Attacking Java Clients

Stephen de Vries

Introduction

Why are Java clients interesting from a security perspective?

= Old technology is trusted technology

= Security controls often built into the client

= Critical business logic often built into the client
*Modern IDE blur the lines between client and server

THIRCATRE

Introduction

Placing implicit trust in the client is an all too easy mistake to make:

if (loggedin) {
int userld = userService.getLoggedInUserld();
orderService.placeOrder(userld,theOrder);

TV IPCAIRE

Overview of Java client technology

= Java Applets — In browser, restricted permissions by default
= Java Applications — Unrestricted by default
= JNLP — Application loaded over the network, semi-restricted by default

= JavaFX — Runs on desktop JRE or on specific runtime on mobile
devices

....in any case, it’s all Java Bytecode running on a JRE

TV SDQATDE

Common remoting technologies

JRMP/HTTP
B&SSdRAMI
RMI

Client Bespoke

JRE

TORSAIRE]

8/10/10 © Copyright Corsaire Ltd 2006

Attack the client, not the transport

EORSAIRE

8/10/10 © Copyright Corsaire Ltd 2006

Introduction

Problems when security testing Java clients:

= [nput validation in the client can prevent injection attacks
* GUI makes automated attacks difficult (e.g. brute force)

= Remoting transport is difficult to intercept
— Burp plugin by Manish Saindane for Java RMI (BlackHat Europe 2010)

= Decompilers don’t work 100%
= Decompilers don’t allow you to manipulate the client

a A
SORSAIRE

Objectives

1.Understand the client logic

2.Manipulate fields and methods in
order to subvert the security

THIRCATRE

Attack Approach

1.Information gathering
2.Probing & Analysis
3. Exploit

TVSPRAIRE
K ,‘L}E:_\g:-;x.RL

Information gathering

= What are the interesting classes?
= \What are the server side methods?
= Where is the comms layer?

TYSDQATDT
CORSAIRE

Probing & Analysis

What does the execution flow look like?

= Where is the security logic?

= Where is key business logic?

= Which classes are the most convenient to inject a shell?

TYWSPRATDE
,‘@% E:.\;-:.x. RL

Exploit

= |nject shell or Static patching
= Bypass client side controls
= Attack server side
— Injection attacks, e.g. SQL injection

— Brute force/dictionary attacks
— Bypass access control

THIRSAIRE

N o\

Tools

=Eclipse Test and Performance Tools Platform (TPTP)
=Eclipse plugins

— JD Decompiler plugin

— Aspectd Development Tools plugin

BeanShell
=Java Object Inspector
*AspectJ

g QATR]
CCORSAL

YO il V\r._

Demo Application

Some Potential Attacks

= Subvert access control to view other users’ orders
= SQL injection attacks against server side

= Brute force attack of login credentials

TVSPRAIRE
K ,‘L}E:_\g:-;x.RL

Step 1: Information gathering

=\What are the interesting classes?
=\Where are the interesting methods?
=\Which remoting technology is in use?

= JAR file inspection

= Class file inspection in IDE

= Class file inspection with javap
= Decompile classes

TYWSPRATDE
,‘@% E:.\;-:.x. RL

Step 1: Information gathering

Demo

8/10/10 © Copyright Corsaire Ltd 2006

Step 2: Probing & Analysis

= What does the execution flow look like?

= Where is the security logic?

= Where is key business logic?

= Which classes are the most convenient to inject a shell?

= Profiling with Eclipse TPTP
= Tracing with Eclipse TPTP
= Tracing with AspectJ

TV SDQATDE

Step 2: Probing & Analysis

Demo Profiling

_."~,'- M AT ‘:
K JO‘E\..-\' RE

Step 2: Probing & Analysis

Tracing with Eclipse TPTP
— Insert print/log statements

— TPTP supports instrumenting bytecode directly using probes
Callsite probe: inserted into calling code
Method probe: inserted into called code

ORSAIRE

Step 2: Probing & Analysis

Demo Tracing with Eclipse

TN XIPQATRDE

Step 2: Probing & Analysis

Tracing with AspectJ

...before we begin...

’./—N_ ﬁ\(‘ A 1 1 .‘:
K ,&\‘Eu-\' KE

...before we begin: AOP and AspectJ

* Programming paradigm to isolate cross-cutting functionality from main
business logic, e.g.:
— Logging
— Access control
= AspectJ started with source weaving, now does bytecode weaving
= Terminology:
— Advice : New code to insert into the application
— Pointcut : Defines when “advice” should be executed
— Aspect : Advice + pointcut

TOIPSAIRE
,&T’, [\..'\ RL

..before we begin: AOP and AspectJ

public aspect ShowSets {
pointcut sets() : call(void set* (..));

before() : sets() {
System.out.printin(*About to set something");

}

after() : sets() {
System.out.printin(*Completed setting something");

}
}

THIRCATRE

Step 2: Probing & Analysis

Tracing with AspectJ
— Insert print/log statements
— Can log field assignment!
— Define pointcuts and advice

