
There's a party at ring0...

(...and you're invited)

Tavis Ormandy, Julien Tinnes

BlackHat Las Vegas 2010

Introduction

All systems make some assumptions about kernel security.
Sometimes a single kernel flaw can break the entire
security model.
The sandboxing model in Google Chrome and Android
makes us even more dependent on kernel security.

We've been involved in finding, fixing and mitigating some
fascinating kernel bugs, and we want to share some of our
work.
We're going to discuss some of the ways to protect the
kernel from malicious userland code, and mitigate unknown
kernel vulnerabilities.

The Kernel as a Target

Local Privilege Escalation*

You have arbitrary code execution on a machine
You want to escalate (or change) privileges
What can you target?

Processes with more/other privileges (Running
deamons, suid binaries you can execute on Unix)
The kernel

Big code base
Performs complex, error-prone tasks
Responsible for the security model of the system

The Linux kernel as a local target

The Linux kernel has been a target for over a decade
Memory / memory management corruption vs. logical bug

The complexity of a kernel makes for more diverse and
interesting logical bugs

Fun logical bugs include:

ptrace() / suidexec (Nergal, CVE-2001-1384)
ptrace() / kernel threads (cliph / Szombierski, CVE-2003-
0127)
/proc file give-away (H00lyshit, CVE-2006-3626)
prctl suidsafe (CVE-2006-2451)

Linux kernel mm corruption bugs

cliph / ihaquer do_brk() (CVE-2003-0961)
cliph / ihaquer / Devine / others "Lost-VMA"-style bugs
(check isec.pl)
Couple of "classic" overflows
Null (or to-userland) pointer dereferences

Tend to be more interesting and diverse than userland
counterpart

Complexity of memory management
Interesting different paradigm (the attacker finely
controls a full address space)

Escapes through the kernel

Exploiting the kernel is often the easiest way out of:
chroot() jails
Mandatory access control
Container-style segregation (vserver etc..)

Using those for segregation, you mostly expose the full
kernel attack surface

Virtualization is a popular alternative

MAC makes more sense in a full security patch such as
grsecurity.

Windows and local kernel bugs

Traditionally were not considered relevant on Windows
Changed somewhat recently

Increased reliance on domain controls
Use of network services
Introduction of features like protected mode / integrity
levels

This has changed in the last few years and Windows is
roughly in the same situation as Linux now

With a bit less focus on advanced privilege separation
and segregation (Lacks MAC for instance)

Remotely exploitable kernel bugs

Published exploits are still quite rare for Linux.
Notable exceptions

Wifi drivers (big attack surface, poorly written code)
See few exploits by Stéphane Duverger, sgrakkyu or
Julien
Read Stéphane's paper

sgrakkyu's impressive SCTP exploit
(Read his article co-written with twiz in Phrack)

Few others

http://www.springerlink.com/index/m2783777l47t3836.pdf

Remotely exploitable kernel bugs (2)

Have been quite popular on Windows for at least 6/7 years
Third party antivirus and personal firewall code
GDI-related bugs
TCP/IP stack related ones (Neel Mehta et al.)
Immunity's SMBv2 exploit

Web browsers changed the game

The threat model for in-kernel GDI is now different
See also the remotely exploitable NVidia drivers bug on
Linux
Stay tuned...

Some bugs from the last year

Timeline*

Exposing Kernel Attack Surfaces

There are many entrypoints for attackers to expose kernel
attack surface, apart from system calls there are also

Ioctls, devices, kernel parsers
Filesystems, network protocols
Fonts, Bitmaps, etc. (primarily Windows)
Executables formats (COFF, ELF, a.out, etc.)
And so on.

Perhaps one under appreciated entrypoint is dpl3 interrupt
handlers, so we decided to take a look.

Windows 2003 KiRaiseAssertion Bug

In Windows Server 2003, Microsoft introduced a new dpl3
(accessible to ring3 code) IDT entry (KiRaiseAssertion in
the public symbols).

This makes int 0x2c roughly equivalent to RaiseException
(STATUS_ASSERTION_FAILED).
I've never seen this feature used, but analysis revealed an
interesting error; interrupts were not enabled before the
exception dispatch!
This bug has two interesting characteristics...

Windows 2003 KiRaiseAssertion Bug

Tiny exploit (4 bytes)...

 00000000 31E4 xor esp,esp
 00000002 CD2C int 0x2c

Tiny patch (1 byte)...

