
App Attack
Surviving the explosive growth of mobile apps.

Kevin Mahaffey
CTO, Lookout

John Hering
CEO, Lookout



Hi.

- Kevin Mahaffey

- John Hering

- We like to think about Mobile Security, RFID, Privacy
Blackhat, Defcon, Bluehat

@dropalltables



Vuln



Android Logging 
Subsystem

- Android has a system log for debugging
Accessible by applications via logging APIs or /dev/log device
Requires READ_LOGS permission.



Location Disclosure Vuln

- LocationManager discloses Cell-Id and LAC into 
system logs
This gives approximate location to any apps that bother to 
look in the logs

- Fixed in 2.2/Froyo

D/NetworkLocationProvider(71): onCellLocationChanged [6044,1006]

Cell-IdLAC



Information Leakage 
Example: Citibank



Account Hijacking

- Many applications log URLs they hit to the system log
Including the android browser in certain circumstances

D/com.company.app(1): getUrl = https://
onlineservice.company.com/login/LoginForm

I/SearchDialog: Starting (as ourselves) 
#Intent;action=android.intent.action.SEARCH;launchFlags=0x
10000000;component=com.android.browser/.BrowserActivity;S.
query=www.blackhat.com;S.user_query=www.blackhat.com;end

Browser Another app

https://onlineeast2.bankofamerica.com/cgi-bin/ias/0/E/LoginEntryPoint?CIPHER_TEXT_IN_HEX=__REMOVED__&IV=__REMOVED__&sessionid=__REMOVED__
https://onlineeast2.bankofamerica.com/cgi-bin/ias/0/E/LoginEntryPoint?CIPHER_TEXT_IN_HEX=__REMOVED__&IV=__REMOVED__&sessionid=__REMOVED__
https://onlineeast2.bankofamerica.com/cgi-bin/ias/0/E/LoginEntryPoint?CIPHER_TEXT_IN_HEX=__REMOVED__&IV=__REMOVED__&sessionid=__REMOVED__
https://onlineeast2.bankofamerica.com/cgi-bin/ias/0/E/LoginEntryPoint?CIPHER_TEXT_IN_HEX=__REMOVED__&IV=__REMOVED__&sessionid=__REMOVED__
http://www.blackhat.com
http://www.blackhat.com
http://www.blackhat.com
http://www.blackhat.com


GET https://sso.company.com/
form Serve login form

POST https://sso.company.com/
login

User types in uname/pw

Login OK
Redirect to: https://

app.company.com/sess?
SECRET_ID=AB23FE0347ADE

GET https://app.company.com/
sess?

SECRET_ID=AB23FE0347ADE
Welcome to your account!

App Server

http://sso.coma
http://sso.coma
http://sso.coma
http://sso.coma
http://sso.coma
http://sso.coma
http://sso.coma
http://sso.coma
https://app.company.com
https://app.company.com
https://app.company.com
https://app.company.com
https://app.company.com
https://app.company.com


What do the logs say?

D/com.company.app(1): getUrl = https://sso.company.com/form

...

D/com.company.app(1): postUrl = https://sso.company.com/login

...

D/com.company.app(1): getUrl = https://app.company.com/sess?
SECRET_ID=AB23FE0347ADE

https://onlineeast2.bankofamerica.com/cgi-bin/ias/0/E/LoginEntryPoint?CIPHER_TEXT_IN_HEX=__REMOVED__&IV=__REMOVED__&sessionid=__REMOVED__
https://onlineeast2.bankofamerica.com/cgi-bin/ias/0/E/LoginEntryPoint?CIPHER_TEXT_IN_HEX=__REMOVED__&IV=__REMOVED__&sessionid=__REMOVED__
https://onlineeast2.bankofamerica.com/cgi-bin/ias/0/E/LoginEntryPoint?CIPHER_TEXT_IN_HEX=__REMOVED__&IV=__REMOVED__&sessionid=__REMOVED__
https://onlineeast2.bankofamerica.com/cgi-bin/ias/0/E/LoginEntryPoint?CIPHER_TEXT_IN_HEX=__REMOVED__&IV=__REMOVED__&sessionid=__REMOVED__
https://app.company.com
https://app.company.com


Attacker visits https://app.company.com/sess?
SECRET_ID=AB23FE0347ADE 

Game Over.

Malicious application reads logs from device and 
transmits them to attacker.

https://app.company.com
https://app.company.com


Lessons Learned

- App developers: don’t log anything confidential.

