
dirtbox a x86/Windowsdirtbox, a x86/Windows
Emulator
Georg Wicherski
Virus Analyst, Global Research and Analysis Team

BlackHat USA, 2010-07-29

Motivation & System OverviewMotivation & System Overview
Why not just use CWSandbox, Anubis, Norman‘s, JoeBox, …

Malware Analysis Sandbox Solutions

VMWare „Rootkits“
CWSandboxCWSandbox
JoeBox
ThreatExpertThreatExpert
zBox
…

Norman
Sandbox
Anubis

2010-07-29 BlackHat USA 2010, Las Vegas

Malware Detection Emulators (A/V)

Most serious A/V
solutions have onesolutions have one
API level emulation
Often pureOften pure
software emulators
Detection byy

Unimplented APIs
Heap Layout,
SEH handling, …
…

2010-07-29 BlackHat USA 2010, Las Vegas

Detection by API Side-Effects

Functions containing try { in VS C++ share code
Epilogue is always the sameEpilogue is always the same
Uses sequence push ecx / ret to return to caller
The ecx register belongs to the called function by definition, so it is

d fi d API tundefinde upon API return
The ecx value can be predicted because it will point to the API‘s
ret

This breaks a lot of A/V emulators right away
There are some funny but trivially detected workarounds
Could be used for generic anti-emulation detection (use ofCould be used for generic anti emulation detection (use of
undefined registers after SEH protected API calls)

Relies on the fact that the API‘s bytecode is not
l d

2010-07-29 BlackHat USA 2010, Las Vegas

emulated

System Overview or „A cat pooped into my
sandbox and now I have a dirtbox!“

System Call Layer
Emulation of Windows
ntdll‘s native code is

i id i t l CPUrun inside virtual CPU
Other libraries wrap
around kernel32 which

Ring 0

malware.exe ntdll
wraps around ntdll

Malware issuing
system calls directlysystem calls directly
supported

2010-07-29 BlackHat USA 2010, Las Vegas

libcpulibcpu
Custom x86 Basic Block Level Virtualization

libcpu Overview

Software emulation of x86 bytecode is too slow
A l t f dditi l d h tdll & k l32A lot of additional code, such as ntdll & kernel32

Existing Virtualization solutions are too
f lpowerful

Implementing their own MMU, support for privileged
instructionsinstructions

We want instruction level introspection

Homebrew x86 virtualization based on LDT

2010-07-29 BlackHat USA 2010, Las Vegas

x86 Memory Views

Virtual PhysicalLogical

2010-07-29 BlackHat USA 2010, Las Vegas

x86 Memory View on Current OS

Virtual PhysicalLogical

2010-07-29 BlackHat USA 2010, Las Vegas

x86 Segmentation

Global Descriptor Table
Allocated by Operating SystemAllocated by Operating System
Shared among processes

Local Descriptor TableLocal Descriptor Table
Has to be allocated by the OS, too

• SYS modify ldt_ y_
• NtSetLdtEntries

Process specific, usually not present

Define 2 GB guest „userland“ LDT segment

2010-07-29 BlackHat USA 2010, Las Vegas

g „ g

Rogue Code Execution

Basic block level execution on host CPU
No instruction rewriting required (thanks to host MMU)No instruction rewriting required (thanks to host MMU)

Basic block is terminated by
Control flow modifying instructionControl flow modifying instruction
Privileged instructions

Exception: Backward pointing jumpsException: Backward pointing jumps
Directly copy if points into same basic block
Enhanced loop execution speedsEnhanced loop execution speeds

Currently no code cache, could cache
disassembly results (length of basic block)

2010-07-29 BlackHat USA 2010, Las Vegas

disassembly results (length of basic block)

Self-Modifying Code

2010-07-29 BlackHat USA 2010, Las Vegas

libcpu Demo

2010-07-29 BlackHat USA 2010, Las Vegas

libscizzlelibscizzle
Or „libx86shellcodedetection“ if you prefer…

Shellcode Detection

Simple Approach: Brute-Force over byte buffer
If n valid instructions can be executed from thereIf n valid instructions can be executed from there,
assume we found valid shellcode

Pre-filter buffers: Scan for „GetPC“ sequences
1. Find GetPC opcode candiates: 89, a3, d9, e8

• mov r/m32, r32 or mov rm/32, eax → SEH based
GetPC

• fstenv
• call rel32

2. Check for valid memory operands or FS prefix
• Require fstenv operand to be esp relative

2010-07-29 BlackHat USA 2010, Las Vegas

• Require fstenv operand to be esp relative

Free Shellcode Detector:
http://code mwcollect org/libscizzlehttp://code.mwcollect.org/libscizzle

