

App Attack

Surviving the explosive growth of mobile apps.

Kevin Mahaffey CTO, Lookout

John Hering CEO, Lookout

Ηi.

- Kevin Mahaffey — ** @dropalltables

- John Hering
- We like to think about Mobile Security, RFID, Privacy Blackhat, Defcon, Bluehat

Vuln

Android Logging Subsystem

- Android has a system log for debugging

Accessible by applications via logging APIs or /dev/log device Requires READ_LOGS permission.

Location Disclosure Vuln

LocationManager discloses Cell-Id and LAC into system logs

This gives approximate location to any apps that bother to look in the logs

- Fixed in 2.2/Froyo

D/NetworkLocationProvider(71): onCellLocationChanged [6044,1006]

Information Leakage Example: Citibank

Account Hijacking

 Many applications log URLs they hit to the system log Including the android browser in certain circumstances

```
I/SearchDialog: Starting (as ourselves)
#Intent;action=android.intent.action.SEARCH;launchFlags=0x
1000000;component=com.android.browser/.BrowserActivity;S.
query=www.blackhat.com;S.user_query=www.blackhat.com;end
```


Another app

D/com.company.app(1): getUrl = https://
onlineservice.company.com/login/LoginForm

GET https://sso.company.com/
form

Serve login form

User types in uname/pw

POST https://sso.company.com/login

Login OK
Redirect to: https://app.com/sess?
SECRET ID=AB23FEØ347ADE

GET https://app.company.com/sess?
SECRET ID=AB23FEØ347ADE

Welcome to your account!

What do the logs say?

```
D/com.company.app(1): getUrl = https://sso.company.com/form
...

D/com.company.app(1): postUrl = https://sso.company.com/login
...

D/com.company.app(1): getUrl = https://app.company.com/sess?
SECRET_ID=AB23FE0347ADE
```

Malicious application reads logs from device and transmits them to attacker.

Lessons Learned

- App developers: don't log anything confidential.
- Web developers: don't put sensitive parameters in GET query strings.

Especially if an application may log it or the URL is being sent between apps.

What if you could ask questions about every app in the world?

App Genome Project

Largest-ever Mobile App Dataset.

- Nearly 300,000 apps encountered.
- iPhone App Store + Android Market.
- Analyzed nearly 100,000 free apps.
- Metadata + application binaries.

Agenda

- Why care about mobile apps?
- Why build the App Genome Project?
- How did we build it?
- What did we find?
- Using the App Genome Project for security response.
- What apps may come?

Why care about mobile Apps?

Mobile Apps Matter.

- Smartphones are becoming the computing platform.
 - 54.3 million devices shipped in Q1 2010. (Gartner)
- People who use apps, use a lot of them.
 - 22 apps per smartphone in US. (Nielsen)
- Apps access sensitive information and can charge \$\$\$.
 - Bank accounts, location, SMS billing, premium phone calls, email, text messages, etc.

Why care about Apps?

What enables attacks

Standardized APIs (e.g. contact list on a computer is complicated)

Capabilities (e.g. browser history, dialing)

What incentivizes attackers

\$\$\$ (direct or indirect)

Sensitive information

Why mobile threats won't matter?

- Isn't mobile fragmented

There are 3 windows.

- Isn't there a sandbox?

Sandbox != safe.

- Isn't there a small attack surface?

Apps, push services, messaging services, etc.

App stores are a choke-point for distribution

Why did we build the App Genome Project?

Why?

- Ultimately, to keep people safe.

Good data helps everyone make good security decisions.

- Identify threats in the wild.

Analytics to identify high-risk apps based on behavior.

- Understand platform differences.

Compare Android vs. iPhone.

- See what apps are **actually** doing.

Is this the same as what they say they're doing?

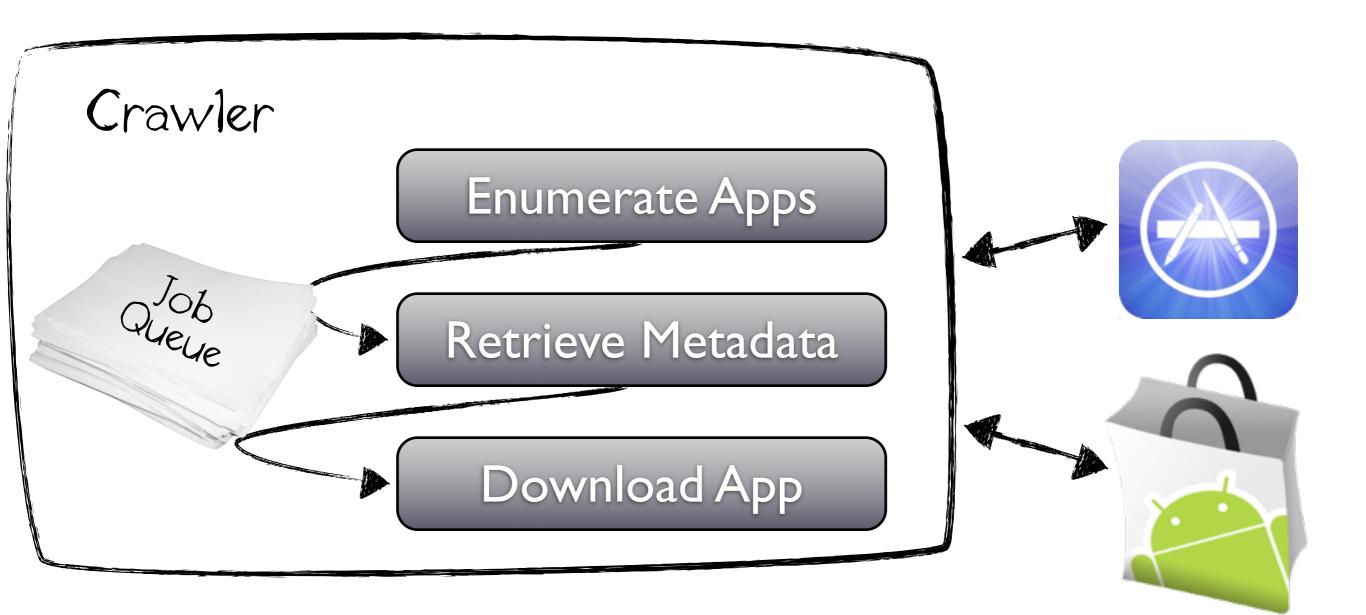
How did we build the App Genome Project?

