines allow self

modifying code.

The sheer amount of parsing code required to

handle this complex file format, coupled with the

complexity and power of the virtual machines,

creates a very large attack surface. Since the Flash

Player is written in an unmanaged language, out-of-

bounds memory operations caused by corrupted

data structures in an SWF file often lead to

exploitable vulnerabilities, which in turn allow the

execution of arbitrary code within the process space

of the Flash Player or web browser.

Additionally, the Flash Player is implemented in a

way that tries to ignore most parsing and byte code

execution issues. This is apparently done in order to

allow slightly malformed files to still display content

so that the user experience is unharmed. This

approach has allowed a wide range of incorrectly

formatted SWF files to be used online, which

complicates the task of identifying maliciously

malformed files even further.

3 File Format Normalization
To protect a fragile parser from exploitation through

malformed input files, the well-formedness of the

input must be guaranteed. The approach is to

implement a parser for the file format in a managed

language and employing the strictest verification of

the input file. The managed language environment

provides automatic protection against out-of-bounds

operations, such as buffer overflows, as well as

integer overflows or sign issues. The strict validation

of the specified components of the file format allow

to detect and prevent utilization of undocumented

aspects of the format.

Once the input file is parsed in its entirety, the

original file is discarded. This leaves only well

understood and correctly formatted data structures

and byte code, which are then used to generate an

output file.

Is the input a well-formed file, the process of the

format normalization produces an output that is

functionally equivalent to the input file. If the input file

exhibits slight format violations, such as using

reserved bits and fields, the output generation will

correct those. Input files with significant format

violations are rejected during the initial parsing pass,

since there is a high likelihood that they will cause

the consumer parser to fail and potentially represent

attempts at exploiting a vulnerability in the same.

The more thorough the normalization parser is, the

better is the protection provided. Therefore, it is

required that the normalization parser implements all

documented aspects of the file format. If the file

format can carry other data formats, those must be

parsed as well, as they could also be used to exploit

the consumer parser.

Recurity Labs GmbH – http://www.recurity-labs.com

3/6

Preventing Adobe Flash Exploitation

While the creation of a defensive, secure and strict

parser for a complex file format, such as SWF,

requires a large initial effort, it has the benefit of not

requiring constant updates or specific attack

signatures. The approach follows a white-listing

strategy, only allowing known-to-be-good data to

pass verification and be placed in the output file.

In cases, where the input passes verification but still

triggers a vulnerability in the final consumer parser,

the process of recreation provides a minor additional

exploit mitigation layer, since the attacker cannot

anticipate the structure of the generated output with

complete certainty. While this obstacle can certainly

be dealt with by an experienced attacker, it still

prevents less sophisticated exploits from executing

their payload, as most of the offsets within the output

file will differ from the input file.

4 Byte Code Modifications
The prevention of misusing Flash's functionality, as

in the case of malicious banner advertisements,

requires the defense tool to analyze the byte code

within the SWF file.

While AVM1 and AVM2 byte code have specific Tag

types in the SWF file, several other components of

the file format, such as buttons or graphical shapes,

can carry independent AVM1 code embedded within

their respective data structures. All of these code

locations must be inspected to prevent malicious

code from passing through the defense layer.

After the initial parsing is completed and the well-

formedness of the byte code is verified, all byte code

instructions that invoke potentially unwanted

functionality can be easily identified. Static code flow

analysis is then employed to determine whether the

arguments of an instruction are static or not.

Instructions that invoke functionality and have static

arguments can be handled directly. The input file can

be rejected entirely or the offending code is removed

from the byte code, leaving all other functionality

intact.

When encountering instructions whose arguments

cannot be determined with static analysis, the

inspection code will emit AVM byte code that carries

out the defined check at run time. Through this patch

of the AVM code, the check is executed by the final

consumer run-time environment, hereby preventing

unwanted functionality.

Using this two-sided approach, the number of code

locations that must be modified is reduced by the

static analysis step, while the modified code

locations ensure that all instructions are verified.

To minimize the risk of a semantic deviation between

the static analysis and the modified AVM code, the

process is implemented as an minimal stack

machine, which executes individual fine-granular

steps of the code flow analysis. If the stack machine

runs into a state where it can no longer guarantee

that the value of an argument can be reliably

determined, it switches its mode of operation and

executes the same sequence of steps again, this

time emitting the functionally equivalent AVM code.