- Web developers: don’t put sensitive parameters 
in GET query strings.
Especially if an application may log it or the URL is 
being sent between apps.



What if you could ask 
questions about every 

app in the world?



App Genome Project



- Nearly 300,000 apps encountered.

- iPhone App Store + Android Market.

- Analyzed nearly 100,000 free apps.

- Metadata + application binaries.

Largest-ever Mobile App 
Dataset.



Agenda

- Why care about mobile apps?

- Why build the App Genome Project?

- How did we build it?

- What did we find?

- Using the App Genome Project for security 
response.

- What apps may come?



Why care about mobile 
Apps?



Mobile Apps Matter.

- Smartphones are becoming the computing platform.
54.3 million devices shipped in Q1 2010. (Gartner)

- People who use apps, use a lot of them.
22 apps per smartphone in US. (Nielsen)

- Apps access sensitive information and can charge $$$.
Bank accounts, location, SMS billing, premium phone calls, email, 
text messages, etc.



Why care about Apps?

- What enables attacks
Standardized APIs (e.g. contact list on a computer is 
complicated)
Capabilities (e.g. browser history, dialing)

-  What incentivizes attackers
$$$ (direct or indirect)
Sensitive information



Why mobile threats 
won't matter?

- Isn’t mobile fragmented
 There are 3 windows.

- Isn’t there a sandbox?
Sandbox != safe.

- Isn’t there a small attack surface?
Apps, push services, messaging services, etc.
App stores are a choke-point for distribution



Why did we build the 
App Genome Project?



Why?
- Ultimately, to keep people safe.

Good data helps everyone make good security decisions.

- Identify threats in the wild.
Analytics to identify high-risk apps based on behavior.

- Understand platform differences.
Compare Android vs. iPhone.

- See what apps are actually doing.
Is this the same as what they say they’re doing?



How did we build the 
App Genome Project?



Overview

- Distributed crawler
Speaks Android Market and Apple App Store

- Data store
Keep metadata and downloads around for offline analysis

- Custom analysis tools
OS-specific analysis to sequence capabilities



- The crawler is a series of jobs.
It’s not like a truck.

- Each job queues other jobs using a job queue.

Enumerate Apps

Retrieve Metadata

Download App

JobQueue

Crawler



- Application Metadata
Description, Ratings, Version, Creator, Permissions (Android)

- Application Binaries
For free applications only

- Changes tracked over time
Both metadata and binaries

Data Store
MySQL

Filesystem



1. Download ~100k mobile apps

2. ???

3. Profit!



We built custom static analysis tools to automate 
feature extraction

Permissions 
(Android)

Classes/methods 
referenced

Classes/methods 
implemented

String data



Analyzing Android



Dalvik is here



Anatomy of an Android App

- Applications run in a virtual machine called Dalvik. 

- APK file format - very similar to a Java JAR.
Just a zip archive

- “classes.dex” is the main Dalvik executable.

- “AndroidManifest.xml” is a binary XML document 
describing permissions, application components, etc.



Android Security Model

- Granular permissions for specific capabilities. 
Read Contacts, Send SMS, Read Logs, Internet, etc.

- Apps declare permissions at install.
Acceptance is before download on the Android Market.

- Enforcement at process level.
Common misconception: enforcement by the VM.



Analysis Methodology
- Package permissions + DEX (Dalvik executable) static 

analysis
e.g permission requested + API referenced by “classes.dex”

- Define heuristics for features we want to extract
e.g. reading the device’s phone number => 
READ_PHONE_STATE permission + reference to  
TelephonyManager#getLine1Number

- ...or run arbitrary analysis queries against all apps



Analysis Constraints

- Apps are not able to exceed declared permissions.
We look for vulnerability exploitation as special features.

- Capabilities can be implemented outside of Dalvik.
Native code can interact directly with Binder, network, etc.
Apps can dynamically pull code from the internet.

- Currently, we’re not looking for :
Code downloaded at runtime
Evasive code (e.g. encrypted, obfuscated)
Raw IPC calls or dynamic linkage

shouldn’t be



Analyzing iPhone



iPhone Security Model

- Process-level sandboxing.

- App-store API enforcement.
Private/undocumented APIs prohibited, though 
technically accessible.