Page Fault Exceptions

A page fault exception occurs when code:
Attempts to access a non-present page
Has insufficient privilege to access a present page
Various other paging related errors

The handler is passed a set of flags describing the error:

I/D - Instruction / Data Fetch
U/S - User / Supervisor Mode
W/R - Read / Write access
P - Present / Not present

Supervisor Mode

If the processor is privileged when the exception occurs, the
supervisor bit is set
Operating system kernels use this to detect when special
conditions occurs

This could mean a kernel bug is encountered
Oops, BugCheck, Panic, etc
Or some other unusual low-level event

Can also happen in specific situations (copy-from-user
etc...)
If the processor can be tricked into setting the flag
incorrectly, ring3 code can confuse the privileged code
handling the interrupt

VMware Invalid #PF Code

By studying the machine state while executing a Virtual-
8086 mode task, we found a way to cause VMware to set
the supervisor bit for user mode page faults
Far calls in Virtual-8086 mode were emulated incorrectly

When the cs:ip pair are pushed onto the stack, this is
done with supervisor access
We were able to exploit this to gain ring0 in VMware
guests

The linux kernel checks for a magic CS value to check for
PNPBIOS support

But... in Virtual-8086 mode we must be permitted any
value cs

Exploiting Incorrect U/S Bit

We can exploit this error :-)
We mmap() our shellcode at NULL, then enter vm86 mode.

mmap_min_addr was beginning to gain popularity at the
time we were working on this, so we bypassed that as
well (CVE-2009-1895)

When we far call with a non-present page at ss:sp, a #PF is
delivered.
Because we can spoof arbitrary cs, we set a value that the
kernel recognises as a PNPBIOS fault.
The kernel tries to call the PNPBIOS fault handler.
But because this is not a real fault, the handler will be
NULL.
=> r00t

Exploiting Incorrect U/S Bit

Triggering this issue was simple, we used a code
sequence like this:

 vm.regs.esp = 0xDEADBEEF;
 vm.regs.eip = 0x00000000;
 vm.regs.cs = 0x0090;
 vm.regs.ss = 0xFFFF;

 CODE16("call 0xaabb:0xccdd", code, codesize);

 memcpy(REAL(vm.regs.cs, vm.regs.eip), code, codesize);

 vm86(Vm86Enter, &vm);

More Page Fault Fun

If the kernel ever trusts data from userspace, a security
issue may exist.

However, it's worth remembering that it's not just the data
that users control, it's also the presence or absence of data.

By claiming to have more data available than we really do,
we can reach lots of unusual error paths.

This is especially true on Windows where the base
system types are large inter-dependent structures.

We found an interesting example of this problem on
Windows NT, resulting in a privilege escalation.
MS10-015, a double-free in NtFilterToken()

Windows NT NtFilterToken() Bug

NtFilterToken() is the system service that makes routines
like CreateRestrictedToken() work.
NtFilterToken() would pass a (void **) to a helper routine,
which would be used to store the captured data.
I can force the capture to fail by claiming the SID is bigger
than it really is, and forcing the structure to straddle a page
boundary.

Windows NT NtFilterToken() Bug

On error, the helper routine releases but doesn't reset the
(void **) parameter, which NtFilterToken() will release again!

The kernel detects a double free and BugChecks, so we
only get one attempt to exploit this...

We need to get the buffer reallocated a small window. This
is possible, but unfortunately is unavoidably unreliable.

Example Code: http://bit.ly/b9tPqn

http://bit.ly/b9tPqn

Windows NT TTF Parsing Vulnerability

"Moving [...] the GDI from user mode to kernel mode has
provided improved performance without any significant
decrease in system stability or reliability."

(Windows Internals, 4th Ed., Microsoft Press)
GDI represents a significant kernel attack surface, and is
perhaps the most easily accessible remotely.
We identified font parsing as one of the likely weak points,
and easily accessible via Internet Explorer's @font-face
support.
This resulted in perhaps our most critical discovery, remote
ring0 code execution when a user visits a hostile website
(even for unprivileged or protected mode users).

Windows NT TTF Parsing Vulnerability

The font format supported by Internet Explorer is called
EOT (Embedded OpenType), essentially a trivial DRM layer
added to TTF format fonts.
EOT also defines optional sub-formats called CTF and MTX
(in which we also identified ring3 vulnerabilities, see MS10-
001 and others), but are essentially TTF with added
compression and reduced redundancy.

