
Attacking Java Clients

Stephen de Vries

8/10/10 © Copyright Corsaire Ltd 2006 2

Introduction

Why are Java clients interesting from a security perspective?

 Old technology is trusted technology

 Security controls often built into the client
 Critical business logic often built into the client

 Modern IDE blur the lines between client and server

8/10/10 © Copyright Corsaire Ltd 2006 3

Introduction

Placing implicit trust in the client is an all too easy mistake to make:

…

 if (loggedIn) {
 int userId = userService.getLoggedInUserId();

 orderService.placeOrder(userId,theOrder);

 ….

8/10/10 © Copyright Corsaire Ltd 2006 4

Overview of Java client technology

 Java Applets – In browser, restricted permissions by default

 Java Applications – Unrestricted by default

 JNLP – Application loaded over the network, semi-restricted by default

 JavaFX – Runs on desktop JRE or on specific runtime on mobile
devices

….in any case, it’s all Java Bytecode running on a JRE

8/10/10 © Copyright Corsaire Ltd 2006 5

Common remoting technologies

JRMP/HTTP RMI

RMI Server

CORBA Server

HTTP Server

Socket

Client

JRE

JRMP/Socket IIOP/Socket IIOP/HTTP
EJB/RMI Bespoke

JRMP/HTTP

JRMP/Socket

IIOP/Socket

IIOP/HTP

Bespoke

Bespoke

8/10/10 © Copyright Corsaire Ltd 2006 6

Attack the client, not the transport

8/10/10 © Copyright Corsaire Ltd 2006 7

Introduction

Problems when security testing Java clients:

  Input validation in the client can prevent injection attacks

 GUI makes automated attacks difficult (e.g. brute force)
 Remoting transport is difficult to intercept

–   Burp plugin by Manish Saindane for Java RMI (BlackHat Europe 2010)

 Decompilers don’t work 100%

 Decompilers don’t allow you to manipulate the client

8/10/10 © Copyright Corsaire Ltd 2006 8

Objectives

1. Understand the client logic

2. Manipulate fields and methods in
order to subvert the security

8/10/10 © Copyright Corsaire Ltd 2006 9

Attack Approach

1.  Information gathering

2. Probing & Analysis

3. Exploit

8/10/10 © Copyright Corsaire Ltd 2006 10

Information gathering

  What are the interesting classes?

  What are the server side methods?

  Where is the comms layer?

8/10/10 © Copyright Corsaire Ltd 2006 11

Probing & Analysis

  What does the execution flow look like?

  Where is the security logic?

  Where is key business logic?

  Which classes are the most convenient to inject a shell?

8/10/10 © Copyright Corsaire Ltd 2006 12

Exploit

  Inject shell or Static patching

  Bypass client side controls

  Attack server side
–   Injection attacks, e.g. SQL injection

–   Brute force/dictionary attacks

–   Bypass access control

8/10/10 © Copyright Corsaire Ltd 2006 13

Tools

 Eclipse Test and Performance Tools Platform (TPTP)

 Eclipse plugins
–   JD Decompiler plugin

–   AspectJ Development Tools plugin

 BeanShell

 Java Object Inspector

 AspectJ

8/10/10 © Copyright Corsaire Ltd 2006 14

Demo Application

8/10/10 © Copyright Corsaire Ltd 2006 15

Some Potential Attacks

 Subvert access control to view other users’ orders

 SQL injection attacks against server side

 Brute force attack of login credentials

8/10/10 © Copyright Corsaire Ltd 2006 16

Step 1: Information gathering

 What are the interesting classes?

 Where are the interesting methods?

 Which remoting technology is in use?

 JAR file inspection

 Class file inspection in IDE

 Class file inspection with javap

 Decompile classes

8/10/10 © Copyright Corsaire Ltd 2006 17

Step 1: Information gathering

Demo

8/10/10 © Copyright Corsaire Ltd 2006 18

Step 2: Probing & Analysis

 Profiling with Eclipse TPTP

 Tracing with Eclipse TPTP

 Tracing with AspectJ

  What does the execution flow look like?

  Where is the security logic?

  Where is key business logic?

  Which classes are the most convenient to inject a shell?