Overview

Distributed crawler

Speaks Android Market and Apple App Store

Data store


Keep metadata and downloads around for offline analysis

Custom analysis tools

OS-specific analysis to sequence capabilities

The crawler is a series of jobs.
 It's not like a truck.

- Each job queues other jobs using a job queue.

Data Store

Application Metadata — MySQL
 Description, Ratings, Version, Creator, Permissions (Android)

- Application Binaries _____ Filesystem
 For free applications only
- Changes tracked over time
 Both metadata and binaries

1. Download ~100k mobile apps

2. ???

3. Profit!



We built custom static analysis tools to automate feature extraction

Analyzing Android

Dalvik is here

Anatomy of an Android App

- Applications run in a virtual machine called Dalvik.
- APK file format very similar to a Java JAR.
 Just a zip archive
- "classes.dex" is the main Dalvik executable.
- "AndroidManifest.xml" is a binary XML document describing permissions, application components, etc.

Android Security Model

- Granular permissions for specific capabilities.

Read Contacts, Send SMS, Read Logs, Internet, etc.

- Apps declare permissions at install.

Acceptance is before download on the Android Market.

- Enforcement at process level.

Common misconception: enforcement by the VM.

Analysis Methodology

Package permissions + DEX (Dalvik executable) static analysis

e.g permission requested + API referenced by "classes.dex"

- Define heuristics for features we want to extract

e.g. reading the device's phone number =>
READ_PHONE_STATE permission + reference to
TelephonyManager#getLine|Number

- ...or run arbitrary analysis queries against all apps

Analysis Constraints

shouldn't be

Apps are not able to exceed declared permissions.
 We look for vulnerability exploitation as special features.

Capabilities can be implemented outside of Dalvik.
 Native code can interact directly with Binder, network, etc.
 Apps can dynamically pull code from the internet.

Currently, we're not looking for:

Code downloaded at runtime

Evasive code (e.g. encrypted, obfuscated)

Raw IPC calls or dynamic linkage

Analyzing iPhone

iPhone Security Model

- Process-level sandboxing.
- App-store API enforcement.
 - Private/undocumented APIs prohibited, though technically accessible.
- User acknowledgement for certain capabilities
 e.g. location, push