See http://www.w3.org/Submission/2008/SUBM-EOT-20080305/

EOT also adds support for XOR encryption, and other
advanced DRM techniques to stop you pirating Comic Sans.
The t2embed library handles reconstructing TTF files from
EOT input, including decryption and so on, at which point
GDI takes over.

http://www.w3.org/Submission/2008/SUBM-EOT-20080305/

Windows NT TTF Parsing Vulnerability

We found multiple integer errors when GDI parses TTF
directories (these directories simply describe the position of
each table in the file).
This code is executed at ring0, and was essentially
unchanged since at least NT4.
Microsoft wasn't alone, most other implementations we
tested were vulnerable, but as the decoder ran at ring0 on
Microsoft platforms, the impact was far more serious.

NULL pointer dereferences*

To-userland pointer dereferences
If at any time the kernel trusts data in user space,
privilege escalation is likely

NULL dereferences are a common error

Common initialization value / error-returned as pointers
NULL is a special value in C, but has no special
meaning to the underlying hardware on x86

NULL pointer dereferences

Interestingly, they used to not be exploitable in Linux 2.0 /
i386

Segmentation was used
A dereferenced pointer without a segment override
would not reach userland
Wrong pointer dereferences didn't become "to-userland"
pointer dereferences
thus their destination would be harder to control

Interesting threads in ~2004/2005, where many Linux kernel
developers did not understand the security consequences
Was still the case for some of them until recently
Will talk about mmap_min_addr later

Linux kernel sock_sendpage

CVE-2009-2692, found it last August
Affected all 2.4 and 2.6 kernels to date
Every major distribution shipped vulnerable kernels
NULL function pointer dereference
Trivial to exploit

Linux kernel sock_sendpage

Every socket in the Linux kernel has a set of function
pointers associated with it called proto_ops (Protocol
Operations).
Implement the various operations that can be performed on
a socket, e.g. accept, bind, shutdown, and so on.
The general socket management code doesn't have to know
about the underlying transport or protocol, because this is
all abstracted away.

Linux kernel sock_sendpage

The proto_ops definition is available in include/linux/net.h

Linux kernel sock_sendpage

Drivers implement the operations they support and point
operations they don't support to pre-defined kernel stubs
This model is very fragile if you add a new operation:

You need to update all drivers and point the new
operation to a stub (or implement it)
It's a lot of code to update, including macros used for
initialization

Linux kernel sock_sendpage

When sock_sendpage() was added, it assumed the
corresponding proto_ops field would always be correctly
initialized

Linux kernel sock_sendpage

Unfortunately, a lot of drivers did not get properly updated
The SOCKOPS_WRAP macro had a bug

Used by many drivers to initialize proto_ops
Making them vulnerable in any case

 .sendpage was implicitly initialized to NULL for many
drivers
And sock_sendpage() would start executing code at NULL
Map your shellcode at NULL and it'll get executed

We wrote a trivial exploit that we shared with vendors

Linux udp_sendmsg()

CVE-2009-2698, released in August
It's possible to trigger a codepath in udp_sendmsg() that will
result in calling ip_append_data() with a NULL routing table

This time, it's a data NULL pointer dereference

An attacker will control kernel's data (rtable) through
address NULL
Still exploitable

Linux fasync use after free*

Drivers which want to provide asynchronous IO notification
have a linked list of fasync_struct containing fds (and the
corresponding file structure) to notify
The same file structure could be in multiple fasync_struct
lists

Most notably a special one for locked files
If the file was locked, and then closed, a logical bug would
remove the file structure only from the special locked files
linked list and free the file structure
The driver would still have a reference to this freed file
structure

 Gabriel Campana wrote an exploit

Tricky to make it reliable

NetBSD's Iret #GP handling failure*

An inter-privilege iret can fail before the privilege switch
occurs
For instance, if restored EIP is past the code segment limit

#GP will occur
 ... while in kernel mode
No privilege switch occurs, so no stack switch
No saved stack information on the trap frame

But NetBSD expects a full trap frame
Due to the non executable stack emulation, this can happen
during a legitimate program's execution

Windows NT #GP Trap Handler Bug*

After discovering these fun bugs in interrupt handlers, we
audited the remaining interrupt handlers.
One section of code in KiTrap0D (the name of the #GP trap
handler in the public symbols) appeared to trust the
contents of the trap frame.
The code itself is a component of the Virtual-8086 monitor,
introducing lots of fun special cases that few people are
familiar with.
It took another two weeks of research to figure out how to
reach the code and write a reliable exploit, but the end
result was a fascinating and ancient vulnerability in the core
of Windows NT.

