BlackHat USA 2010, Las Vegas

Mario Vuksan & Tomislav Pericin

TITANMIST:
YOUR FIRST STEP TO REVERSING NIRVANA

Agenda

* Introduction
Human aspect of the security industry

* Introduction and review of known formats
Introduction to dynamic analysis and unpacking
Solving dynamic analysis problems

* Introduction to TitanMist
Defining the needed infrastructure
Extending the code base & collaboration
Building a unique knowledge base about formats

AEVERSING | sotvere pecion
Soltware Protection

WﬂlHuman Aspect of Security

= Boils down to anindividual
Malware Analysis
Reverse Engineering
Penetration Testing
= Do we have what it takes?
Does we have tools to be successful?
= Tools generally fall into too categories:

Either very expensive
Or poorly supported

= Black hat down to exceptions
OllyDBG
Metasploit

WﬂLWhy TitanMist?
= Better Reversing Tools are Needed
PelD

OllyScripts
TriD

= Unified tools are needed
Format identification, analysis, unpacking

= Necessary alternative Options To
Using AV Products to Unpack

Using Sandboxes (Norman, CWSandbox, Anubis,
ThreatExpert, etc.)

WﬂLUnified Solution

= Goals
Faster analysis
Malware
Cracked Software
Vulnerable Applications

Removal of obfuscation

Better data for heuristic systems

Accessibility

WﬂlBottom Line

Malware analysis is no longer for AV Labs
only

General public does not have money for high
end specialized toolsets

General public needs well supported projects

Community needs to coalesce around

A unified tool (not one author, but rather one
distributions)

Information repository (one website)

999 2495891 269 19 70 53 256541

98104 57418 1 6419385

04 0986334408 26 058 2264 724
41468186 44 26441517385 715830
2495891 269 19 70 53 256541

30 461 94 98104 118 1 6419385
34408 26 058 686264 724
26441517385 715830

269 19 70 53 25654%
08104 57418 1 6419385

086334408 26 058 6B6264 724

041498186 44 2644151738 7

161 94 08104 57418 1 6419385

b4 724

896430 883
12574 970
6950
05 374
896430 893
12QUANT
6950 7 4914
5 37485¢
806430 893

TitanMist|Introduction

= TitanMist's key features:
Tool for format identification
Tool for format specific unpacking
Format info stored in a public knowledge base

Easily extendable & community supported
Always up to date

TitanMist

TitanMist|Database

= TitanMist Database

Links signatures with format specific unpackers

<mistdb version="0.1">
<entry

1/4

name="...
url="..."
version="..."
description="..."
priority="1"
author="...">
<unpacker type="..."” >filename.ext</unpacker>
<signature start="ep" version="1.x — 3.x" unpacker="...">
PATTERN
<[signature>
</entry>
</mistdb>

/4

TitanMist|Identification

= TitanMist identification
Signatures can be simple or complex
Signatures are stored into XML database
Signatures are grouped by formats into entries

Detection is defined by the entry or the signature

Entries can be linked with multiple unpackers
Entries are linked to online knowledge base

Identification|Pattern start

= TitanMist identification signatures start:
ep — Match the pattern from the PE entry point
overlay - Match the pattern from the PE overlay
begin — Match the pattern from the file start
all — Scan the entire file for the pattern

= Seek or match can be defined for any search

Identification|Simple patterns

= Simple TitanMist identification patterns
Simple patterns are equal to PEID patterns

Enable pattern matching by following rules:
?? —Wild card byte (any byte matches it)
?x — Bit masking for the high bits
x? — Bit masking for the low bits

Example UPX pattern:

60 BE 8D BE 57 83 CD FF EB 10
90 90 90 90 90 90 8A 06 46 88 07 47 01 DB 75 07

Identification|Complex patterns

= ComplexTitanMist identification patterns
Enable pattern matching by following rule:
“*("byte")” — Match the selected byte multiple times
Solution to the variable bytes problem
Solves variable byte number problem
Solves long signatures due to repetition
Example UPX pattern:

60 BE ?????2???8DBE ????????5783CD FFEB ??
8A 06 46 88 07 47 01 DB 75 07

Identification|Complex patterns

= ComplexTitanMist identification patterns
Enable pattern matching by following rule:
“[" byte "-" byte "]” — Detect if the byte is in range
Solution to the variable bytes problem
Solves register permutation problem
Solves jump direction problem
Example UPX pattern:

60 BE ?????2?2??8DBE ????????5783CD FFEB
90 90 90 90 90 90 8A 06 46 88 07 47 01 DB 75 07

Identification|Complex patterns

= ComplexTitanMist identification patterns
Enable pattern matching by following rule:
“(” byte pattern ")” — Optional byte pattern
Solution to the variable bytes problem
Solves optional instructions problem
Solves the multiple signatures problem

Example UPX pattern:

60 BE ?? ?? ???? 8D BE ?? ?? ?? ?? 57 83 CD FF EB [00-7F]
90 90 90 90 90 90 8A 06 46 88 07 47 01 DB 75 07

Identification|Complex patterns

= ComplexTitanMist identification patterns
Enable pattern matching by following rule:
“+/-(" hex offset *)” — Skip or rewind number of bytes
Solution to the unknown bytes problem
Solves the problem of increasing bytes patterns
Solves the problem of byte patterns being linear

Example MEW pattern:

4D A BE ?? 2?22?22 8B DEAD AD 50 AD 97 B2 80 A4
B6 80 FF 13 73 F933 C9 FF 1373 16...