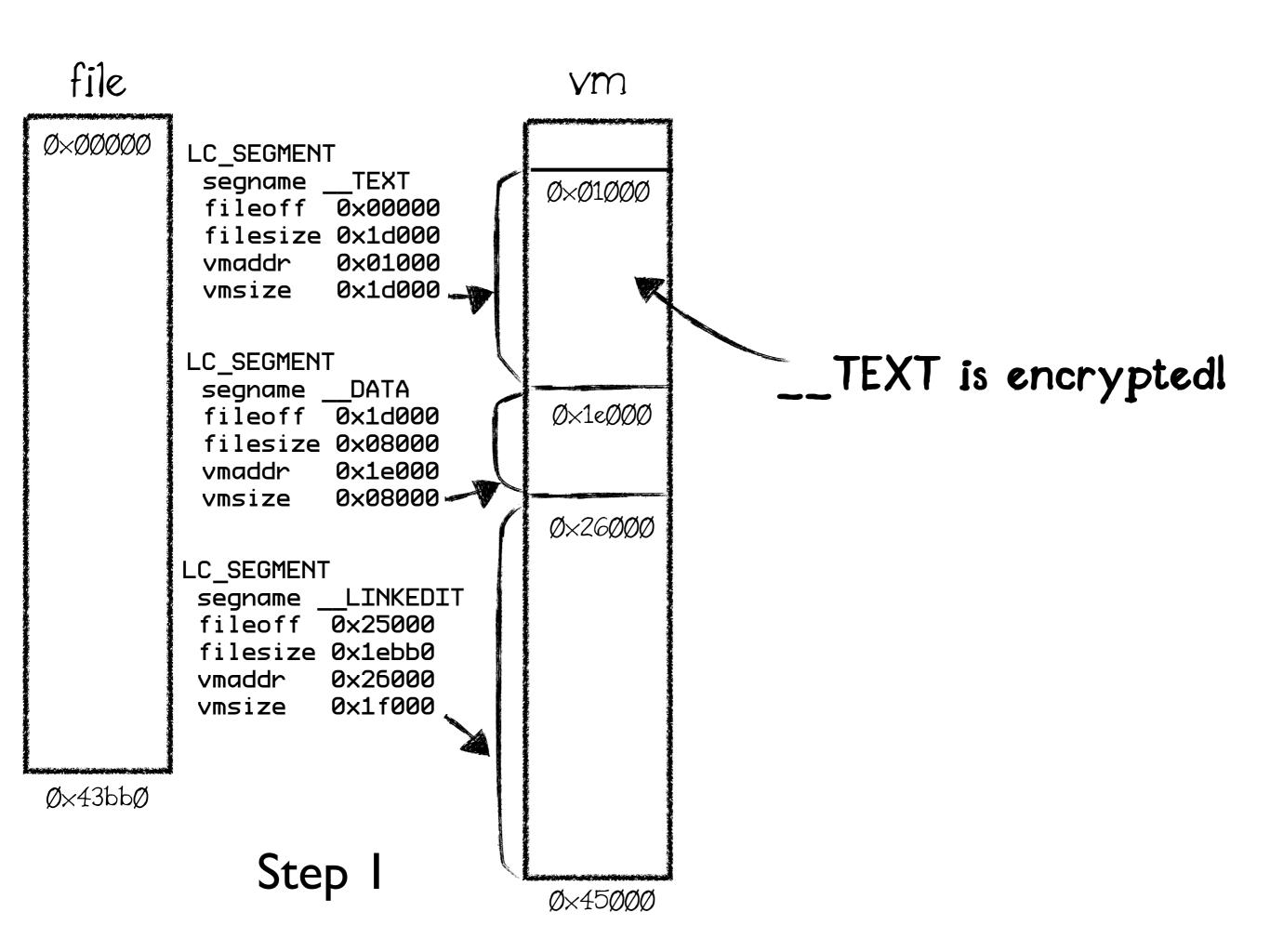
Anatomy of an iPhone App

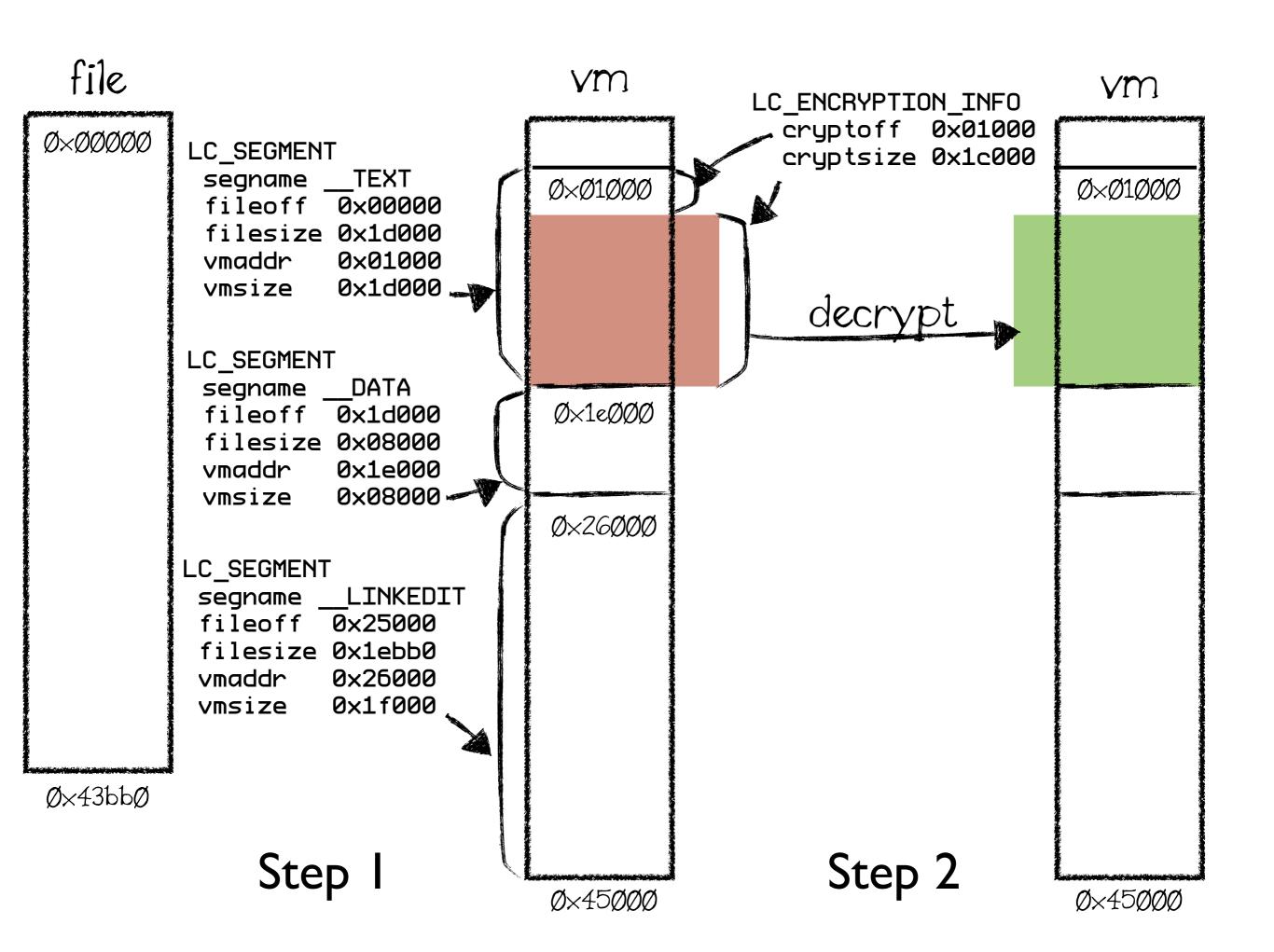
- IPA fileJust a zip archive
- Application binary typically in "/Payload/AppName.app/AppName"
- Mach-O executable

Mach-O

- Header contains a series of load commands.

