
Attacking Java Clients

Stephen de Vries

8/10/10 © Copyright Corsaire Ltd 2006 2

Introduction

Why are Java clients interesting from a security perspective?

 Old technology is trusted technology

 Security controls often built into the client
 Critical business logic often built into the client

 Modern IDE blur the lines between client and server

8/10/10 © Copyright Corsaire Ltd 2006 3

Introduction

Placing implicit trust in the client is an all too easy mistake to make:

…

 if (loggedIn) {
 int userId = userService.getLoggedInUserId();

 orderService.placeOrder(userId,theOrder);

 ….

8/10/10 © Copyright Corsaire Ltd 2006 4

Overview of Java client technology

 Java Applets – In browser, restricted permissions by default

 Java Applications – Unrestricted by default

 JNLP – Application loaded over the network, semi-restricted by default

 JavaFX – Runs on desktop JRE or on specific runtime on mobile
devices

….in any case, it’s all Java Bytecode running on a JRE

8/10/10 © Copyright Corsaire Ltd 2006 5

Common remoting technologies

JRMP/HTTP RMI

RMI Server

CORBA Server

HTTP Server

Socket

Client

JRE

JRMP/Socket IIOP/Socket IIOP/HTTP
EJB/RMI Bespoke

JRMP/HTTP

JRMP/Socket

IIOP/Socket

IIOP/HTP

Bespoke

Bespoke

8/10/10 © Copyright Corsaire Ltd 2006 6

Attack the client, not the transport

8/10/10 © Copyright Corsaire Ltd 2006 7

Introduction

Problems when security testing Java clients:

  Input validation in the client can prevent injection attacks

 GUI makes automated attacks difficult (e.g. brute force)
 Remoting transport is difficult to intercept

–   Burp plugin by Manish Saindane for Java RMI (BlackHat Europe 2010)

 Decompilers don’t work 100%

 Decompilers don’t allow you to manipulate the client

8/10/10 © Copyright Corsaire Ltd 2006 8

Objectives

1. Understand the client logic

2. Manipulate fields and methods in
order to subvert the security

8/10/10 © Copyright Corsaire Ltd 2006 9

Attack Approach

1.  Information gathering

2. Probing & Analysis

3. Exploit

8/10/10 © Copyright Corsaire Ltd 2006 10

Information gathering

  What are the interesting classes?

  What are the server side methods?

  Where is the comms layer?

8/10/10 © Copyright Corsaire Ltd 2006 11

Probing & Analysis

  What does the execution flow look like?

  Where is the security logic?

  Where is key business logic?

  Which classes are the most convenient to inject a shell?

8/10/10 © Copyright Corsaire Ltd 2006 12

Exploit

  Inject shell or Static patching

  Bypass client side controls

  Attack server side
–   Injection attacks, e.g. SQL injection

–   Brute force/dictionary attacks

–   Bypass access control

8/10/10 © Copyright Corsaire Ltd 2006 13

Tools

 Eclipse Test and Performance Tools Platform (TPTP)

 Eclipse plugins
–   JD Decompiler plugin

–   AspectJ Development Tools plugin

 BeanShell

 Java Object Inspector

 AspectJ

8/10/10 © Copyright Corsaire Ltd 2006 14

Demo Application

8/10/10 © Copyright Corsaire Ltd 2006 15

Some Potential Attacks

 Subvert access control to view other users’ orders

 SQL injection attacks against server side

 Brute force attack of login credentials

8/10/10 © Copyright Corsaire Ltd 2006 16

Step 1: Information gathering

 What are the interesting classes?

 Where are the interesting methods?

 Which remoting technology is in use?

 JAR file inspection

 Class file inspection in IDE

 Class file inspection with javap

 Decompile classes

8/10/10 © Copyright Corsaire Ltd 2006 17

Step 1: Information gathering

Demo

8/10/10 © Copyright Corsaire Ltd 2006 18

Step 2: Probing & Analysis

 Profiling with Eclipse TPTP

 Tracing with Eclipse TPTP

 Tracing with AspectJ

  What does the execution flow look like?

  Where is the security logic?

  Where is key business logic?

  Which classes are the most convenient to inject a shell?