- User acknowledgement for certain capabilities
e.g. location, push



Anatomy of an iPhone App

- IPA file
Just a zip archive

- Application binary typically in 
“/Payload/AppName.app/AppName”

- Mach-O executable



Mach-O
- Header contains a series of load commands.

Specify segmentation, runtime linkage, encryption, etc.

- A Mach-O file contains multiple segments, e.g.
__TEXT (executable code/read-only data)
__DATA (writable data)
__LINKEDIT (dynamic linker data)

- Each segment has many sections.

- iPhone apps are encrypted!



LC_SEGMENT
 segname __TEXT
 fileoff  0x00000
 filesize 0x1d000
 vmaddr   0x01000
 vmsize   0x1d000

LC_SEGMENT
 segname __DATA
 fileoff  0x1d000
 filesize 0x08000
 vmaddr   0x1e000
 vmsize   0x08000

LC_SEGMENT 
 segname __LINKEDIT
 fileoff  0x25000
 filesize 0x1ebb0
 vmaddr   0x26000
 vmsize   0x1f000

0x00000

0x43bb0

0x01000

0x45000

0x1e000

0x26000

file vm

Step 1

__TEXT is encrypted!



LC_ENCRYPTION_INFO
  cryptoff  0x01000
  cryptsize 0x1c000

0x00000

0x43bb0

0x01000

0x45000

0x01000

0x45000

0x1e000

0x26000

decrypt

file vm vm

Step 1 Step 2

LC_SEGMENT
 segname __TEXT
 fileoff  0x00000
 filesize 0x1d000
 vmaddr   0x01000
 vmsize   0x1d000

LC_SEGMENT
 segname __DATA
 fileoff  0x1d000
 filesize 0x08000
 vmaddr   0x1e000
 vmsize   0x08000

LC_SEGMENT 
 segname __LINKEDIT
 fileoff  0x25000
 filesize 0x1ebb0
 vmaddr   0x26000
 vmsize   0x1f000



#if CONFIG_CODE_DECRYPTION

static load_return_t
set_code_unprotect(
! !    struct encryption_info_command *eip,
! !    caddr_t addr, !
! !    vm_map_t map,
! !    struct vnode! *vp)
{
! int result, len;
! char vpath[MAXPATHLEN];
! pager_crypt_info_t crypt_info;
! const char * cryptname = 0;
!
! size_t offset;
! struct segment_command_64 *seg64;
! struct segment_command *seg32;
! vm_map_offset_t map_offset, map_size;
! kern_return_t kr;

! if (eip->cmdsize < sizeof(*eip))
! ! return LOAD_BADMACHO;
!
! switch(eip->cryptid) {
! ! case 0:
! ! ! /* not encrypted, just an empty load command */
! ! ! return LOAD_SUCCESS;
! ! case 1:
! ! ! cryptname="com.apple.unfree";
! ! ! break;
! ! case 0x10:!
! ! ! /* some random cryptid that you could manually put into
! ! !  * your binary if you want NULL */
! ! ! cryptname="com.apple.null";
! ! ! break;

http://www.opensource.apple.com/source/xnu/
xnu-1504.7.4/bsd/kern/mach_loader.c

Go here for the 
juicy details

http://www.opensource.apple.com/source/xnu/xnu-1504.7.4/bsd/kern/mach_loader.c
http://www.opensource.apple.com/source/xnu/xnu-1504.7.4/bsd/kern/mach_loader.c
http://www.opensource.apple.com/source/xnu/xnu-1504.7.4/bsd/kern/mach_loader.c
http://www.opensource.apple.com/source/xnu/xnu-1504.7.4/bsd/kern/mach_loader.c


What can we see?
- We’re not currently decrypting the __TEXT segment.

- Symbol tables are stored in the __LINKEDIT 
segment.
Not encrypted.

- Runtime framework linking implemented by Mach-O 
load commands.
Also not encrypted.

Yay!

Again, yay!



Analysis Methodology
- Symbol table includes defined (implemented) and 

undefined (referenced) symbols.
C functions, Obj-C classes/methods/ivars

- Mach-O load commands specify frameworks 
imported at runtime.

- Define heuristics for each feature we extract
e.g. Accessing a device’s contacts => reference to any of 
the AddressBook API data access methods.

- ...or run arbitrary analysis queries against all apps.



Analysis Constraints

- We’re not decrypting the  __TEXT segment of 
apps.

- Currently, we’re not looking for :
Dynamically loaded code (constants stored in __TEXT).
Bypassing frameworks to access data via private APIs.
Code downloaded at runtime.