Free Shellcode Emulator:Free Shellcode Emulator:
http://libemu.carnivore.it/

libscizzle Demo

2010-07-29 BlackHat USA 2010, Las Vegas

dirtboxdirtbox
Or „The System Call Implementor‘s Sysiphus Tale“

Why System Call Layer Emulation

System Calls mostly undocumentedy y
Wine, ReactOS, …

We get a lot of genuine environment for free!
There is a fixed number of system calls but an
unbound number of APIs (think third party DLLs)
Some malware uses system calls directly anyway
Less detectability by API side effects (because we run

i i l b t d)original bytecode)

2010-07-29 BlackHat USA 2010, Las Vegas

Things for Free: PE Parsing & Loading (!)

Process startup handled mostly by new process
C ti ll tCreating process allocates new process:
NtCreateProcess
Creates „Section“ of new image & ntdll and maps into„ g & p
process, this requires kernel to parse section headers
Creates new Thread on Entry Point with APC in ntdll
ntdll!LdrInitializeThunk will relocate images if necessary,
resolve imports recursively, invoke TLS and DLL startup
routines and do magic (see demo).routines and do magic (see demo).

All we have to implement is NtCreateSection &
NtMapViewOfSection for SEC IMAGE → we

2010-07-29 BlackHat USA 2010, Las Vegas

NtMapViewOfSection for SEC_IMAGE we
only need to parse PE‘s section headers!

Things for free: Accurate Heap
Implementation

A lot of A/V emulators naturally come with their
o n g est heap allocator implementationsown guest heap allocator implementations

Some even do not put heap headers before blocks
Let alone arena structuresLet alone arena structures, …

The Windows heap is implemented in ntdll
Interfacing the kernel with NtVirtualAlloc & NtVirtualFreeInterfacing the kernel with NtVirtualAlloc & NtVirtualFree
All protections like heap cookies are present

Fingerprinting other emulators:Fingerprinting other emulators:
Look at malloc(0)-8, look for proper block header
Or overflow until the heap cookie and free

2010-07-29 BlackHat USA 2010, Las Vegas

Or overflow until the heap cookie and free

Things for free: Proper SEH Handling

Generate CONTEXT record from current CPU state
Jump to ntdll!KiUserExceptionDispatcherJump to ntdll!KiUserExceptionDispatcher
ntdll will do proper SEH handling for us

Lookup current top of SEH chain in TEBLookup current top of SEH chain in TEB
Walk list, invoke exception handlers with correct flags
Checking for SafeSEH structures etc.Checking for SafeSEH structures etc.

Trivial detection for other emulators:
Link with SafeSEH headerLink with SafeSEH header
Trigger exception with invalid handler registered
Check in UnhandledExceptionHandler

2010-07-29 BlackHat USA 2010, Las Vegas

Check in UnhandledExceptionHandler

dirtbox Demo

2010-07-29 BlackHat USA 2010, Las Vegas

Conclusion & Future WorkConclusion & Future Work
Let‘s use this for exploit development!

Detecting dirtbox / Anti-Emulation

No leaked registers in Ring 0 transition except for eax
N d t id t d dNeed to provide proper return codes, esp. error codes
ntdll just cares about ≥ 0xc0000000; malware might
look for specific error codesp

Side effects on buffers etc., especially in error
casescases

Fill out IN OUT PDWORD Length in case of error?
Roll back system calls performing multiple things?

Tradeoff between detectability and performance

2010-07-29 BlackHat USA 2010, Las Vegas

Future Work: Adding Tainting & SAT
Checking

Already did Proof-of-Concept based on STP
Interleave static analysis into dynamic emulationInterleave static analysis into dynamic emulation

Look for interesting values (e.g. reads from network,
date)
Do static forward data-flow analysis on usage
If used in conditional jumps, identify interesting values
with a SAT Checker (there are better domain specificwith a SAT Checker (there are better domain specific
ways, but I‘m lazy)

Automatic reconstruction of network protocols (e.g.
C)commands in IRC bots)

Identify specific trigger based behaviour
Id tif A ti E l ti b h i

2010-07-29 BlackHat USA 2010, Las Vegas

Identify Anti-Emulation behaviour

Questions? Thank You!Questions? Thank You!

georg wicherski@kaspersky comgeorg.wicherski@kaspersky.com
blog.oxff.net & securelist.com