Specify segmentation, runtime linkage, encryption, etc.


- A Mach-O file contains multiple segments, e.g.


__TEXT (executable code/read-only data)

___DATA (writable data)

__LINKEDIT (dynamic linker data)

- Each segment has many sections.
- iPhone apps are encrypted!


```
#if CONFIG CODE DECRYPTION
static load return t
set code unprotect(
         struct encryption info command *eip,
         caddr t addr,
         vm map t map,
         struct vnode *vp)
   int result, len;
                                                      Go here for the
   char vpath[MAXPATHLEN];
   pager_crypt_info_t crypt_info;
                                                         juicy details
   const char * cryptname = 0;
   size_t offset;
   struct segment command 64 *seg64;
   struct segment command *seg32;
   vm map offset t map offset, map size;
   kern return t kr;
   if (eip->cmdsize < sizeof(*eip))</pre>
      return LOAD BADMACHO;
```

http://www.opensource.apple.com/source/xnu/xnu-1504.7.4/bsd/kern/mach_loader.c

```
cryptname="com.apple.unfree";
break;
case 0x10:
    /* some random cryptid that you could manually put into
    * your binary if you want NULL */
    cryptname="com.apple.null";
    break:
```

What can we see?

- We're not currently decrypting the ___TEXT segment.
- Symbol tables are stored in the __LINKEDIT segment.

Not encrypted. Yay!

 Runtime framework linking implemented by Mach-O load commands.

Also not encrypted. Again, yay!

Analysis Methodology

- Symbol table includes defined (implemented) and undefined (referenced) symbols.

C functions, Obj-C classes/methods/ivars

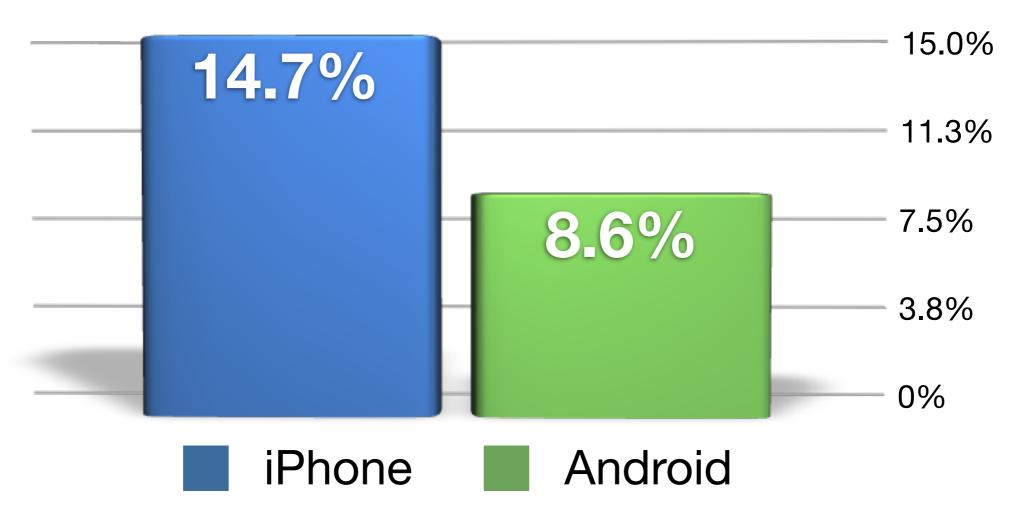
- Mach-O load commands specify frameworks imported at runtime.
- Define heuristics for each feature we extract
 e.g. Accessing a device's contacts => reference to any of the AddressBook API data access methods.
- ...or run arbitrary analysis queries against all apps.

Analysis Constraints

- We're not decrypting the ___TEXT segment of apps.
- Currently, we're not looking for:
 - Dynamically loaded code (constants stored in ___TEXT).
 - Bypassing frameworks to access data via private APIs.
 - Code downloaded at runtime.

So...

We downloaded free Android + iPhone binaries.
 Lots of them.


- We built analysis tools that allow us to ask questions of the apps en masse.

...so we don't have to do it manually.

What did we find?

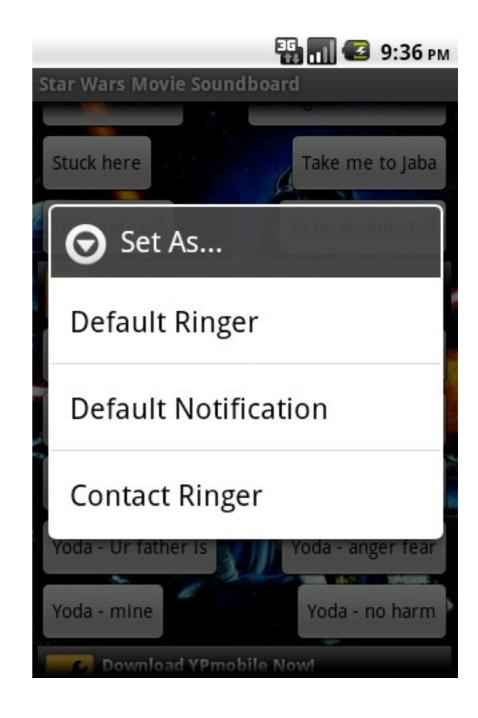
Story # I: In the beginning there was data.

Free Apps Reading Contacts


- Are there any apps accessing my contacts that shouldn't be?