So...

- We downloaded free Android + iPhone binaries.
Lots of them.

- We built analysis tools that allow us to ask 
questions of the apps en masse.
...so we don’t have to do it manually.



What did we find?



Story #1: 
In the beginning there 

was data.



Free Apps Reading Contacts

- Are there any apps accessing my contacts that 
shouldn’t be?

0%

3.8%

7.5%

11.3%

15.0%
14.7%

8.6%

iPhone Android



- We found a seemingly suspicious 
series of sound boards on Android

- Requests WRITE_CONTACTS

- References Contact API
sget-object v7, android/provider/ContactsContract$Contacts;-
>CONTENT_URI



class droidsounds/StarWarsMovieSoundboard/ChooseContactActivity {
 ...

assignRingtoneToContact ( );
...

}

- Accesses contacts to set 
custom ringers.
Totally legitimate



Lesson Learned:
Not all apps that access 
sensitive data are bad.



Story #2:
Three’s Company



Free Apps Accessing 
Location

- Are there any applications accessing my location 
that shouldn’t be?

0%

9%

17%

26%

34%
33.5%

29.8%

iPhone Android



The Search

- We started going through Android and iPhone 
Apps that looked accessed location but didn’t seem 
to need it.
There were a lot.

- We found a huge number of apps on both iPhone 
and Android that included 3rd party advertising 
SDKs.



Looking Closer

- Tested one Android application that has the 
QuattroWireless SDK in an emulator
Simulated Lat/Lon to -3.1337, 3.1337

- Wireshark caught the details
Plain HTTP request to “ad.qwapi.com”

GET /adserver/render
udid=ANDROID_SIMULATOR_0
lat=-3.1336999999999997
lon=3.1336999999999997
ua=Android_US_generic_google_sdk_google_sdk_3_QuattroWirelessSDK
...



Conditional Likelihood 
to Access Location

0%

25%

50%

75%

100%

86%

99%

87%
96%

43%

64%

36%

66%

48%

25%

37%

68%

Google Ads Quattro AdMob Mobclix Google Analytics Flurry

iPhone Android



Key Insights
- On Android, if a developer brings in an ad SDK but 

doesn’t request location permissions, the app doesn’t 
access location.
Our analysis takes this into account.

- On iPhone, an application will only be allowed to use 
location if Apple deems it appropriate.
“If your app uses location-based information primarily to 
enable mobile advertisers to deliver targeted ads based on a 
user's location, your app will be returned to you by the App 
Store Review Team for modification before it can be posted 
to the App Store."



3rd Party Code Prevalence

- Presence of 8 popular 3rd party SDKs in free apps

0%

13%

25%

38%

50%

23%

47%

iPhone Android



Responsibility: Developers
- Many novice developers are developing mobile 

applications.

- When developers bring in 3rd party code, they 
don’t always know what’s going on.
SDKs are closed source.
It’s not always obvious what data SDKs collect.

- Developers need to be responsible with the data 
their app collects and inform users.



Responsibility: SDK Providers

// Whether AdMob may request location information from the phone. Defaults 
to NO.
// We ask that you respect your users' privacy and only enable location requests
// if your app already uses location information.
...
- (BOOL)mayAskForLocation;

- SDK Providers need to make sure developers know 
what data is being collected about their users.

- AdMob encourages developers to consider their users 
privacy.

Excerpt from AdMob iPhone SDK



Lesson Learned:
Developers don’t always 
know what’s in their apps.



Story #3:
I Spy.



Finding the spies

- Are there apps that gather more than contacts/
location?

- We looked for applications that accessed a ton of 
data.
e.g. IMEI, IMSI, browser history, contacts, location



A “System Utility” eh?

- Lots of applications by developer “RXS” accessed 
very sensitive data.

