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Abstract 
 

This paper explores taking a passive approach to covert communication over DNS. By 

exploiting the slack space that can be created in DNS packets, data may be inserted into 

packets without affecting the operation of DNS resolvers and security tools. Several 

locations in the packet exist that allow additional data to be inserted into the network 

traffic without being noticed by applications before or at the destination host. Unlike 

many of the low-bandwidth covert channels such as port numbers and identification 

fields, this method is an enabler for high-bandwidth communication between multiple 

systems. 

 

This method is introduced through PSUDP, a tool that creates a network-wide messaging 

system by piggy-backing on legitimate network DNS traffic. By creating a broker system 

on the DNS server, clients can communicate by injecting messages and desired recipients 

into DNS requests destined for the broker. These messages are then held at the broker 

until they may be passively delivered to the appropriate client in a legitimate DNS 

response. By relying on traffic that is already traveling through the network, no additional 

packets must be created for this messaging system. 

 

The programs discussed in this paper are proof of concept implementations that are 

harmless “as is”. The techniques are demonstrated in non-malicious tools so the security 

community can learn from them and be able to identify this method of communication. 

For this reason, advanced data hiding techniques and protocol features such as reliability 

and sequencing were left out of the tools. 

 
 

 

 

 



Introduction 
 

While a large number of application layer protocols exist, they are all built from a small number of transport 

and network layer protocols. Currently, it is uncommon for network devices to perform deep packet 

inspection (DPI), analyzing the actual application layer content of the data carried by the transport layers. 

Instead, most devices simply use the length field specified by the lower layer protocols to forward the 

appropriate number of bytes to the destination host. 

 

Passive manipulation of network traffic implies that no additional network packets are created. Instead, 

existing network traffic is manipulated to carry additional information (often covert) between the two 

systems. Because DNS is used by nearly all hosts in a network, it is ideal for demonstrating the possibilities 

of covert communication over protocol slack space. 

 

The domain name system (DNS) is a hierarchical network of systems responsible for resolving domain 

names to IP addresses. A fully qualified domain name (FQDN) is formed through a series of labels that 

separate it into subdomains, each one controlled by the subdomain to its right. RFC 1035 specifies the 

allowable characters as a-Z, 0-9, and dashes (Mockapetris 1987). Additionally, the RFC limits the labels to 

63 octets or less, with the full domain being 255 octets or less. 

 

DNS tunnels have gained significant popularity as a mechanism for bypassing network policies and 

infiltrating/exfiltrating data. Similarly, they have proven ideal for establishing communication links for 

botnets or other malicious software. Since DNS is required on all networks requiring internet access, it can 

easily be used to provide storage or timing channels for restricted protocols that would not have access out of 

the network, otherwise. Additionally, DNS traffic is typically less monitored than protocols such as HTTP or 

SMTP, often only being closely examined when issues occur. 
 

 

 

Related Work 
 

Several DNS tunnel implementations exist that allow policy-restricted application layer protocols (ALP) to 

be transported inside DNS traffic. Ozyman, TCP-over-DNS, Iodine, Dns2tcp, DNScat, and DeNiSe are all 

examples of popular DNS tunnels that allow users to bypass firewall restrictions. While they all use similar 

tactics for storing data in queries (encoding data in the subdomain), many of them use slightly different 

strategies for responses. Some tunnels, such as TCP-over-DNS (TCP-Over-DNS 2008) and Dns2tcp 

(Dembour 2008), use TXT records to exfiltrate data in responses. TXT records are convenient because they 

allow free form text to be included in the response. Other tunnels like Iodine (Iodine 2009) use NULL record 

types to store data. Neither method is particularly covert since heavy amounts of TXT or NULL record types 

coming from standard desktop systems should throw red flags in most networks. DNScat (Pietraszek 2004) 

uses yet another method of tunneling data in responses by creating custom CNAME records. While this 

method is slightly more complex, it offers greater covertness since CNAME records are a more common 

resource record type than TXT or NULL records. 