BIOS Calls and Sensitive Instructions

If you can remember programming MS-DOS, you'll be
familiar with int 0x21 to invoke system services.
BIOS calls were then used to interact with hardware, most
people will remember int 0x10 was used for video related
services.
In Virtual-8086 mode, these services are intercepted by the
monitor code.
"Sensitive Instructions" is the term given by Intel to any
action in Virtual-8086 mode that real mode programs expect
to be able to perform, but cannot be permitted in protected
mode.
These actions trap, and the kernel is given an opportunity to
decide how to proceed.

Windows NT #GP Trap Handler Bug

The design of the Virtual-8086 monitor in Windows NT has
barely changed since it's original implementation in the early
nineties.
In order to support BIOS service routines, a stub exists in
the #GP trap handler that restores execution context from
the trap frame.
Access to this code is authenticated, but by magic values
that I knew we could forge from our work on vmware.
However, There were several hurdles we needed to
overcome before we could reach this code, but each one
was an interesting exercise.

Windows NT #GP Trap Handler Bug

The Virtual-8086 monitor is exposed via the undocumented
system service NtVdmControl().

This call is authenticated, a process is required to have a
flag called VdmAllowed in order to access it.

We found that the VdmAllowed flag can only be set with
SeTcbPrivilege (which is only granted to the most privileged
code).
We were able to defeat this check by requesting the
NTVDM subsystem, and then using CreateRemoteThread()
to execute within the authorised subsystem process.
Now that we were authorised to access NtVdmControl(), we
could try to reach the vulnerable code...

Windows NT #GP Trap Handler Bug

The vulnerable code was guarded by a test for a specific cs:
eip pair in the trap frame.
We can forge trap frames by making iret fail, but we still
can't request iret return into arbitrary code segments, as this
would be an obvious privilege escalation (rpl0).
But...cs loses it's special meaning in Virtual-8086 mode,
which is guaranteed to always be cpl3, so it's reasonable to
request any value.
We still need to cause iret to #GP, we did this by setting
eflags.TF=1, when returning. This is considered "sensitive",
and we get #GP instead.
This is poorly documented by Intel, but is self-evident from
experimentation.

Automation and fuzzing

System Call Exploration

On Windows, the system call interface is complex, unstable,
unsupported and undocumented.

It's also vast, with ~1400 entries (cf. Linux ~300).
They are designed to only ever be called by Microsoft code.
Rarely see exposure to malformed parameters, so simple
fuzzing will generally expose interesting bugs.
The parameters are often complex objects, multiple levels
deep with large inter-dependencies. Pathological
parameters will often reach rarely exercised code.
Of course, the kernel also parses fonts, pixmaps, and other
complex formats all at ring0...

All excellent fuzz candidates!

System Call Fuzzing

Trivial fuzzing will find Windows bugs.
Fuzzing will find Linux bugs, but the task is not so trivial.

We've developed some interesting techniques for fuzzing on
Linux, and have had some success finding minor bugs.

Protecting the kernel and its attack surface

TPE (trusted path executables)*

A reasonably old concept to prevent local privilege
escalation
Aims to prevent gaining arbitrary code execution in the first
place
A naïve way of doing it on Linux was to mount user-writable
PATHs "noexec"

Easy bypass by going through the dynamic loader
grsecurity had a good gid/uid based one for years
Now could actually works ("noexec" prevents file
mappings as PROT_EXEC)

This approach is gaining popularity on the Windows
platform (white listing)

TPE (drawbacks)

"Arbitrary code execution" should not only mean "arbitrary
opcodes"

You can exploit lots of bugs from a Python or Ruby
interpreter

gdb
The threat model is changed for many binaries

a local vulnerability in 'nethack' now becomes useful
or those zsh / make vulnerabilities

Of course, useless if the attacker already has arbitrary code
execution

Browser sandbox
OpenSSH / vsftpd 'privilege-separated' sandbox

Sandboxing and attack surface
reduction

Ideally, a process could opt-out from some kernel features it
does not require
Linux does not have any real "discretionary privilege
dropping facility"

Most of the focus is on Mandatory Access Control
Programmer defined vs. Administratively defined policies
debate

 Windows has more privilege-dropping like features (control
over tokens)

But still nothing to really protect the kernel's attack
surface

Options are limited

On Linux, things such as chroot() to an empty directory
remove a small chunk of attack surface

cf. Chrome's Linux suid sandbox design
ptrace() based sandbox

Good choice but slow (and not trivial to get right)
SECCOMP-based sandbox

Chrome Linux' future ?