 We found a seemingly suspicious series of sound boards on Android

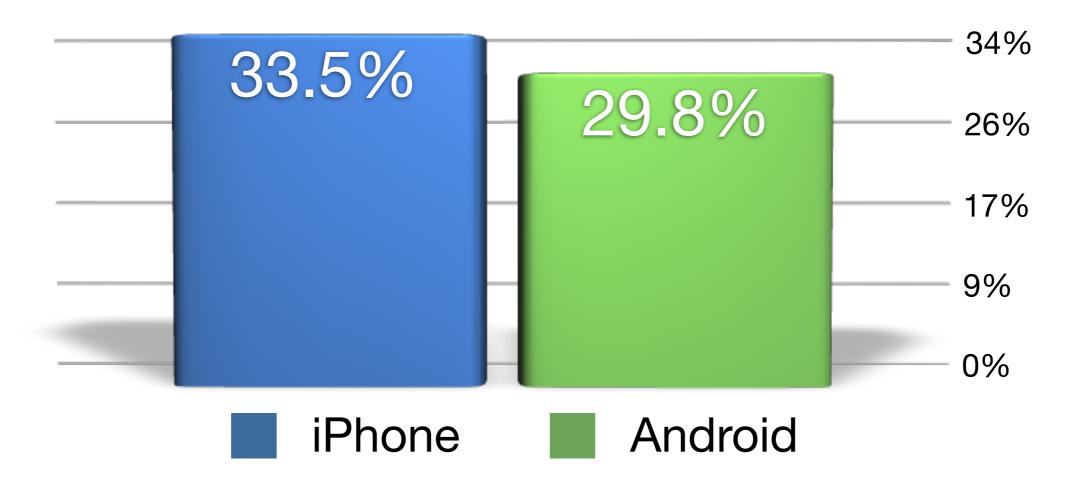
Requests WRITE_CONTACTS


References Contact API

sget-object v7, android/provider/ContactsContract\$Contacts;>CONTENT_URI

 Accesses contacts to set custom ringers.

Totally legitimate




```
class droidsounds/StarWarsMovieSoundboard/ChooseContactActivity {
    ...
    assignRingtoneToContact ( );
    ...
}
```

Lesson Learned: Not all apps that access sensitive data are bad.

Story #2: Three's Company

Free Apps Accessing Location

- Are there any applications accessing my location that shouldn't be?

The Search

 We started going through Android and iPhone Apps that looked accessed location but didn't seem to need it.

There were a lot.

 We found a huge number of apps on both iPhone and Android that included 3rd party advertising SDKs.

Looking Closer

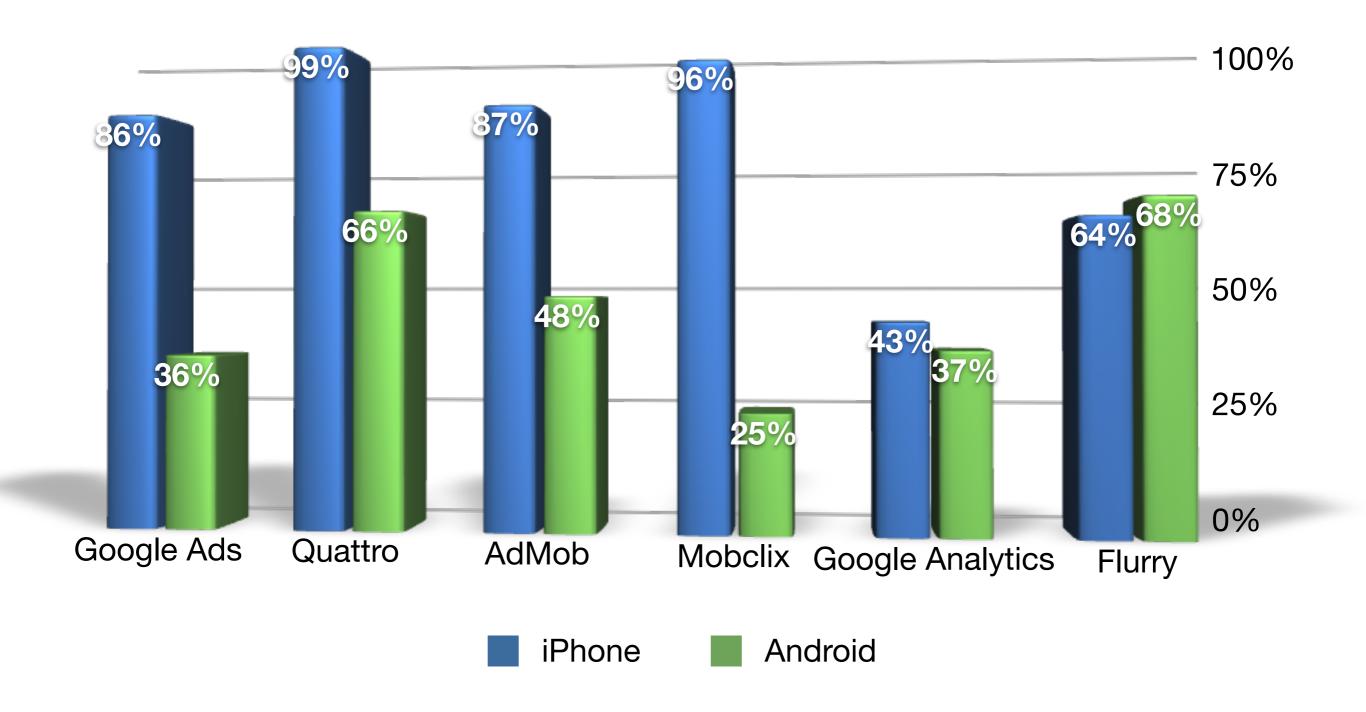
 Tested one Android application that has the QuattroWireless SDK in an emulator