This approach also simplifies the development of the

rules that are to be enforced, as it allows a certain

level of abstraction. The user or developer can

specify what API function is of concern to him and

declare conditions that the arguments to this API

function must fulfill.

5 Implementation and Use
The defense approach described above has been

implemented in the tool “Blitzableiter”, which is

Recurity Labs GmbH – http://www.recurity-labs.com

4/6

Preventing Adobe Flash Exploitation

published4 as open source under the GNU Public

License, version 3. Providing the source code for the

tool allows for a maximum of transparency regarding

its real value in specific scenarios and prevents

users from getting a false sense of security, as no

protection mechanism will ever reach 100%

coverage of the attack surface.

The managed language of choice is the .NET

language C#, due to the superior security properties

of the .NET Common Language Run-time (CLR) and

the clear structure of the source code. Blitzableiter is

build to target the .NET CLR 2.0, which allows it to

be binary compatible to both Microsoft Windows as

well as open source operating systems using the

Mono run-time environment for .NET.

Blitzableiter can be used as a pure command line

tool, allowing for easy integration into central

systems, such as proxy servers.

Thanks to the cooperation of Giorgio Maone, author

of the popular NoScript add-on for the Mozilla Firefox

browser, NoScript now supports arbitrary content

filters for specific MIME types of objects embedded

in web pages. This allows a larger user base of

security minded people to use Blitzableiter on a daily

basis. NoScript will invoke Blitzableiter for every

allowed Flash object on a page and enables the user

to selectively disable the content filter in case

compatibility issues arise (see 6).

Web site or advertisement network operators can

customize Blitzableiter in order to enforce contractual

requirements placed on the Flash content provided

to them. For example, a banner advertisement

submitted for a specific campaign can be ensured to

only forward users to a specific URL, which prevents

the Flash banner ad from later changing the

4 http://blitzableiter.recurity.com

destination, a common trick used to perform so-

called click-fraud.

6 Challenges
The primary challenge the approach faces is that of

compatibility and user acceptance. Since the Adobe

Flash Player will accept many malformed types of

SWF files, programs that emit SWF files often

produce files that deviate far from the specification of

the format. While web site operators can require

well-formed SWF content and verify the same using

Blitzableiter, the application as content filter within a

web browser could be hindered by Flash content no

longer working. This can only be overcome by a

large number of samples, which then must be

inspected individually and decided upon.

Another challenge is the amount of embedded third

party and proprietary formats, for which no or

insufficient format specifications are published.

Formats with published specifications will

subsequently be added to Blitzableiter, while

undocumented formats may be either allowed as

pure data blocks or filtered out, depending on the

user's preferences.

The approach also suffers from undecidable cases,

which again only affect the application within a web

browser. The looseness of the native Flash Player

byte code execution offers a variety of tricks

commonly employed by Flash obfuscation software.

Those attempts to protect the intellectual property of

the Flash code result in AVM byte code that fails

verification, as it will include invalid byte codes and

intentionally convoluted code flow. A popular

example of such Flash content is the video player of

the Hulu.com site. It can only be left to the user to

disable Blitzableiter for specific sites, which the

NoScript add-on supports in a convenient way.

Recurity Labs GmbH – http://www.recurity-labs.com

5/6

Preventing Adobe Flash Exploitation

7 Conclusions
The developers of Blitzableiter believe the file format

normalization approach, coupled with the adaptive

modification of AVM byte code, is a sound approach

to counter a large fraction of the existing Flash attack

landscape.

The release of the first official beta version of

Blitzableiter at BlackHat USA 2010 will allow end

users to integrate the tool with their Mozilla Firefox

browsers and the NoScript add-on. This will

hopefully aid the identification and remedy of

remaining compatibility issues, which could deter

users from employing the tool. It will also allow

security researchers to verify the protection value of

Blitzableiter by testing its operation on known

exploits.

The possibility to automatically test Flash files as

well as the enforcement of AVM code properties and

behavior should enable web site operators to tighten

their Flash content submission policies, while

reducing manual work at the same time.

The further development of Blitzableiter will entirely

depend on the feedback the team receives from

users and the security community.

Recurity Labs GmbH – http://www.recurity-labs.com

6/6

	1 Introduction
	2 Overview of the Attack Surface
	3 File Format Normalization
	4 Byte Code Modifications
	5 Implementation and Use
	6 Challenges
	7 Conclusions

