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Introduction

Why are Java clients interesting from a security perspective?

= Old technology is trusted technology

= Security controls often built into the client

= Critical business logic often built into the client
*Modern IDE blur the lines between client and server
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Introduction

Placing implicit trust in the client is an all too easy mistake to make:

if (loggedin) {
int userld = userService.getLoggedInUserld();
orderService.placeOrder(userld,theOrder);
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Overview of Java client technology

= Java Applets — In browser, restricted permissions by default
= Java Applications — Unrestricted by default
= JNLP — Application loaded over the network, semi-restricted by default

= JavaFX — Runs on desktop JRE or on specific runtime on mobile
devices

....in any case, it’s all Java Bytecode running on a JRE

TV SDQATDE



Common remoting technologies

JRMP/HTTP
B&SSdRAMI
RMI

Client Bespoke

JRE
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Attack the client, not the transport
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Introduction

Problems when security testing Java clients:

= [nput validation in the client can prevent injection attacks
* GUI makes automated attacks difficult (e.g. brute force)

= Remoting transport is difficult to intercept
— Burp plugin by Manish Saindane for Java RMI (BlackHat Europe 2010)

= Decompilers don’t work 100%
= Decompilers don’t allow you to manipulate the client
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Objectives

1.Understand the client logic

2.Manipulate fields and methods in
order to subvert the security
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Attack Approach

1.Information gathering
2.Probing & Analysis
3. Exploit
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Information gathering

= What are the interesting classes?
= \What are the server side methods?
= Where is the comms layer?
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Probing & Analysis

What does the execution flow look like?

= Where is the security logic?

= Where is key business logic?

= Which classes are the most convenient to inject a shell?
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Exploit

= |nject shell or Static patching
= Bypass client side controls
= Attack server side
— Injection attacks, e.g. SQL injection

— Brute force/dictionary attacks
— Bypass access control
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Tools

=Eclipse Test and Performance Tools Platform (TPTP)
=Eclipse plugins

— JD Decompiler plugin

— Aspectd Development Tools plugin

BeanShell
=Java Object Inspector
*AspectJ
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Demo Application




Some Potential Attacks

= Subvert access control to view other users’ orders
= SQL injection attacks against server side

= Brute force attack of login credentials
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Step 1: Information gathering

=\What are the interesting classes?
=\Where are the interesting methods?
=\Which remoting technology is in use?

= JAR file inspection

= Class file inspection in IDE

= Class file inspection with javap
= Decompile classes
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Step 1: Information gathering

Demo
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Step 2: Probing & Analysis

= What does the execution flow look like?

= Where is the security logic?

= Where is key business logic?

= Which classes are the most convenient to inject a shell?

= Profiling with Eclipse TPTP
= Tracing with Eclipse TPTP
= Tracing with AspectJ
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Step 2: Probing & Analysis

Demo Profiling
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Step 2: Probing & Analysis

Tracing with Eclipse TPTP
— Insert print/log statements

— TPTP supports instrumenting bytecode directly using probes
Callsite probe: inserted into calling code
Method probe: inserted into called code
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Step 2: Probing & Analysis

Demo Tracing with Eclipse

TN XIPQATRDE




Step 2: Probing & Analysis

Tracing with AspectJ

...before we begin...
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...before we begin: AOP and AspectJ

* Programming paradigm to isolate cross-cutting functionality from main
business logic, e.g.:
— Logging
— Access control
= AspectJ started with source weaving, now does bytecode weaving
= Terminology:
— Advice : New code to insert into the application
— Pointcut : Defines when “advice” should be executed
— Aspect : Advice + pointcut
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..before we begin: AOP and AspectJ

public aspect ShowSets {
pointcut sets() : call( void set* (..) );

before() : sets() {
System.out.printin(*About to set something");

}

after() : sets() {
System.out.printin(*Completed setting something");

}
}
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Step 2: Probing & Analysis

Tracing with AspectJ
— Insert print/log statements
— Can log field assignment!
— Define pointcuts and advice
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Step 2: Probing & Analysis