 

Reverse DNS tunneling shellcode was explored by Ty Miller (Miller 2008). In his work, DNS tunnels were 

used because of their ability to escape internal networks easier than HTTP, which often requires 

authentication. Miller forced exploited clients to probe the attacker‟s domain, allowing commands to be 

tunneled back to the internal system. 

 

Many interesting strategies were introduced with the release of Heyuka (Revelli 2009). Revelli and 

Leidecker showed that many DNS servers would accept binary data in domain name labels, increasing their 

bandwidth from 5 bits per character to 8 bits per character. Additionally, they took advantage of EDNS0 to 

increase the bandwidth ceiling from 512 bytes per packet to 1024 bytes per packet. Covertness was added by 

spoofing packets across a range of IP addresses instead of from a single system. 

 

Recently, I showed how data could be exfiltrated over DNS without additional software or privileges by 

executing a local JavaScript file in a browser. In this work, it is demonstrated how DNS queries may be 

separated from their respective HTTP requests, creating a covert DNS storage channel. Additionally, it was 



shown how low-bandwidth bidirectional tunnels could be created through both storage and timing channels 

(Born 2010). 

 

The tools demonstrated in this work differ from all past work in that it uses a new, higher-bandwidth method 

of creating storage channels. Additionally the method proposed may be used passively by piggy-backing on 

legitimate traffic instead of actively generating new packets. 
 

 

 

DNS Packet Length 
 

When network devices receive a packet, they are able to use the length field specified at the IP layer to 

determine the size of the transport layer data. While not present in TCP, the UDP protocol additionally has its 

own length field that allows programs to calculate the size of the application layer data. According to RFC 

1035 (Mockapetris 1987), DNS packets are restricted to a UDP length of 512 bytes. However, this can be 

extended to 1024 bytes by using the EDNS0 extension (Pixie 1999). 

 

Every DNS query and response has two parts: the header section and the resource record sections. While the 

resource record sections are variable in length, the header is always contained in the initial 12 bytes. The 

header first contains an identification field followed by various parameters and flags describing the packet. 

Lastly, several fields describe how many of each of the four resource record types will be found in the 

resource record sections. This count information is used by the DNS parser to determine when the end of a 

section type is reached. 

 

Each label in a stored domain name is preceded by an eight bit field specifying the length of the label. A 

parser knows it has reached the end of a domain when it reads a 0 from the length field. When a domain or a 

list of labels has been declared by a previous resource record, a pointer to that location may be used instead 

to reduce the size of messages. 
 

 
 

Figure 1: Label Format 
 

 

 

Use of the compressed DNS form is optional for servers, making the packet length of domain names 

variable. For this reason, the parser has no way of easily calculating how much storage space is actually 

required for a set of domains. Similarly, many resource record types have a variable RDATA length 

(retrieved from the RDLENGTH field). Both the domain length and the RDLENGTH are required before 

knowing the total resource record size. 

 

Unlike the IP and UDP headers, The DNS header does not store the total length of the packet. This 

information must be derived through the UDP and IP headers which store the total length of both their 

headers and data, respectively. 
 

 

 

 

 



Defeating the Parser 
 

Because DNS headers do not contain information about the length of the resource records or total packet, 

parsers rely on the number of resource records specified in the DNS header to determine when to stop 

parsing the data. When the last resource record specified in the header has been parsed, it is assumed that the 

end of the data has been reached. However, by manipulating the IP and UDP headers to account for 

additional length, it is possible to append any amount of binary data to the end of the DNS packet without 

adversely affecting how DNS servers and resolvers react to manipulated DNS queries and responses.  

 

Since the storage channel is not restricted to label-based characters or special formatting like many channels 

used in DNS tunnels, a significantly higher ceiling of data storage may be reached. Additionally, the use of 

non-ASCII characters is much less identifiable when the raw packets are examined. By modifying the IP and 

UDP length headers, the additional data will not be dropped as the packet is passed through the network.  
 

 
Figure 2: Injected Packet 

 

 

The storage channel capacity of each packet may be calculated by looking at the UDP header‟s length field. 