Simulated Lat/Lon to -3.1337, 3.1337

Wireshark caught the details

Plain HTTP request to "ad.qwapi.com"

```
GET /adserver/render


udid=ANDROID_SIMULATOR_0

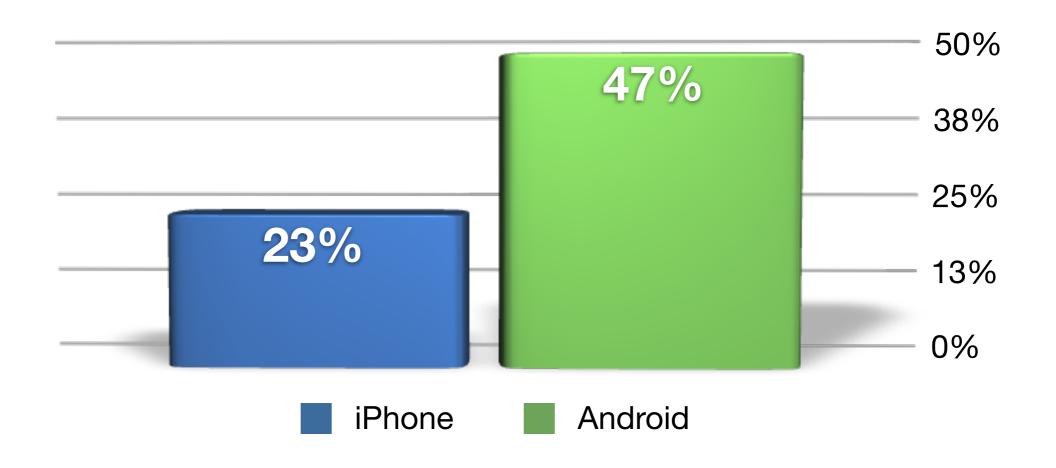
lat=-3.133699999999997

lon=3.133699999999997

ua=Android_US_generic_google_sdk_google_sdk_3_QuattroWirelessSDK
```

Conditional Likelihood to Access Location

Key Insights


 On Android, if a developer brings in an ad SDK but doesn't request location permissions, the app doesn't access location.

Our analysis takes this into account.

 On iPhone, an application will only be allowed to use location if Apple deems it appropriate.

"If your app uses location-based information primarily to enable mobile advertisers to deliver targeted ads based on a user's location, your app will be returned to you by the App Store Review Team for modification before it can be posted to the App Store."

3rd Party Code Prevalence

Presence of 8 popular 3rd party SDKs in free apps

Responsibility: Developers

- Many novice developers are developing mobile applications.
- When developers bring in 3rd party code, they don't always know what's going on.
 - SDKs are closed source.
 - It's not always obvious what data SDKs collect.
- Developers need to be responsible with the data their app collects and inform users.

Responsibility: SDK Providers

- SDK Providers need to make sure developers know what data is being collected about their users.
- AdMob encourages developers to consider their users privacy.

Excerpt from AdMob iPhone SDK

// Whether AdMob may request location information from the phone. Defaults to NO.

// We ask that you respect your users' privacy and only enable location requests // if your app already uses location information.

...

- (BOOL)mayAskForLocation;

Lesson Learned:

Developers don't always know what's in their apps.

Story #3: I Spy.

Finding the spies

- Are there apps that gather more than contacts/ location?
- We looked for applications that accessed a ton of data.

e.g. IMEI, IMSI, browser history, contacts, location

A "System Utility" eh?

- Lots of applications by developer "RXS" accessed very sensitive data.
- Many had innocuous names and described themselves as a "System Utility"

Android 15x, Android 16x, Android 20x, Android 21x

 Inside we see code shuttling data to: http://www.mobilespylogs.com/webapi

```
invoke-virtual {v0, v1, v2, v3}, Lcom/rxs21a/android/
SavePreviousData;->getSmsDetails(Landroid/content/
Context; Liava/lang/String; I) V
invoke-virtual {v0}, Lcom/rxs21a/android/SavePreviousData;-
>getContactDetails()V
invoke-virtual {v0}, Lcom/rxs21a/android/SavePreviousData;-
>getURLDetails()V
invoke-static {}, Lcom/rxs21a/android/DatabaseHandler;-
>getCallContents()Ljava/lang/String;
// and more
```


LOG VIEWERS

- → View SMS Logs
- View Call Logs
- → View GPS Logs
- View URL Logs
- View Photo Logs
- View Contact Logs
- → View Email Logs
- → View Calendar Logs
- → View Cell ID Logs
- → View Task Logs
- → View Memo Logs

USER TOOLS

- Search Logs
- → Clear All Logs
- Logs Summary
- CSV Format
- Change Password

Attention Mobile Spy Users:

The login form above is for our new dedicated server.

All active usernames will continue to function on the new server without anything needed on your end.

All logs before January 15, 2010 can be viewed at http://www.mslogserver.com.

NOTE: All logs are subject to deletion after thirty (30) days.

 Now you will need to search for the version of Mobile Spy that is designed for your version of the Android operating system.