- Many had innocuous names and described 
themselves as a “System Utility”
Android 15x, Android 16x, Android 20x, Android 21x

- Inside we see code shuttling data to: 
http://www.mobilespylogs.com/webapi

http://www.mobilespylogs.com/webapi
http://www.mobilespylogs.com/webapi


invoke-virtual {v0, v1, v2, v3}, Lcom/rxs21a/android/
SavePreviousData;->getSmsDetails(Landroid/content/
Context;Ljava/lang/String;I)V

invoke-virtual {v0}, Lcom/rxs21a/android/SavePreviousData;-
>getContactDetails()V

invoke-virtual {v0}, Lcom/rxs21a/android/SavePreviousData;-
>getURLDetails()V

invoke-static {}, Lcom/rxs21a/android/DatabaseHandler;-
>getCallContents()Ljava/lang/String;

// and more







iPhone SpyPhone App
- Nicholas Seriot, Blackhat DC

- PoC SpyPhone Application that 
only uses permitted APIs.
Search History
Keyboard Cache
Contacts
Email addresses

- On iPhone, users don’t know what 
data is accessed (except location).



iPhone Flashlight App
- 15-year old developer

SRSLY

- Created a flashlight app
...that also had a functional SOCKS proxy for tethering

- Accepted into the App Store
Once the internets found out, Apple removed it.

- If a 15 year old can sneak code into the App Store... 



Lesson Learned:
Apps aren’t always upfront 

about what they do.



Story #4:
The Orange Wallpaper



More sensitive data

- What about apps that access a device’s Phone 
Number + IMEI + IMSI?
Only a few hundred in the Android Market

- Any patterns?
"jackeey,wallpaper" => 76 apps
"IceskYsl@1sters!" => 8 apps



NBA Wallpapers

WWE Wallpapers

NationalGeographic 
Wallpapers

Quotes Wallpapers

Michael Jackson Wallpapers

Wallpapers,Pro

Harrypotter Wallpapers

WarCraft Wallpapers

Lost Wallpapers

Game CG Wallpapers

Forever Friends Wallpapers

Windows7 Wallpapers

eWallpapers, phone 
backgrounds

Nature Wallpapers

Sex women Wallpapers 
series2

Nature Wallpapers, 
beautiful.

Arts Wallpapers









Why are wallpaper apps  
accessing my phone 
number, IMSI, IMEI?



Wiresharked
POST /api/wallpapers/log/device_info?locale=en-
rUS&version_code=422&w=320&h=480&uniquely_code=000000000000000&api_key=CIEhu15fY4bO4SGcGTq6g&nonc
e=9fe79a6119a9c650eb8f9615e2b88a8d&timestamp=1279591671671&api_sig=11404ee56654c3ad52649fb1e0589e5f 
HTTP/1.1
Content-Length: 1146
Content-Type: application/x-www-form-urlencoded
Host: www.imnet.us
Connection: Keep-Alive
User-Agent: Apache-HttpClient/UNAVAILABLE (java 1.4)
Expect: 100-Continue

HTTP/1.1 100 Continue

uniquely_code=000000000000000&device_info=device_id%3D000000000000000%26device_software_version%3Dnull
%26build_board%3Dunknown%26build_brand%3Dgeneric%26build_device%3Dgeneric%26build_display%3Dsdk-eng
+2.2+FRF42+36942+test-keys%26build_fingerprint%3Dgeneric%2Fsdk%2Fgeneric%2F
%3A2.2%2FFRF42%2F36942%3Aeng%2Ftest-keys%26build_model%3Dsdk%26build_product%3Dsdk%26build_tags
%3Dtest-keys%26build_time%3D1273720406000%26build_user%3Dandroid-build%26build_type%3Deng%26build_id
%3DFRF42%26build_host%3De-honda.mtv.corp.google.com%26build_version_release%3D2.2%26build_version_sdk_int
%3D8%26build_version_incremental%3D36942%26density%3D1.0%26height_pixels%3D480%26scaled_density
%3D1.0%26width_pixels%3D320%26xdpi%3D160.0%26ydpi%3D160.0%26line1_number
%3D15555218135%26network_country_iso%3Dus%26network_operator%3D310260%26network_operator_name
%3DAndroid%26network_type%3D3%26phone_type%3D1%26sim_country_iso%3Dus%26sim_operator
%3D310260%26sim_operator_name%3DAndroid%26sim_serial_number%3D89014103211118510720%26sim_state
%3D5%26subscriber_id%3D310260000000000%26voice_mail_number%3D%2B15552175049%26imsi_mcc
%3D310%26imsi_mnc%3D260%26total_mem%3D35885056

You probably can’t read this

http://www.imnet.us
http://www.imnet.us


What just happened?
- We installed a wallpaper app.

Ponies!

- The app sent this HTTP request in the clear.
POST /api/wallpapers/log/device_info
...
Host: www.imnet.us
...

sim_serial_number=89014103211118510720
subscriber_id=310260000000000
line1_number=15555218135
voice_mail_number=+15552175049

http://www.imnet.us
http://www.imnet.us


Digging in.