8/10/10 © Copyright Corsaire Ltd 2006 19

Step 2: Probing & Analysis

Demo Profiling

8/10/10 © Copyright Corsaire Ltd 2006 20

Step 2: Probing & Analysis

Tracing with Eclipse TPTP
–   Insert print/log statements

–   TPTP supports instrumenting bytecode directly using probes
•   Callsite probe: inserted into calling code

•   Method probe: inserted into called code

8/10/10 © Copyright Corsaire Ltd 2006 21

Step 2: Probing & Analysis

Demo Tracing with Eclipse

8/10/10 © Copyright Corsaire Ltd 2006 22

Step 2: Probing & Analysis

Tracing with AspectJ

 …before we begin…

8/10/10 © Copyright Corsaire Ltd 2006 23

…before we begin: AOP and AspectJ

 Programming paradigm to isolate cross-cutting functionality from main
business logic, e.g.:

–   Logging

–   Access control

 AspectJ started with source weaving, now does bytecode weaving

 Terminology:
–   Advice : New code to insert into the application

–   Pointcut : Defines when “advice” should be executed

–   Aspect : Advice + pointcut

8/10/10 © Copyright Corsaire Ltd 2006 24

…before we begin: AOP and AspectJ

public aspect ShowSets {
 pointcut sets() : call(void set* (..));

 before() : sets() {
 System.out.println(“About to set something");
 }

 after() : sets() {
 System.out.println(“Completed setting something");
 }

}

8/10/10 © Copyright Corsaire Ltd 2006 25

Step 2: Probing & Analysis

Tracing with AspectJ
–   Insert print/log statements

–   Can log field assignment!

–   Define pointcuts and advice

8/10/10 © Copyright Corsaire Ltd 2006 26

Step 2: Probing & Analysis

Demo Tracing with AspectJ

8/10/10 © Copyright Corsaire Ltd 2006 27

Step 3: Exploit

 Subvert access control to view other users’ orders

 SQL injection attacks against server side

 Brute force attack of login credentials

  Inject shell or Static patching
–   Bypass client side controls

–   Perform attacks

8/10/10 © Copyright Corsaire Ltd 2006 28

…before we begin

Quick introduction to:
–   Java Object Inspector

–  BeanShell

8/10/10 © Copyright Corsaire Ltd 2006 29

…before we begin: Java Object Inspector

 Inserted into application

 View and edit objects

import org.pf.joi.Inspector;

…

Inspector.inspect(myObject);

8/10/10 © Copyright Corsaire Ltd 2006 30

…before we begin: Java Object Inspector

8/10/10 © Copyright Corsaire Ltd 2006 31

…before we begin: BeanShell

 BeanShell is an embeddable Java source
interpreter

–   Provides Java like scripting language
–   For debugging: provides a shell inside the running Java

program

Interpreter i = new Interpreter();

try {

 i.set(“myObject", myObject);
 i.eval("server(7777)");

} catch (Exception e) {

 e.printStackTrace();

}

8/10/10 © Copyright Corsaire Ltd 2006 32

…before we begin: BeanShell

 Telnet server on port 7778

8/10/10 © Copyright Corsaire Ltd 2006 33

…before we begin: BeanShell

 HTTP server on port 7777

8/10/10 © Copyright Corsaire Ltd 2006 34

…before we begin: BeanShell

 View the state of objects

 Change values

 Execute methods

 Write scripts to automate tasks

8/10/10 © Copyright Corsaire Ltd 2006 35

…before we begin: Putting it all together

 BeanShell – Rich shell environment that can be inserted into
code

 Java Object Inspector – View and edit fields

 AspectJ – Weave new functionality directly into bytecode

8/10/10 © Copyright Corsaire Ltd 2006 36

Step 3: Exploit

Demo

8/10/10 © Copyright Corsaire Ltd 2006 37

Step 3: Exploit

…or statically patch with AspectJ

8/10/10 © Copyright Corsaire Ltd 2006 38

Step 3: Exploit

 Static patching with AspectJ
–   Redefine methods and return values

8/10/10 © Copyright Corsaire Ltd 2006 39

Step 2: Exploit

Demo: Static patching with AspectJ

8/10/10 © Copyright Corsaire Ltd 2006 40

Conclusions

 Developer tools to aide reverse engineering
–   Javap

–   Eclipse TPTP

–   AspectJ

 Trace application flow:
–   AspectJ and Eclipse TPTP

 Manipulate the client:
–   AspectJ

–   BeanShell

–   Java Object Inspector

8/10/10 © Copyright Corsaire Ltd 2006 41

JavaSnoop

 GUI to intercept and modify fields and method calls

 Attaches to running processes: no need to inject anything

Don’t miss Arshan Dabirsiaghi’s
JavaSnoop presentation

15h15
in Neopolitan Room

8/10/10 © Copyright Corsaire Ltd 2006 42

Questions ?

stephen@corsaire.com

