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Introduction 

Why are Java clients interesting from a security perspective? 

 Old technology is trusted technology 

 Security controls often built into the client 
 Critical business logic often built into the client 

 Modern IDE blur the lines between client and server 
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Introduction 

Placing implicit trust in the client is an all too easy mistake to make: 

… 

   if (loggedIn) { 
  int userId = userService.getLoggedInUserId(); 

  orderService.placeOrder(userId,theOrder); 

             …. 
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Overview of Java client technology 

 Java Applets – In browser, restricted permissions by default 

 Java Applications – Unrestricted by default 

 JNLP – Application loaded over the network, semi-restricted by default 

 JavaFX – Runs on desktop JRE or on specific runtime on mobile 
devices 

….in any case, it’s all Java Bytecode running on a JRE  
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Common remoting technologies 

JRMP/HTTP RMI 

RMI Server 
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HTTP Server 

Socket 

Client 
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JRMP/Socket IIOP/Socket IIOP/HTTP 
EJB/RMI Bespoke 

JRMP/HTTP 
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IIOP/HTP 

Bespoke 

Bespoke 
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Attack the client, not the transport 
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Introduction 

Problems when security testing Java clients: 

  Input validation in the client can prevent injection attacks 

 GUI makes automated attacks difficult (e.g. brute force) 
 Remoting transport is difficult to intercept 

–   Burp plugin by Manish Saindane for Java RMI (BlackHat Europe 2010) 

 Decompilers don’t work 100% 

 Decompilers don’t allow you to manipulate the client 
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Objectives 

1. Understand the client logic 

2. Manipulate fields and methods in 
order to subvert the security 
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Attack Approach 

1.  Information gathering 

2. Probing & Analysis 

3. Exploit 
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Information gathering 

  What are the interesting classes? 

  What are the server side methods? 

  Where is the comms layer? 
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Probing & Analysis 

  What does the execution flow look like? 

  Where is the security logic? 

  Where is key business logic? 

  Which classes are the most convenient to inject a shell? 
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Exploit 

  Inject shell or Static patching 

  Bypass client side controls 

  Attack server side 
–   Injection attacks, e.g. SQL injection 

–   Brute force/dictionary attacks 

–   Bypass access control 
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Tools 

 Eclipse Test and Performance Tools Platform (TPTP) 

 Eclipse plugins 
–   JD Decompiler plugin 

–   AspectJ Development Tools plugin 

 BeanShell 

 Java Object Inspector 

 AspectJ 
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Demo Application 



8/10/10 © Copyright Corsaire Ltd 2006 15 

Some Potential Attacks 

 Subvert access control to view other users’ orders 

 SQL injection attacks against server side 

 Brute force attack of login credentials 
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Step 1: Information gathering 

 What are the interesting classes? 

 Where are the interesting methods? 

 Which remoting technology is in use? 

 JAR file inspection 

 Class file inspection in IDE 

 Class file inspection with javap 

 Decompile classes 
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Step 1: Information gathering 

Demo 
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Step 2: Probing & Analysis 

 Profiling with Eclipse TPTP 

 Tracing with Eclipse TPTP 

 Tracing with AspectJ 

  What does the execution flow look like? 

  Where is the security logic? 

  Where is key business logic? 

  Which classes are the most convenient to inject a shell? 
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Step 2: Probing & Analysis 

Demo Profiling 
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Step 2: Probing & Analysis 

Tracing with Eclipse TPTP 
–   Insert print/log statements 

–   TPTP supports instrumenting bytecode directly using probes 
•   Callsite probe: inserted into calling code 

•   Method probe: inserted into called code 
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Step 2: Probing & Analysis 

Demo Tracing with Eclipse 
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Step 2: Probing & Analysis 

Tracing with AspectJ 

     …before we begin… 
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…before we begin: AOP and AspectJ 

 Programming paradigm to isolate cross-cutting functionality from main 
business logic, e.g.: 

–   Logging 

–   Access control 

 AspectJ started with source weaving, now does bytecode weaving 

 Terminology: 
–   Advice : New code to insert into the application 

–   Pointcut : Defines when “advice” should be executed 

–   Aspect : Advice + pointcut 
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…before we begin: AOP and AspectJ 

public aspect ShowSets { 
 pointcut sets() : call( void set* (..) ); 

 before() : sets() { 
  System.out.println(“About to set something"); 
 } 

 after() : sets() { 
  System.out.println(“Completed setting something"); 
 } 

} 
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Step 2: Probing & Analysis 

Tracing with AspectJ 
–   Insert print/log statements 

–   Can log field assignment! 

–   Define pointcuts and advice 
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Step 2: Probing & Analysis 

Demo Tracing with AspectJ 
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Step 3: Exploit 

 Subvert access control to view other users’ orders 

 SQL injection attacks against server side 

 Brute force attack of login credentials 

  Inject shell or Static patching 
–   Bypass client side controls 

–   Perform attacks 
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…before we begin 

Quick introduction to: 
–   Java Object Inspector 

–  BeanShell 
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…before we begin: Java Object Inspector 

 Inserted into application 

 View and edit objects 

import org.pf.joi.Inspector; 

… 

Inspector.inspect(myObject); 
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…before we begin: Java Object Inspector 
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…before we begin: BeanShell 

 BeanShell is an embeddable Java source 
interpreter 

–   Provides Java like scripting language 
–   For debugging: provides a shell inside the running Java 

program 

Interpreter i = new Interpreter(); 

try { 

 i.set(“myObject", myObject); 
 i.eval("server(7777)"); 

} catch (Exception e) { 

 e.printStackTrace(); 

} 
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…before we begin: BeanShell 

 Telnet server on port 7778 
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…before we begin: BeanShell 

 HTTP server on port 7777 
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…before we begin: BeanShell 

 View the state of objects 

 Change values 

 Execute methods 

 Write scripts to automate tasks 
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…before we begin: Putting it all together 

 BeanShell – Rich shell environment that can be inserted into 
code 

 Java Object Inspector – View and edit fields 

 AspectJ – Weave new functionality directly into bytecode 
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Step 3: Exploit 

Demo 
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Step 3: Exploit 

…or statically patch with AspectJ 
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Step 3: Exploit 

 Static patching with AspectJ 
–   Redefine methods and return values 
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Step 2: Exploit 

Demo: Static patching with AspectJ 
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Conclusions 

 Developer tools to aide reverse engineering 
–   Javap 

–   Eclipse TPTP 

–   AspectJ 

 Trace application flow: 
–   AspectJ and Eclipse TPTP 

 Manipulate the client: 
–   AspectJ 

–   BeanShell 

–   Java Object Inspector 
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JavaSnoop 

 GUI to intercept and modify fields and method calls 

 Attaches to running processes: no need to inject anything 

Don’t miss Arshan Dabirsiaghi’s 
JavaSnoop presentation 

15h15  
in Neopolitan Room 
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Questions ?  

stephen@corsaire.com 