For Android OS version 1.5, search for: Android 15x

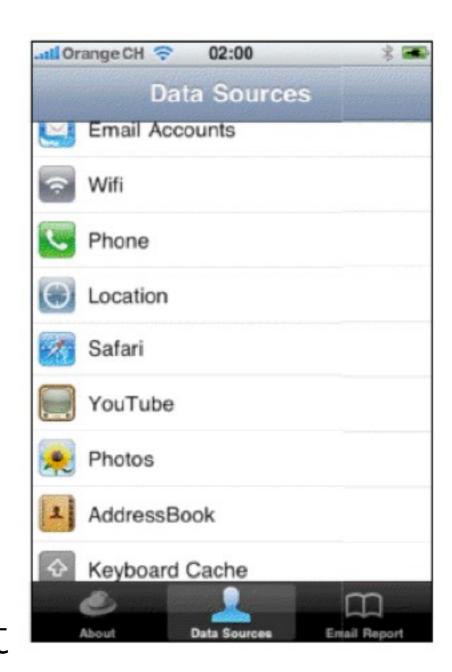
For Android OS version 1.6, search for: Android 16x

For Android OS version 2.0, search for: Android 20x

For Android OS version 2.1, search for: Android 21x

iPhone SpyPhone App

- Nicholas Seriot, Blackhat DC
- PoC SpyPhone Application that only uses permitted APIs.


Search History

Keyboard Cache

Contacts

Email addresses

- On iPhone, users don't know what data is accessed (except location).

iPhone Flashlight App

- 15-year old developer
 SRSLY
- Created a flashlight app
 ...that also had a functional SOCKS proxy for tethering
- Accepted into the App Store
 Once the internets found out, Apple removed it.
- If a 15 year old can sneak code into the App Store...

Lesson Learned:

Apps aren't always upfront about what they do.

Story #4: The Orange Wallpaper

More sensitive data

 What about apps that access a device's Phone Number + IMEI + IMSI?

Only a few hundred in the Android Market

– Any patterns?

```
"jackeey,wallpaper" => 76 apps
"lceskYsl@|sters!" => 8 apps
```

NBA Wallpapers

WWE Wallpapers

NationalGeographic Wallpapers

Quotes Wallpapers

Michael Jackson Wallpapers

Wallpapers, Pro

Harrypotter Wallpapers

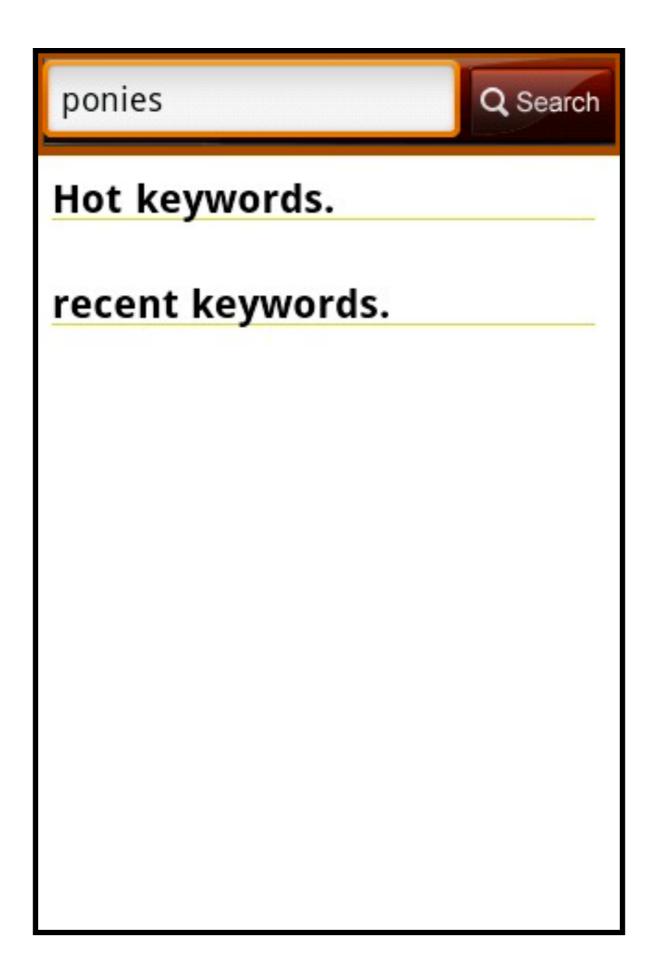
WarCraft Wallpapers

Lost Wallpapers

Game CG Wallpapers

Forever Friends Wallpapers

Windows7 Wallpapers


eWallpapers, phone backgrounds

Nature Wallpapers

Sex women Wallpapers series2

Nature Wallpapers, beautiful.

Arts Wallpapers

Categories Search - ponies (70)

Why are wallpaper apps accessing my phone number, IMSI, IMEI?

Wiresharked

POST /api/wallpapers/log/device_info?locale=en-

Content-Length: 1146

Content-Type: application/x-www-form-urlencoded

Host: <u>www.imnet.us</u> Connection: Keep-Alive

User-Agent: Apache-HttpClient/UNAVAILABLE (java 1.4)

Expect: 100-Continue

HTTP/I.I 100 Continue

You probably can't read this

What just happened?

We installed a wallpaper app.
 Ponies!

- The app sent this HTTP request in the clear.

POST /api/wallpapers/log/device_info
...
Host: www.imnet.us
...

sim_serial_number=89014103211118510720
subscriber_id=310260000000000
line1_number=15555218135
voice mail number=+15552175049

Digging in.