Identification|Complex patterns

= ComplexTitanMist identification patterns
Enable pattern matching by following rule:
“+(?)" — Follow DWORD virtual address
Solution to the multi layer pattern problem
Solves the problem of byte patterns not being linear

Example PECompact pattern:

B8 ?? ?? ?? ?? 50 64 FF 35 00 00 00 00 64 89 25 00 00 00 00
33 Co 89 08 50 45 43 6F 6D 70 61 63 74 B8 B8 ??

Identification|Complex patterns

= ComplexTitanMist identification patterns

Enable pattern matching by following rule:

“I(+/-" 2/4/5™)" — Follow relative jumps and calls
Solution to the multi layer pattern problem

Solves the problem of byte patterns not being linear

Solves the problem of increasing bytes patterns
Example UPX pattern:

(80 7C 24 08 01 oF 85)
60 BE ?? ?? ???? 8D BE ?? ?? ?? ?? 57 83 CD FF EB [00-7F]
90 90 90 90 90 90 8A 06 46 88 07 47 01 DB 75 07

Identification|Future plans

» Future complex TitanMist signature patterns
Making signatures PE format aware
Disable signatures for DLL, x64 and .net files

Combining patterns with logic responses
Multiple patterns making a single signature

S

TitanMist vs PE1D patterns

TitanMist

Complex patterns

Any direction patterns
Multiple start points
Match or seek patterns
Variable byte patterns
Skip byte patterns
Optional patterns
Code flow following
Signature priority

*comparison refers only to user made signatures

PEID

Simple patterns only
Single direction patterns
Single start point

TitanMist|Unpackers

= TitanMist unpacking
TitanMist uses automated unpackers

Unpackers can be written in many languages

C, C++, MASM, Delphi, LUA, Python and TitanScript
* TitanScript is based on ODbgScript by SHaG & Epsylon3

Script unpackers are based on the TitanEngine

Native unpackers can be based on the TitanEngine
or on any other framework or custom code (DLL)

TitanMist|Unpackers

e Static
* Dynamic

Native

2 e Static
Script

_/J Dynamic

TitanMist /

TitanScript = Dynam |C

\ (no DLL support)

TitanMist|Unpacker coding

= TitanMist unpacker coding

TitanEngine simulates reverse engineers presence

Dynamic unpacking process has the same steps
= Debugging until entry point

= Dumping memory to disk

* Collection of data for import fixing

* Collection of data for relocation fixing

* Custom fixes (Code splices, Entry point, ...)
Static unpacking process has standard steps

= Decryption and/or decompression

* Import table and original entry point correction

e

TitanMist|Unpacker coding

InitDebug
SetBPX

DebugLoop

SetBPX

—> Importfix —> Relocfix — Entrypoint

Import data gathering

LoadLibrary +—— ImporterAddNewDlI|

GetProcAddress +— ImporterAddNewAPI

Packer segment

TitanMist|Unpacker coding

—> Importfix — Relocfix — Entrypoint

InitDebug

Reloc data gathering

SetBPX
. Code just before — RelocaterMakeSnapshot

DebugLoop

Relocation code RelocaterMakeSnapshot

!

CompareTwoSnapshots
Packer segment i

S etBPYX = Code just after —

ExportRelocation

e

TitanMist|Unpacker coding

InitDebug
SetBPX

DebugLoop

SetBPX

—

Import fix

—> Relocfix — Entry point

Entry point
DumpProcess
PastePEHeader

AddNewSection
ImporterExportI AT

AddNewSection

RelocaterExportRelocation

RealignPE

TitanScript|Unpacker coding

= TitanScript unpacker coding
TitanScript uses ODbgScript syntax
TitanScript enables use of TitanEngine functions
TitanScript is compatible with existing scripts

OllyScripts can easily be upgraded to TitanScripts
Partial script recoding
Instruction addition

%«:—' TitanScript|Unpacker coding

= OllyScript to TitanScript conversion
Problem: OllyScripts are not full blown unpackers!
Solution(s):
Recoding to match TitanEngine layout

Instruction adding:
= DNF - dump and fix
- ERROR -set unpacking error

é%? TitanScript|UPX Example

= OllyScript = TitanScript

eob Break eob Break
findop eip, #61# findop eip, #61#
log $RESULT log $RESULT
bphws $RESULT, "x" bphws $RESULT, "x"
Run Run

Break: Break:

eob // clear eob // clear

bphwc eip bphwc eip

bp eip + 14. bp eip + 14.

run run

sti sti

ret

Dynamic unpacking problems

= Dynamic unpacking vyields following problems
Damaged or broken files can’t be unpacked
Files with missing dependencies can’t be unpacked
DEP non compatible files can’t be unpacked

= Good news!
There is a solution for each of these problems

We can:
Repair the damaged files
We can simulate presence of needed dependencies
We can work around DEP or disable it

TitanEngine Nexus plugin performs this automatically!

Nexus |Fixing broken files

= File validation should be done before any
unpacking, especially dynamic, is performed
= Validation gives detailed file information

Wheatear or not the file is valid
Wheatear or not broken file can be fixed

= Validation & repair is done automatically

Nexus |Missing dependencies

= |f observed standalone, files can be missing
crucial dependencies

= Dependencies are crucial only for packed file
not the packer itself, but:

Files must be present on disk if the packer imports
them statically - done automatically

Packed must be fooled that actual functions exist in
these fake files - done automatically

TitanMist | DEMO

TitanMist|Knowledge base

= TitanMist knowledge base

Online Wikipedia file format knowledge base
File format descriptions

* Basic file format information

* Extensive file format analysis

* Protection options descriptions
TitanMist unpackers

Sample files

@ TitanMist|Release

AHPack ASPack
RLPack

BeroExePacker

AlexProtector
LameCrypt

PeCompact
DEF

ShrinkWrap
PackMan
FSG

MEW

PEX

UPX

Questions?

Questions?

(What Would You Like to Know)

