Microsoft

Global Foundation Services

Secure Use of Cloud Storage

BlackHat Briefings 2010

Grant Bugher
Lead Security Program Manager, Online Services Security and Compliance
Global Foundation Services, Microsoft Corporation




Agenda

* Cloud Storage Systems
* Microsoft Windows Azure platform
* Amazon Web Services platform

* Database Attacks
* Database Attacks on Cloud-based Applications

* Defenses and Mitigations
* Development Mitigations
" Designing More Secure Applications



Audience and Objectives

* Audience: software designers, architects, and testers who

wish to design, build, and deploy applications that leverage
cloud storage

Objectives: understand the security challenges and

recommended approaches to design and develop more
secure applications using cloud storage



Cloud Storage Systems

* Move the application database layer to the cloud
* Promise high performance, scalability, and availability

* Handle many types of data
* Blobs
* Tabular data
" Queues
" Relational databases



Cloud Storage Systems

* Microsoft Windows Azure Platform

* Windows Azure Storage
* Blob service
* Table service
* Queue service

* SQL Azure

* Amazon Web Services

* Simple Storage Service (S3)
* SimpleDB
* Relational Database Service



Windows Azure Storage: Blob Service

* Arbitrary binary objects (blobs)
* Designated by container name and blob name
Can be very large and have associated metadata

Containers can be public or private
" Private containers require a Shared Access Signhature to access
* Blobs in public containers can be accessed with a browser

* Public blobs are supported by Windows Azure Content Delivery
Network

* Managed through REST API

v

»



Windows Azure Storage: Table Service

»

Arbitrarily formatted tabular data
* Each row has a series of named properties
* Rows in the same table may have different properties

Tables can be very large (billions of rows, terabytes of data)
Not relational
* Managed and accessed through a REST API

* Special headers required; not accessible in a browser
* WCF Data Services API provided for .NET developers



Windows Azure Storage: Queue Service

* A gueue of very short (4K) binary messages
* Intended for communication between Windows Azure roles
" Not intended for storing data at rest; messages expire

* Items can be masked or removed, up to 32 at a time

* Managed and accessed through a REST API
* Special headers required; not accessible in a browser



SQL Azure

* True relational database service in the cloud
* Based on Microsoft SQL Server 2008

* Supports tables, indexes, views, stored procedures, constraints,
triggers

* No service broker, SQL Reporting Services, SQL Analysis Services

* Accessed via Tabular Data Stream (TDS) protocol

" Can use any Microsoft SQL Server client library
* Managed via standard SQL Server tools



Amazon Web Services: S3

Simple Storage Service (S3)

Arbitrary binary objects (blobs)

Designated by bucket name and object name
Can be very large and have associated metadata

Containers can be public or private
" Private buckets require a Signed URL to access
* Objects in public buckets can be accessed with a browser

* Public objects are supported by Amazon CloudFront content
delivery network



Amazon Web Services: SimpleDB

»

Arbitrarily formatted tabular data
* Each entity has a series of named attributes
" Entities in the same domain may have different attributes

Tables can be very large (billions of rows, terabytes of data)
Not relational
* Managed and accessed through REST or SOAP APIs

" REST API potentially accessible from a browser, but not intended
* Java and .NET SDK binaries provided
* WSDL provided for SOAP API to enable SOAP toolkits



Relational Database Service

* True relational database service in the cloud

* Based on MySQL

* Full support for standard MySQL features
* Accessed via MySQL Client/Server Protocol
* Can use any MySQL client library

* SQL Azure and Amazon Relational Database Service are
identical to standard, non-cloud database hosting



Injection Attacks

* Database layer is generally not exposed to the Internet
" Not subject to direct attack
* Must be attacked by way of the application layer
* Carefully crafted malicious input
* Looks like valid data to the application
" Executed as instructions by the database

* Injection attacks can be against SQL or XML



Structured Query Language (SQL)

* Structured Query Language

* Used by Microsoft SQL Server, MySQL, Oracle — any RDBMS

* Many variants: T-SQL, PL/SQL, etc.
* Contains multiple types of commands

" Data Definition Language (DDL) defines schema

* Data Manipulation Language (DML) performs data operations
* Sometimes supports additional functionality

* MS SQL extended stored procedures & CLR stored procedures
" Oracle PL/SQL procedural code



SQL Injection

* SQL queries are mixed code and data

* SQL query is fundamentally a string, containing:
" verbs instructing the database what to do
" identifiers of objects to be acted on

" values to use in operations, often based on user data

The difference between code and data is determined by
syntax and delimeters

»



SQL Injection

SELECT 'id', 'username', 'permissions’
FROM 'users’' AS 'u' INNER JOIN 'authorization' AS 'a’
WHERE 'u.username' == "grantb™ AND 'u.id' == 'a.id’;

SELECT 'id', 'username', 'permissions’