8/10/10 © Copyright Corsaire Ltd 2006 19

Step 2: Probing & Analysis

Demo Profiling

8/10/10 © Copyright Corsaire Ltd 2006 20

Step 2: Probing & Analysis

Tracing with Eclipse TPTP
–   Insert print/log statements

–   TPTP supports instrumenting bytecode directly using probes
•   Callsite probe: inserted into calling code

•   Method probe: inserted into called code

8/10/10 © Copyright Corsaire Ltd 2006 21

Step 2: Probing & Analysis

Demo Tracing with Eclipse

8/10/10 © Copyright Corsaire Ltd 2006 22

Step 2: Probing & Analysis

Tracing with AspectJ

 …before we begin…

8/10/10 © Copyright Corsaire Ltd 2006 23

…before we begin: AOP and AspectJ

 Programming paradigm to isolate cross-cutting functionality from main
business logic, e.g.:

–   Logging

–   Access control

 AspectJ started with source weaving, now does bytecode weaving

 Terminology:
–   Advice : New code to insert into the application

–   Pointcut : Defines when “advice” should be executed

–   Aspect : Advice + pointcut

8/10/10 © Copyright Corsaire Ltd 2006 24

…before we begin: AOP and AspectJ

public aspect ShowSets {
 pointcut sets() : call(void set* (..));

 before() : sets() {
 System.out.println(“About to set something");
 }

 after() : sets() {
 System.out.println(“Completed setting something");
 }

}

8/10/10 © Copyright Corsaire Ltd 2006 25

Step 2: Probing & Analysis

Tracing with AspectJ
–   Insert print/log statements

–   Can log field assignment!

–   Define pointcuts and advice

8/10/10 © Copyright Corsaire Ltd 2006 26

Step 2: Probing & Analysis

Demo Tracing with AspectJ

8/10/10 © Copyright Corsaire Ltd 2006 27

Step 3: Exploit

 Subvert access control to view other users’ orders

 SQL injection attacks against server side

 Brute force attack of login credentials

  Inject shell or Static patching
–   Bypass client side controls

–   Perform attacks

8/10/10 © Copyright Corsaire Ltd 2006 28

…before we begin

Quick introduction to:
–   Java Object Inspector

–  BeanShell

8/10/10 © Copyright Corsaire Ltd 2006 29

…before we begin: Java Object Inspector

 Inserted into application

 View and edit objects

import org.pf.joi.Inspector;

…

Inspector.inspect(myObject);

8/10/10 © Copyright Corsaire Ltd 2006 30

…before we begin: Java Object Inspector

8/10/10 © Copyright Corsaire Ltd 2006 31

…before we begin: BeanShell

 BeanShell is an embeddable Java source
interpreter

–   Provides Java like scripting language
–   For debugging: provides a shell inside the running Java

program

Interpreter i = new Interpreter();

try {

 i.set(“myObject", myObject);
 i.eval("server(7777)");

} catch (Exception e) {

 e.printStackTrace();

}

8/10/10 © Copyright Corsaire Ltd 2006 32

…before we begin: BeanShell

 Telnet server on port 7778

8/10/10 © Copyright Corsaire Ltd 2006 33

…before we begin: BeanShell

 HTTP server on port 7777

8/10/10 © Copyright Corsaire Ltd 2006 34

…before we begin: BeanShell

 View the state of objects

 Change values

 Execute methods

 Write scripts to automate tasks

8/10/10 © Copyright Corsaire Ltd 2006 35

…before we begin: Putting it all together

 BeanShell – Rich shell environment that can be inserted into
code

 Java Object Inspector – View and edit fields

 AspectJ – Weave new functionality directly into bytecode

8/10/10 © Copyright Corsaire Ltd 2006 36

Step 3: Exploit

Demo

8/10/10 © Copyright Corsaire Ltd 2006 37

Step 3: Exploit

…or statically patch with AspectJ

8/10/10 © Copyright Corsaire Ltd 2006 38

Step 3: Exploit

 Static patching with AspectJ
–   Redefine methods and return values

8/10/10 © Copyright Corsaire Ltd 2006 39

Step 2: Exploit

Demo: Static patching with AspectJ

8/10/10 © Copyright Corsaire Ltd 2006 40

Conclusions

 Developer tools to aide reverse engineering
–   Javap

–   Eclipse TPTP

–   AspectJ

 Trace application flow:
–   AspectJ and Eclipse TPTP

 Manipulate the client:
–   AspectJ

–   BeanShell

–   Java Object Inspector

8/10/10 © Copyright Corsaire Ltd 2006 41

JavaSnoop

 GUI to intercept and modify fields and method calls

 Attaches to running processes: no need to inject anything

Don’t miss Arshan Dabirsiaghi’s
JavaSnoop presentation

15h15
in Neopolitan Room

8/10/10 © Copyright Corsaire Ltd 2006 42

Questions ?

stephen@corsaire.com