For example, if the UDP packet length is 200 bytes, the storage channel capacity can be calculated as 512-

200 = 312 bytes. The ceiling for DNS packet length may be extended to 1024 bytes by combining this 

strategy with the EDNS0 extension. 

 

One problem with this strategy is that the covert channel is always located at the end of the data, simplifying 

detection. An ideal channel would allow the data to be more covertly hidden in the middle of the packet, 

making it more difficult to identify when looking at the packets through analysis tools such as Wireshark. 

 

 

 

Raising the Bar 

 
Previously, it was shown how DNS label compression may be used to save space in DNS packets. When a 

pointer is used, it points to a previous location in the packet describing similar labels. However, tests show 

that DNS parsers do not require pointers to point only to previous positions in the packet. This was seen in 

past DDOS attacks where DNS packets were crafted to contain self-referencing or cross-referencing 

pointers, often crashing applications (Securiteam 1999). Using a similar strategy, a label may be copied to a 

position after the injected data, adjusting the relevant pointer to account for the new position. 
 



 
 

Figure 5: Forward pointer with injected data 

 

 

Detection 

 
To programmatically detect this type of covert communication, one might initially approach the problem by 

keeping track of the furthest position in the packet analyzed while parsing the DNS resource records. If the 

UDP size extends past this point, then it is a good sign that there may be data injected into the packet. 

However, this strategy fails against the more sophisticated injection method where pointers are manipulated 

to point to labels following the injected data. This will require the parser to read from the furthest point in the 

manipulated packet, registering the UDP length as legitimate. 
 

Instead of simply keeping track of the furthest point accessed in the packet, a detection agent must mark 

every position legitimately accessible and accounted for during DNS parsing. If any unmarked positions 

exist in the packet, then it is highly likely that data was injected into the packet. Alternatively, this can be 

simplified by verifying two properties: all pointers must point backwards, and the last legitimate point in the 

DNS packet must match the length given in the UDP packet. 

 

For this method of covert communication to be effective, it must be able to pass by intrusion detection 

systems and packet analyzers such as Wireshark without being flagged as suspect. At this point, no tool has 

been found that identifies the packet as unusual, making detection only possible when examining the raw 

data manually. However, it is very rare for raw DNS data to be investigated without first being alerted to an 

issue. Below, Figure 4 depicts a screenshot of Wireshark displaying a heavily injecting DNS packet as 

having no errors and containing the appropriate resource records. 

 
 

 
 

Figure 4: Wireshark output with injected lyrics 



 

PSUDP: Network-Wide Covert Communication 
 

It has been shown how additional data may be appended to the end of legitimate DNS traffic. With this 

knowledge, it can be quickly seen that having a control point at a DNS server gives passive communication 

access to most machines in the network. This strategy is used in PSUDP, a program that allows a system 

(typically a DNS server) to act as a broker between systems running the client program. 

 

The name PSUDP (pronounced sūdēpē) was arrived at for several reasons. Firstly, it is playing off of the 

“postscript” (p.s.) abbreviation found on written works meaning “that which comes after the writing”. 

Secondly, it is short for “Pseudo UDP”, since it uses an alternative UDP-like protocol on top of the existing 

UDP/DNS packets. Lastly, it is playing off of “sudo UDP”, because it is manipulating UDP to allow for a 

little extra power! 

 

PSUDP clients route all communication through the broker by appending a custom protocol on the end of 

legitimate traffic. Firstly, the client may send messages to any other client by appending the recipient address 

and custom message on the end of a DNS query. When the DNS server receives and forwards this query, the 

broker strips out the message and recipient data, storing it for later delivery. At this point, the broker will 

wait until it has the opportunity to append the message to a response destined for the recipient.  

 
 

 
 

Figure 3: PSUDP Flow 
 

 

Clients and brokers are able to detect when the protocol has been injected with additional data by parsing the 

DNS data and determining the actual end of the resource record sections in relation to the specified UDP 

length. 
 