Demo Tracing with AspectJ
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Step 3: Exploit

= Subvert access control to view other users’ orders
= SQL injection attacks against server side
= Brute force attack of login credentials

= Inject shell or Static patching
— Bypass client side controls
— Perform attacks
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...before we begin

Quick introduction to:

—Java Object Inspector
—BeanShell
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...before we begin: Java Object Inspector

"Inserted into application
*\View and edit objects

import org.pf.joi.Inspector;

Inspector.inspect(myObject);
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...before we begin: Java Object Inspector
JaT=IF

Window Actions Show Plugins Help

this loginMsgLabel |

' [
- @ ancestorInputMap

- @ windowInputMap

DECLARED : [private java.lang.String
IACTUAL :  [java.lang.String

- @ actionMap Apply changes Set to null
- @ aaTextInfo

~~~~~ & accessibleContext "Welcome, bob"

~~~~~ B mnemonic

. @ mnemonicIndex

_

----- B defaultlcon J
~~~~~ @ disabledIcon

- @ disabledlconSet

... @ verticalAlignment

----- B horizontalAlignment

----- @ verticalTextPosition

- B horizontalTextPosition

~~~~~ B iconTextGap

e & labelFor
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...before we begin: BeanShell

-BeanSheII IS an embeddable Java source
Interpreter
— Provides Java like scripting language

— For debugging: provides a shell inside the running Java
program

Interpreter i = new Interpreter();

try {
i.set(“myObject", myObject);
l.eval("server(7777)");

} catch (Exception e) {
e.printStackTrace();

}
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...before we begin: BeanShell

= Telnet server on port 7778

#* stephen-c8f152d - PuTTY

BeanShell 2.0b4 - by Pat Niemeyer (pat@pat.net)

bsh % print (form):;

com.corsaire.ispatula.ClientForm[frame0,0,0,598x49]1, layout=java.awt.BorderLayout
title=, resizable,normal,defaultCloseOperation=EXIT ON CLOSE, rootPane=javax.swin
g.JRootPane[,4,23,590x464, layout=javax.swing.JRootPane$SRootLayout,alignmentX=0.0
yalignmentY¥=0.0,border=,flags=16777673, maximumSize=, minimumSize=, preferredSize=]

, rootPaneCheckingEnabled=true]

bsh % print (form.loginMsgLabel.text):
Welcome, bob

bsh % |}
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...before we begin: BeanShell

=HTTP serveron port 7777

RS~ c x {5 IC] |http:/ﬂocalhost:7777/remote/jconsole.html

J | | BeanShell Remote Session ] - ]

BeanShell Remote Session - Swing

BeanShell 2.0b4 - by Pat Niemeyer (pat@pat.net)
bsh % print(form.loginMsgLabel.text);

Welcome, bob

bsh %

For more information see the BeanShell home page: http://www.beanshell org
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...before we begin: BeanShell

=\iew the state of objects

= Change values

= Execute methods

=\Write scripts to automate tasks
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...before we begin: Putting it all together

= BeanShell — Rich shell environment that can be inserted into
code

= Java Object Inspector — View and edit fields
= AspectJ — Weave new functionality directly into bytecode
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Step 3: Exploit
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© Copyright Corsaire Ltd 2006

36



Step 3: Exploit

...or statically patch with AspectJ
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Step 3: Exploit

= Static patching with AspectJ
— Redefine methods and return values
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Step 2: Exploit

Demo: Static patching with AspectJ
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Conclusions

= Developer tools to aide reverse engineering
— Javap
— Eclipse TPTP
— AspectJ
= Trace application flow:
— AspectJ and Eclipse TPTP
= Manipulate the client:
— AspectJ
— BeanShell
— Java Obiject Inspector
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JavaSnoop

Don’t miss Arshan Dabirsiaghi’s
JavaSnoop presentation
15h15

in Neopolitan Room

= GUI to intercept and modify fields and method calls
= Attaches to running processes: no need to inject anything
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Questions ?

stephen@corsaire.com
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