- Applications from each developer have a suspicious 
service

- What does this service do?

com/eoeandroid/wallpapers/nature/service/
SyncDeviceInfosService

com/jackeey/wallpapers/all1/orange/
SyncDeviceInfosService



invoke-virtual {v7}, Landroid/telephony/TelephonyManager; 
->getDeviceId()Ljava/lang/String;

...

invoke-virtual {v7}, Landroid/telephony/TelephonyManager; 
->getLine1Number()Ljava/lang/String;

...

invoke-virtual {v8}, Landroid/telephony/TelephonyManager; 
->getSimSerialNumber()Ljava/lang/String;

...

invoke-virtual {v8}, Landroid/telephony/TelephonyManager; 
->getSubscriberId()Ljava/lang/String;

...

invoke-virtual {v8}, Landroid/telephony/TelephonyManager; 
->getVoiceMailNumber()Ljava/lang/String;

...



Who Owns imnet.us?

- Whois says:
Administrative Contact City: shenzhen
Administrative Contact State/Province: guangdong
Administrative Contact Country: China
Registrant Email: iceskysl@__REMOVED__.com

mailto:iceskysl@gmail.com
mailto:iceskysl@gmail.com


Surely nobody would 
download a wallpaper app 

that wanted to access 
identity information about 

my phone.

right?



Together, these apps are estimated 
to have between 1.1 and 4.6 

MILLION downloads!

Source: http://www.androlib.com

http://www.androlib.com
http://www.androlib.com


What’s next?

- Developer claims that information gathering is to 
preserve favorites when users switch devices.

- Google has taken the apps down from the Android 
Market while they investigate.



Lesson Learned:
Apps take advantage of their 

capabilities.



Summary of Findings
- Not all apps that access sensitive data are bad. 

- Developers don’t always know what’s in their apps.
A lot of apps include 3rd party code.

- Apps aren’t always upfront about what they do. 
Do you trust app descriptions?

- Apps take advantage of their capabilities.
Be careful what you download.



What’s in the wild?

- Imagine a hypothetical vulnerability

- We can use the App Genome project to ask:
Are there any apps in the wild exploiting it?
Are there any vulnerable apps in the wild?

- This is a very powerful tool during security 
response.



e.g. Account Hijacking
- On Android, apps shouldn’t be able to get around 

permissions
If they root the device, account hijacking is the least of our 
problems.

- Find all applications with READ_LOGS permissions.
Only a couple hundred

- Automate static analysis to identify code that 
accesses log data.
Does any of it target a vulnerable app?



What’s to come?



Finding bad apps in the future

- App store distribution model will minimize 
obviously bad apps.

- More prevalent: apps that seem good, but...
have hidden functionality
turn bad dynamically

- Probably can’t remove all “context-dependent” 
apps from app stores.

e.g. iPhone Flashlight, 
Android Wallpapers

e.g. Spy apps



Takeaways:

- Users: Pay attention to the apps you download

- Developers: Be responsible with the data you 
collect and how you use it.
And don’t put sensitive data into logs.

- Administrators: Don’t ban apps or smartphones
Do you force people to go back to typewriters if there’s 
an MS Word vuln?



Thanks.



References

- http://www.dalvikvm.com/

- http://www.opensource.apple.com/source/xnu/
xnu-1504.7.4/bsd/kern/mach_loader.c

- http://seriot.ch/resources/talks_papers/
iPhonePrivacySlides.pdf

http://www.dalvikvm.com/
http://www.dalvikvm.com/
http://www.opensource.apple.com/source/xnu/xnu-1504.7.4/bsd/kern/mach_loader.c
http://www.opensource.apple.com/source/xnu/xnu-1504.7.4/bsd/kern/mach_loader.c
http://www.opensource.apple.com/source/xnu/xnu-1504.7.4/bsd/kern/mach_loader.c
http://www.opensource.apple.com/source/xnu/xnu-1504.7.4/bsd/kern/mach_loader.c
http://seriot.ch/resources/talks_papers/iPhonePrivacySlides.pdf
http://seriot.ch/resources/talks_papers/iPhonePrivacySlides.pdf
http://seriot.ch/resources/talks_papers/iPhonePrivacySlides.pdf
http://seriot.ch/resources/talks_papers/iPhonePrivacySlides.pdf