FROM 'users' AS 'u' INNER JOIN 'authorization' AS 'a’
WHERE 'u.username' == "x" OR 1=1; --" AND 'u.1ld' ==
'a.id"’;



SQL Injection

SELECT 'id', 'username', 'permissions’
FROM 'users' AS 'u' INNER JOIN 'authorization' AS 'a’

WHERE 'u.username' == "x" OR 1=1; INSERT INTO 'users'
VALUES 1000, "hacker"”; INSERT INTO permissions’
VALUES 1000, "admin"™; --" AND 'u.id' == 'a.id';

SELECT 'id', 'username', 'permissions’
FROM 'users' AS 'u' INNER JOIN 'authorization' AS 'a’
WHERE 'u.username' == "x"; DROP TABLE ‘users'; --"

AND 'u.id' == 'a.id';



SQL Injection Mitigations

* Input validation: Match user input against a whitelist when
possible, and strip out known metacharacters such as
guotation marks otherwise

* Encoding: Escape or transform metacharacters into a
harmless form, such as URL encoding or base64

* Parameterization: Use data APIs such as those in .NET and

Java to separate query code and syntax from potentially
harmful data, and send them separately.



XML and XPATH Injection

* XML data and XPATH queries are also subject to injection
* Same issue as with SQL: mixed code and data
* XML contains both the data items and their schema

* XPATH contains both the query structure and the actual items to
be searched for

* XML data often uses smart serializers, which partially
mitigate these effects automatically

* REST interfaces are so simple that developers often
construct XML from strings



XML Parsers

* Simple API for XML (SAX)

" Unidirectional event-driven stream parser

" Reads XML serially, interpreting objects as it goes along

* Fast, low-memory serial processing

* No standards for behavior; Java parser is considered normative

e Document Object Model (DOM)

Full in-memory representation of entire XML document
" Allows random access to nodes
* High memory requirements, but fast for random access
* DOM Level 3 is a formal W3C standard




XML Injection Example

cuser>
<username>fred</username>

<email>fred@contoso.com</email>
<password>sdfyn2049r</password>
<uid»>432</uid>
<group>accounting</group>

<hint>this is my password hint!</hint>
</user>



XML Injection vs. SAX parser

cuser>
<username>fred</username>

<email>fred@contoso.com</email>

<password>sdfyn2049r</password>

<uid»>432</uid>

<group>accounting</group>

<hint></hint><uid>0</uid>

<group>admin</group><hint>Hil</hint>
</user>



XML Injection vs. DOM parser

cuser>
<username>fred</username></username>

<email>fred@contoso.com<!--</email>
<password>sdfyn2049r</password>
<uid>432</uid>
<group>accounting</group>

<hint>--></email><password>sdfyn2049r</password>

<uid»>0@</uid><group>administrator</group><hint>this 1is
my password hint!</hint>
</user>



External Entity Injection vs. DOM parser

<?xml version="1.0" encoding="IS0-8859-1"?>
<IDOCTYPE xy |

<TELEMENT xy ANY >

<IENTITY attack SYSTEM "file:///etc/passwd">]>
<xy>&attack;</xy>



Attacking Cloud Storage Applications

»

Amazon Web Services and Microsoft Windows Azure use a
variety of interfaces based on text strings

" AWS SimpleDB query strings (SQL)

" Azure Table Storage query strings (new query language)
* AWS SOAP API (XML)

* Azure Blob, Table, and Queue Storage APIs (XML)

Due to the popularity of REST and SOAP for web services,
future cloud data storage systems will likely do the same

Text strings are potentially subject to injection



Attacking Cloud Storage Applications

- Varlety of approaches
Query String Injection
* Direct Node Injection
* DOM injection via XML comments and |CDATA
" Persistent cross-site scripting
* Storage Enumeration
* Account-level and Infrastructure Attacks

* All of these attack applications and users of cloud storage —
they do not rely on any vulnerability in Azure or AWS



Query String Injection

- Amazon Web Services SimpleDB uses SQL-like queries

SELECT attributes FROM domain WHERE conditions ORDER BY
sort_tnstructions LIMIT count

* The entire query string is one parameter sent to the REST API
* SimpleDB SDK still considers the entire string ("select expression”)
to be one parameter
* Azure Table Storage query string is not SQL-like

" However, it is still a single parameter, encoded as a unit, and
potentially subject to its own kind of injection attack




Query String Injection

* Since the query string is a single parameter, onus is on the
application developer to prevent injection

* SimpleDB query strings support multiple quotation types
(", ', ) and do not require escaping for one quotation type
enclosed in another (similar to PHP behavior)

* An attacker who can control input to multiple fields can
change the semantics of the query



Query String Injection

select * from products where category = 'mycategory’
intersection access = 'public' order by 'columnname’
desc

select * from products where category = 'mycategory’

or category = intersection access = 'public' order
by '" order by 'columnname’ desc

select * from products where category = "mycategory'’
or category = "' intersection access = 'public’ order
by """ order by 'columnname' desc