YW SPQATDLT
'JL\'E ??;'“\ERL

Step 2: Probing & Analysis

Demo Tracing with AspectJ

T YRR ATRE
s _&\ E\..x' R.L

Step 3: Exploit

= Subvert access control to view other users’ orders
= SQL injection attacks against server side
= Brute force attack of login credentials

= Inject shell or Static patching
— Bypass client side controls
— Perform attacks

THIRSAIRE

N o\

...before we begin

Quick introduction to:

—Java Object Inspector
—BeanShell

TVSPRAIRE
K ,‘L}E:_\g:-;x.RL

...before we begin: Java Object Inspector

"Inserted into application
*\View and edit objects

import org.pf.joi.Inspector;

Inspector.inspect(myObject);

TYWSPQATDT
CORSAIRE

...before we begin: Java Object Inspector
JaT=IF

Window Actions Show Plugins Help

this loginMsgLabel |

' [
- @ ancestorInputMap

- @ windowInputMap

DECLARED : [private java.lang.String
IACTUAL : [java.lang.String

- @ actionMap Apply changes Set to null
- @ aaTextInfo

~~~~~ & accessibleContext "Welcome, bob"

~~~~~ B mnemonic

. @ mnemonicIndex

_

----- B defaultlcon J
~~~~~ @ disabledIcon

- @ disabledlconSet

... @ verticalAlignment

----- B horizontalAlignment

----- @ verticalTextPosition

- B horizontalTextPosition

~~~~~ B iconTextGap

e & labelFor

4 il

8/10/10 © Copyright Corsaire Ltd 2006 30

...before we begin: BeanShell

-BeanSheII IS an embeddable Java source
Interpreter
— Provides Java like scripting language

— For debugging: provides a shell inside the running Java
program

Interpreter i = new Interpreter();

try {
i.set(“myObject", myObject);
l.eval("server(7777)");

} catch (Exception e) {
e.printStackTrace();

}

THIYRRATRE
- ..\A.\.-'\.R_L.

...before we begin: BeanShell

= Telnet server on port 7778

#* stephen-c8f152d - PuTTY

BeanShell 2.0b4 - by Pat Niemeyer (pat@pat.net)

bsh % print (form):;

com.corsaire.ispatula.ClientForm[frame0,0,0,598x49]1, layout=java.awt.BorderLayout
title=, resizable,normal,defaultCloseOperation=EXIT ON CLOSE, rootPane=javax.swin
g.JRootPane[,4,23,590x464, layout=javax.swing.JRootPane$SRootLayout,alignmentX=0.0
yalignmentY¥=0.0,border=,flags=16777673, maximumSize=, minimumSize=, preferredSize=]

, rootPaneCheckingEnabled=true]

bsh % print (form.loginMsgLabel.text):
Welcome, bob

bsh % |}

oRg

ATD
et PRV YT

o=
(S
3
R

...before we begin: BeanShell

=HTTP serveron port 7777

RS~ c x {5 IC] |http:/ﬂocalhost:7777/remote/jconsole.html

J | | BeanShell Remote Session] -]

BeanShell Remote Session - Swing

BeanShell 2.0b4 - by Pat Niemeyer (pat@pat.net)
bsh % print(form.loginMsgLabel.text);

Welcome, bob

bsh %

For more information see the BeanShell home page: http://www.beanshell org

EORSAIRE

8/10/10 © Copyright Corsaire Ltd 2006

38

...before we begin: BeanShell

=\iew the state of objects

= Change values

= Execute methods

=\Write scripts to automate tasks

YD QATDTE
K JOL».*\' RE

...before we begin: Putting it all together

= BeanShell — Rich shell environment that can be inserted into
code

= Java Object Inspector — View and edit fields
= AspectJ — Weave new functionality directly into bytecode

THIPRAIRE
X Jk}’.}k._\ul’ - i RL

Step 3: Exploit

8/10/10

Demo

© Copyright Corsaire Ltd 2006

36

Step 3: Exploit

...or statically patch with AspectJ

Y NDQATDT

Step 3: Exploit

= Static patching with AspectJ
— Redefine methods and return values

YD QATDTE
K JO‘E».*\' RE

Step 2: Exploit

Demo: Static patching with AspectJ

TYSPQATDT
CORSAIRE

Conclusions

= Developer tools to aide reverse engineering
— Javap
— Eclipse TPTP
— AspectJ
= Trace application flow:
— AspectJ and Eclipse TPTP
= Manipulate the client:
— AspectJ
— BeanShell
— Java Obiject Inspector

TYWSPRATDE
,‘@% E:.\;-:.x. RL

JavaSnoop

Don’t miss Arshan Dabirsiaghi’s
JavaSnoop presentation
15h15

in Neopolitan Room

= GUI to intercept and modify fields and method calls
= Attaches to running processes: no need to inject anything

' \(osn‘

"zk N

3
S

8/10/10

Questions ?

stephen@corsaire.com

© Copyright Corsaire Ltd 2006

42