 

Implementation Details 
 

The primary PSUDP program is separated into three executables: broker, client, and psudp. Both the broker 

and client use libnetfilter_queue to manipulate packets going in and out of systems. This library allows 

packets to be inspected and mangled through userspace programs by providing an API into the kernel packet 

filter. Combined with the interception and rerouting capabilities of iptables, this allows the client and broker 

to examine and strip packets before they reach the application layer, and similarly manipulate the packets 

after they are formed at a resolver or server. Both the client and the broker identify injected packets by 

parsing the DNS resource records to determine the end of the legitimate packet data. If this does not match 

the length specified in the UDP header, then the remaining information is stripped and interpreted as injected 

data. 

 

While stripping the injected packets in this scenario makes it unnecessary for DNS parsers to properly handle 

the injected packets, other scenarios such as data exfiltration may require this. It is not uncommon to only be 

able to listen to exfiltrated data instead of directly being able to manipulate it. This would require the 

manipulated packets to be properly accepted and undetected at the end host. 

 



 

The psudp executable is used to pass messages and destinations to the client program over a Unix domain 

socket. Once the client receives a message over the socket, it is stored in a linked list of messages until the 

client sees a legitimate DNS query it can inject the message into. When the broker detects injected data, it 

first strips out the message and destination. This destination is used as a key into a hash table of linked lists, 

each list storing messages for that particular destination. Each time a DNS response is sent from the broker, it 

examines the hash table to determine whether there are any messages for that particular destination. If a 

message exists, it is injected into the response before being sent. 

 

 

Data Exfiltration and DNS Tunnels 
 

For data exfiltration or DNS tunnel scenarios, it is more appropriate to have a point-to-point data channel 

between two systems, ignoring the broker aspect. This architecture can be seen in the “injector” and 

“listener” tools that are packaged with PSUDP. The injector passively exfiltrates a file over DNS packets, 

while the listener analyzes DNS packets for injected data. 

 

The injector differs from the client in that it takes a file as input and splits it into as many pieces as necessary 

to exfiltrate it over a series of DNS packets without exceeding the bandwidth limit. Unlike the client and 

broker seen earlier, the listener is implemented using libpcap. As DNS packets are received and injected 

content is identified, it is dumped into a file on the listening system, eventually rebuilding the original 

document. While libnetfilter_queue would have worked fine, libpcap was used to show another possible 

solution to solving the message detection problem. Additionally, this shows how end applications will still 

work appropriately when receiving, unstrapped, manipulated packets.  

 

While a high-bandwidth bi-directional DNS tunnel has not been provided, it is easily seen how one could be 

implemented without significant effort. If the end objective is to build a replacement for the popular IP/TCP 

tunnels in use today, there are several things that must be kept in mind. Firstly, an approach using active 

packet generation would become a necessity. Secondly, it is important to ensure that no machines intercept 

and rewrite the packet between the two systems. For instance, if a DNS server analyzes the DNS query and 

creates a new request, the appended data will be lost in the future request. Therefore, it is important to send 

DNS requests directly to a controlled system. 
 

 

 

Conclusions and Future Work 
 

The tools discussed in this paper are proof of concept implementations that are harmless “as is”. The 

techniques are demonstrated in non-malicious tools so the security community can learn from them and be 

able to identify this method of communication. For this reason, advanced data hiding techniques and protocol 

features such as reliability were left out of the tools. 

 

While the technique of building covert communication in the slack space of another protocol was explored 

using DNS, it is highly like that it will apply to many other protocols commonly used in networks. It will be 

important to discover all protocols where this technique applies. Similarly, work must be done in detecting 

and mitigating this strategy for all protocols vulnerable to this storage channel.  Additionally, the exploitation 

of slack space should be applied to actively generated packets to appropriately analyze bandwidth and 

covertness compared to existing DNS tunnel implementations. 

 

Deep packet inspection (DPI) will be necessary to properly identify this type of covert communication in 

security tools. Firstly, it must be ensured that the legitimate data ends at the correct UDP packet length. 

Secondly, it must be verified that all pointers refer to previous positions in the packet. These two checks (and 

similar checks in other protocols) should be sufficient to detect slack space covert channels. 
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