
IBM AIX Heap Exploitation p p

Methods

Presented by
Tim Shelton

About HAWK

HAWK Network Defense IncHAWK Network Defense, Inc.
– Application and Network Security

company incorporated in Texas
focused on Security Information & y
Event Management and other
security servicessecurity services.

About Tim Shelton

Tim SheltonTim Shelton
– One of the first people to break out of virtualization in

2005 by breaking through VMWare's vmnat daemon2005 by breaking through VMWare s vmnat daemon,
thereby compromising the host operating system.

– Involved with countless Microsoft vulnerabilities and
exploits and was the first to publish a universal exploit
for the 2009 Adobe JBIG2 vulnerability, along with
Russell Sanford (xort)Russell Sanford (xort).

– Also known as redsand, is an active security
contributor, and is associated with blacksecurity.org

Overview

HAWK Network Defense IncHAWK Network Defense, Inc.
– Importance of IBM AIX

• Origins of IBM AIX
• Mission Critical Applications

– Methods
• Conquering leftmost
• Conquering rightmost **new**

– Live demo

IBM’s View of AIXIBM s View of AIX
Businesses today need to maximize the return on investment inBusinesses today need to maximize the return on investment in
information technology. Their IT infrastructure should have the
flexibility to quickly adjust to changing business computing
requirements and scale to handle ever expanding workloads—
without adding complexity. But just providing flexibility and
performance isn’t enough; the IT infrastructure also needs to
provide rock solid security and near-continuous availability and
while managing energy and cooling costs.

These are just some of the reasons why more and more
(OS)businesses are choosing the AIX operating system (OS) running on

IBM systems designed with Power Architecture® technology.

AIX V i 6 1 ibAIX Version 6.1 – ibm.com

Importance of IBM AIX

• Enterprise Resource PlanningEnterprise Resource Planning
• Customer Relationship Management

Mission Critical Databases• Mission Critical Databases
– Oracle for AIX

IBM DB2 f AIX– IBM DB2 for AIX

Initial AIX Heap Exploitation Research

An Introduction to Heap overflows on AIX 5.3LAn Introduction to Heap overflows on AIX 5.3L
– by David Litchfield, in August of 2005
– heap’s free()/rightmost() functionsheap s free()/rightmost() functions

So What Specifically Does This Cover?So What Specifically Does This Cover?
– Exploiting heap corruption when followed by a

free() requestfree() request.

Initial AIX Heap Exploitation Research

An Introduction to Heap overflows on AIX 5.3LAn Introduction to Heap overflows on AIX 5.3L
– Litchfield’s research pioneered heap

exploitation analysis on IBM AIX 5.3p y
– Method from 5.3 also affects 6.1
– Results in a bi-directional double pointerResults in a bi directional double pointer

overwrite

Initial AIX Heap Exploitation Research

Overview of Exploiting free()/rightmost()Overview of Exploiting free()/rightmost()
– Overwrite our heap header during memory

corruptionp
• First 4 bytes – location of our fake heap frame in

memory
• Last 4 bytes – heap size, will match our heap size

in the fake frame

Initial AIX Heap Exploitation Research

Overview of Exploiting free()/rightmost()Overview of Exploiting free()/rightmost()
Static Heap Size

Buffer size (1024 bytes)

Fake Heap Frame LocationFake Heap Frame Location

Initial AIX Heap Exploitation Research

Overview of Exploiting free()/rightmost()Overview of Exploiting free()/rightmost()
– Create our fake heap frame in memory

• Heap Frame is responsible for allowing HeapHeap Frame is responsible for allowing Heap
Structure to function and control as required

• Heap Frame is an element of a linked list
• Requires a controllable location of memory
• Write 16 bytes containing our unique structure

Initial AIX Heap Exploitation Research

Overview of Exploiting free()/rightmost()Overview of Exploiting free()/rightmost()
– Our Fake Frame – total of 16 bytes

• First 4 bytes – PowerPC branch instructionFirst 4 bytes PowerPC branch instruction
• Second 4 bytes – PowerPC no-op instruction
• Third 4 bytes – pointer to the value we want to

overwrite
• Last 4 bytes – heap size, will match our heap size

in the overflowin the overflow

Initial AIX Heap Exploitation Research

Fake Frame – free()/rightmost()Fake Frame free()/rightmost()

Static Heap SizePowerPC No-Op Instruction

Location of Function Pointer

PowerPC Branch Instruction

Initial AIX Heap Exploitation Research

Note: image came from Litchfield’s “An Introduction to
Heap overflows on AIX 5.3L”

Initial AIX Heap Exploitation Research

int foo(char *arg) {
char *ptr1 = NULL;
ptr1 = (char *) malloc(20);() ()
strcpy(ptr1,arg);
free(ptr1);(p);
return 0;

}}

Initial AIX Heap Exploitation Research

Overview of Exploiting free()/rightmost()Overview of Exploiting free()/rightmost()
– Pointers to Hijack

• Hijack a saved link register on the stackHijack a saved link register on the stack
• Hijack a callable function within the application’s

export list
• Hijack function pointers found within Heap or Stack

New AIX Heap Exploitation Research

Exploiting Heap’s malloc()/leftmost functionsExploiting Heap s malloc()/leftmost functions
– heap’s malloc()/leftmost() functions

So What Specifically Does This Cover?
Exploiting heap corruption when followed by a– Exploiting heap corruption when followed by a
malloc() request.