If we can't protect the kernel let's reduce it's privileges
Virtualization is an interesting alternative for
seggregation

UDEREF

Unexpected to userland pointer dereferences are an issue
We've mentioned Linux/i386 used to have separate logical
address space for Kernel/Userland

The Kernel's segment descriptors bases were above
PAGE_OFFSET

PaX' UDEREF makes data segments expand-down, limit
them above PAGE_OFFSET
KERNEXEC takes care of the code segment

What to do on AMD_64 ?

No segmentation
Full address space switching (Xen does it) ?

mmap_min_addr

mmap_min_addr is a pragmatic attempt to tackle this
problem portably

Focusing on NULL pointers dereferences
system-wide minimum address that can be used in a
process
process with CAP_SYS_RAWIO capability have an
exception

This has been plagued with many bugs in the past
In much better shape now

We've found one bypass using personalities and suid
binaries
Another one we need to investigate

mmap_min_addr personalities bypass

CVE-2009-1895
SVr4 maps page 0 as read-only, some programs depend on
this behaviour

To make porting programs easier, Linux supports a SVr4
personality

The personality is per process and is kept on execve()
We could get this personality and execute a setuid
binary
The process gets CAP_SYS_RAWIO since it executes
as root now
thanks to this capability the mmap_min_addr check
succeeds and a page is mapped at zero in the address
space

mmap_min_addr personalities bypass

We now have a process we don't control with a page
mapped at zero
Can we regain control of the process ?
We were looking for a binary that would drop privileges, and
let us regain control without going through execve
We found one: pulseaudio

Other kernel protection

From PaX
RANDKSTACK
KERNEXEC
Permission tightening

Data in kernel non executable
Make some sensitive structures read-only

Misc
Reference counters overflow
Slab object size checks

Conclusion

There are lots of bugs to find in kernels
And the attack surface is growing in general
And easier to reach from remote

Their exploitation difficulty goes from very easy to very
challenging
It's hard to get rid of the kernel's attack surface

Remains even in systems designed with security in mind
May evolve soon

Userland exploitation prevention is maturing
Kernel exploitation prevention is immature
And current sandboxing techniques make the kernel an
ideal target

Thanks!

Questions ?

Bonus Slides

Windows Virtual Path Parsing

MS10-21 fixed an interesting bug parsing virtual paths.
A core routine handling virtualized keys made some invalid
assumptions about virtualized registry keys.
A typical path would something like L"
\\Registry\\user\\S-x-y-z"
A registry key can be nested arbitrarily deep.
But we found a routine that assumed every path would
contain at least five path seperators!
This is simply not the case...

Windows Virtual Path Parsing

 while (MaxDirectories) {
 if (*CurrentChar == '\\') {
 if (--MaxDirectories == 0)
 break;
 } else {
 CurrentChar++;
 Count++;
 }
 }

Windows Virtual Path Parsing

This assumption can be broken by simply setting the
VirtualTarget flag on a key that does not have five path
components.

// Set Virtual Target
Virt.VirtualTarget = 1;
// http://msdn.microsoft.com/en-us/library/cc512139%
28VS.85%29.aspx
ReturnCode = NtSetInformationKey(KeyHandle,
KeySetVirtualizationInformation, &Virt, sizeof
(KEY_SET_VIRTUALIZATION_INFORMATION));

Windows Virtual Path Parsing

It's not immediately clear why anyone would make this error.
Not even an inexperienced Windows developer would
believe an arbitrary registry key would conform to these
rules.
Matthieu Suiche pointed out that VirtualStore keys do
conform to these rules, and so it's likely Microsoft simply
didn't test with any other keys.

MiCreatePagingFileMap() Vulnerability

MiCreatePagingFileMap() contained an interesting
optimisation in PAE kernels.
This routine accepts a PLARGE_INTEGER parameter, and
is the kernel code responsible for things like
CreateFileMapping().
We noticed that part of the routine realised the parameter
was 64bits, and part assumed it was 32bits.
We could bypass the sanity checks by hiding bits in the
upper dword.
This results in an obvious heap overflow, a minimal testcase
would be something like this.

CreateFileMappingA(NULL, NULL, PAGE_WRITECOPY, 0x6c, 0, NULL);