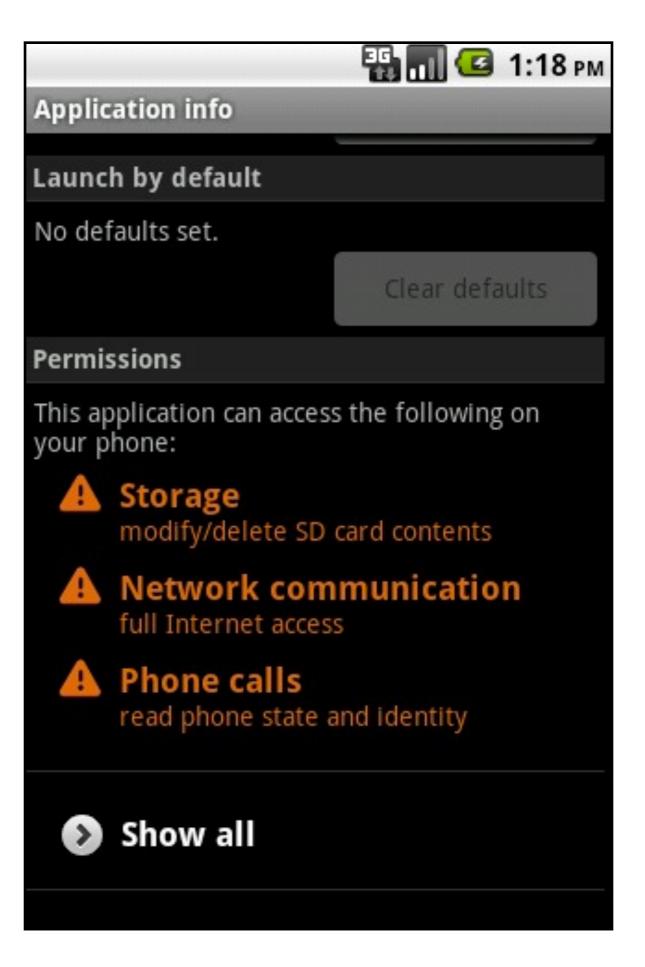
Applications from each developer have a suspicious service

com/eoeandroid/wallpapers/nature/service/ SyncDeviceInfosService

com/jackeey/wallpapers/all1/orange/ SyncDeviceInfosService

What does this service do?

```
invoke-virtual {v7}, Landroid/telephony/TelephonyManager;
->getDeviceId()Ljava/lang/String;
invoke-virtual {v7}, Landroid/telephony/TelephonyManager;
->getLine1Number()Ljava/lang/String;
invoke-virtual {v8}, Landroid/telephony/TelephonyManager;
->getSimSerialNumber()Ljava/lang/String;
invoke-virtual {v8}, Landroid/telephony/TelephonyManager;
->getSubscriberId()Ljava/lang/String;
invoke-virtual {v8}, Landroid/telephony/TelephonyManager;
->getVoiceMailNumber()Ljava/lang/String;
```


Who Owns imnet.us?

Whois says:

```
Administrative Contact City: shenzhen Administrative Contact State/Province: guangdong Administrative Contact Country: China Registrant Email: <a href="mailto:iceskysl@_REMOVED_.com">iceskysl@_REMOVED_.com</a>
```

Surely nobody would download a wallpaper app that wanted to access identity information about my phone.

Together, these apps are estimated to have between 1.1 and 4.6 MILLION downloads!

About jackeey, wallpaper

Name: jackeey,wallpaper

Published 78 application(s) in the Android Market

Overall Average Rating : 4.08

12,559 ratings in all the applications

Total Download Range: 1,046,000 - 4,020,000

About IceskYsl@1sters!

Name : IceskYsl@1sters!

Published 20 application(s) in the Android Market

Overall Average Rating: 3.97 ***

1,923 ratings in all the applications

Total Download Range: 139,700 - 592,000

Source: http://www.androlib.com

What's next?

- Developer claims that information gathering is to preserve favorites when users switch devices.
- Google has taken the apps down from the Android Market while they investigate.

Lesson Learned:

Apps take advantage of their capabilities.

Summary of Findings

- Not all apps that access sensitive data are bad.
- Developers don't always know what's in their apps.
 A lot of apps include 3rd party code.
- Apps aren't always upfront about what they do.
 Do you trust app descriptions?
- Apps take advantage of their capabilities.
 Be careful what you download.

What's in the wild?

- Imagine a hypothetical vulnerability
- We can use the App Genome project to ask:

Are there any apps in the wild exploiting it?

Are there any vulnerable apps in the wild?

- This is a very powerful tool during security response.

e.g. Account Hijacking

 On Android, apps shouldn't be able to get around permissions

If they root the device, account hijacking is the least of our problems.

- Find all applications with READ_LOGS permissions.
 Only a couple hundred
- Automate static analysis to identify code that accesses log data.

Does any of it target a vulnerable app?

What's to come?

Finding bad apps in the future

- App store distribution model will minimize obviously bad apps.
- More prevalent: apps that seem good, but...

 have hidden functionality

 turn bad dynamically

 have prevalent: apps that seem good, but...

 e.g. iPhone Flashlight,

 Android Wallpapers
- Probably can't remove all "context-dependent" apps from app stores.

 e.g. Spy apps

Takeaways:

- Users: Pay attention to the apps you download
- Developers: Be responsible with the data you collect and how you use it.
 - And don't put sensitive data into logs.
- Administrators: Don't ban apps or smartphones
 - Do you force people to go back to typewriters if there's an MS Word vuln?

Thanks.

References

- http://www.dalvikvm.com/
- http://www.opensource.apple.com/source/xnu/xnu-1504.7.4/bsd/kern/mach_loader.c
- http://seriot.ch/resources/talks_papers/ iPhonePrivacySlides.pdf