New AIX Heap Exploitation Research

Overview of Exploiting malloc()/leftmost()Overview of Exploiting malloc()/leftmost()
– Create our fake heap frame in memory
– Overwrite our initial 8 bytes during memoryOverwrite our initial 8 bytes during memory

corruption
• First 4 bytes – location of our fake heap frame in y p

memory
• Last 4 bytes – heap size, should be the location of

h ll dour shellcode

New AIX Heap Exploitation Research

Overview of Exploiting malloc()/leftmost()Overview of Exploiting malloc()/leftmost()

Location of Function Pointer (Minus 12 bytes)(y)

Buffer size (1024 bytes)

Fake Heap Frame Location

New AIX Heap Exploitation Research

Overview of Exploiting malloc()/leftmost()Overview of Exploiting malloc()/leftmost()
– Create our fake heap frame in memory

• Heap Frame is an element of a linked listHeap Frame is an element of a linked list
• Requires a controllable location of memory
• Write 8 important bytes containing our unique

structure
• Still the same 16 byte structure for leftmost and

rightmostrightmost

New AIX Heap Exploitation Research

Conquering leftmost/malloc Heap CorruptionConquering leftmost/malloc Heap Corruption
– With minimal heap corruption
– Complete Code ExecutionComplete Code Execution
– Takes minutes to write

New AIX Heap Exploitation Research

Overview of Exploiting malloc()/leftmost()Overview of Exploiting malloc()/leftmost()
– Our Fake Frame – total of 8 bytes

• First 4 bytes – Location of our shellcode in memoryFirst 4 bytes Location of our shellcode in memory

• Second 4 bytes – Pointer to our value to Overwrite
(minus 12 bytes)

New AIX Heap Exploitation Research

Fake Frame – malloc()/leftmost()Fake Frame malloc()/leftmost()

Shellcode Location

Location of Function Pointer (Minus 12 bytes)

New AIX Heap Exploitation Research

Overview of Exploiting malloc()/leftmost()Overview of Exploiting malloc()/leftmost()
– Pointers to Hijack

• Attack the immediate saved link register on theAttack the immediate saved link register on the
stack

• Corruption will occur later if not
– Would require repairing heap headers

New AIX Heap Exploitation Research

Overview of Exploiting malloc()/leftmost()Overview of Exploiting malloc()/leftmost()

(gdb) bt(g)
#0 0xXXXXXXXX in leftmost () from /usr/lib/libc.a(shr.o)
#1 0xXXXXXXXX in malloc_y () from /usr/lib/libc.a(shr.o)
#2 0xXXXXXXXX in malloc common@AF80 63 () from#2 0xXXXXXXXX in malloc_common@AF80_63 () from

/usr/lib/libc.a(shr.o)
#3 0xXXXXXXXX in malloc () from /usr/lib/libc.a(shr.o)

New AIX Heap Exploitation Research

int foo(char *arg) {
char *ptr1 = NULL, *ptr2=NULL;
ptr1 = (char *) malloc(20);() ()
strcpy(ptr1,arg);
ptr2 = (char *) malloc(0x1020);p () ();
return 0;

}}

Initial AIX Heap Exploitation Research

Live (pre-recorded) Demo

AIX Heap Exploitation Research

Additional TipsAdditional Tips
– Help from Malloc Optoins

• MALLOCDEBUGMALLOCDEBUG
• MALLOCTYPE
• MALLOCOPTIONS

AIX Heap Exploitation Research

Additional TipsAdditional Tips
– Output debugging information to file

$ MALLOCDEBUG=output:/tmp/foo

AIX Heap Exploitation Research

Additional TipsAdditional Tips
– Hunting for heap corruption
– Reverses Heap GrowthReverses Heap Growth

• Grow Heap towards 0x00000000
– Corruption easier to detect/identifyCorruption easier to detect/identify.

AIX Heap Exploitation Research

Additional TipsAdditional Tips
– PowerPC instruction caching (icache)

• This will affect your shellcodeThis will affect your shellcode
• Must use “immediate” instructions
• Otherwise, unpredictable results

AIX Heap Exploitation Research

Additional TipsAdditional Tips
– PowerPC instruction caching (icache)

• ICU – Instruction Caching UnitICU Instruction Caching Unit
• DCU – Data Caching Unit

AIX Heap Exploitation Research

The ICU supplies up to two instructions every cycle to the Fetch and Decode pp p y y
unit. The ICU can also forward instructions to the Fetch and Decode unit
during a cacheline fill, minimizing execution stalls caused by instruction-
cache misses. When the ICU is accessed, four instructions are read from
the appropriate cacheline and placed temporarily in a line bufferthe appropriate cacheline and placed temporarily in a line buffer.
Subsequent ICU accesses check this line buffer for the requested instruction
prior to accessing the cache array. This allows the ICU cache array to be
accessed as little as once every four instructions, significantly reducing ICU
power consumption.

- “PowerPC Architecture - Instruction Cache (I-Cache)“

AIX Heap Exploitation Research

Additional Tipsp
– PowerPC instruction caching (icache)

• ICU – Instruction Caching Unit
– Cached Instructions will affect shellcode
– What you see is not what you get

Questions & Answers

Any Questions?Any Questions?

Tim SheltonTim Shelton
Sr. Vice President, Research & Development
HAWK Network Defense IncHAWK Network Defense, Inc.
tshelton@hawkdefense.com