Query String Injection

* Presence of multiple quotation types can allow users to
insert or elide fields from the query

Mitigation is identical to that for SQL Injection:
* Validate user input
* Encode values before constructing a query string

No equivalent to parameterized queries
The good news: query strings can only issue queries
* No equivalent to DDL

* No equivalent to CLR, PL/SQL, or stored procedures
* Verb is found outside the query string

-

Ll



XML Injection

* Windows Azure Storage interfaces are XML sent over REST

* XML interfaces can also be subject to injection
" Less familiar than SQL injection

* Higher potential than query string injection, since write
operations and DDL are possible

* Plan of Attack:
* Send attacks for both types of parsers (SAX, DOM)
* Do not make assumptions about SDK/API used



Direct Node Injection

<content type="application/xml">
<m:properties>
<d:Title>This is my comment title</d:Title>
<d:UserID>523</d:UserID>
<d:AvatarUrl>http://myaccount.blob.core.windows.net/guestbookpics/
image 65fad49ae-1a73-4882-al15b-1b46389b855d. jpg</d:AvatarUrl>
<d:CommentText>This is my comment's contents</d:CommentText>
<d:PartitionKey>06232010</d:PartitionKey>

<d:RowKey>12521249962450735715 5c2dbee9-66d4-4e51-92ce-
b8100055b635</d:RowKey>

<d:Timestamp m:type="Edm.DateTime">2010-07-01T12:22:01</d:Timestamp>
</m:properties>
</content>



Direct Node Injection

<content type="application/xml">
<m:properties>

<d:Title>This is my comment title</d:Title>

<d:UserID>523</d:UserID>

<d:AvatarUrl>http://myaccount.blob.core.windows.net/guestbookpics/
image 65fad49ae-1a73-4882-al15b-1b46389b855d. jpg</d:AvatarUrl>

<d:CommentText></d:CommentText><d:UserID>100</d:UserID><d:CommentText>
This is a message.</d:CommentText>

<d:PartitionKey>06232010</d:PartitionKey>

<d:RowKey>12521249962450735715_5c2dbeeS-66d4-4e51-92ce-
b8100055b635</d:RowKey>

<d:Timestamp m:type="Edm.DateTime">2010-07-01T12:22:01</d:Timestamp>
</m:properties>
</content>



Direct Node Injection

»

...but It doesn't work.
" Platform protects from this sort of attack
" Doesn't work even if you send it to the data endpoint directly

* Duplicate nodes invalidate the entire API call

* 400 Bad Request
" No other error information returned, just ambiguous failure

* Almost certainly a DOM parser at work



XML Injection with Comments and CDATA

* We know the parser is smart —a DOM parser

* Smart parsers usually implement the full XML specification

* XML comments with <!-- ... -->
* Block encoding with <![CDATA[ ... ]]>

* Injecting these tags may allow modifying the XML

* The meaning is changed yet no duplicate tags are introduced; the
XML parses without errors

" Unfortunately for attackers, this introduces "junk” into one or
more tags



XML Comment Injection - Azure

<content type="application/xml">
<m:properties>
<d:Title>This is a message<!--</d:Title>
<d:UserID>523</d:UserID>
<d:AvatarUrl>http://myaccount.blob.core.windows.net/guestbookpics/
image 65fad49ae-1a73-4882-al1l5b-1b46389b855d. jpg</d:Avatarurl>

<d:CommentText>--></d:Title><d:UserID>200</d:UserID>
<d:AvatarUrl>http://myaccount.blob.core.windows.net/guestbookpics/

image 65fad49ae-1a73-4882-al5b-1b46389b855d. jpg</d:AvatarUrl><d:CommentText>This
is a comment</d:CommentText>

<d:PartitionKey>06232010</d:PartitionKey>

<d:RowKey>12521249962450735715 5c2dbee9-66d4-4e51-92ce-
b8100055b635</d:RowKey>

<d:Timestamp m:type="Edm.DateTime">2010-07-01T12:22:01</d:Timestamp>
</m:properties></content>



XML CDATA Injection - Azure

<content type="application/xml">
<m:properties>
<d:Title>This is a message<![CDATA[</d:Title>
<d:UserID>523</d:UserID>
<d:AvatarUrl>http://myaccount.blob.core.windows.net/guestbookpics/
image 65fad49ae-1a73-4882-al1l5b-1b46389b855d. jpg</d:Avatarurl>

<d:CommentText>]]></d:Title><d:UserID>200</d:UserID>
<d:AvatarUrl>http://myaccount.blob.core.windows.net/guestbookpics/

image 65fad49ae-1a73-4882-al5b-1b46389b855d. jpg</d:AvatarUrl><d:CommentText>This
is a comment</d:CommentText>

<d:PartitionKey>06232010</d:PartitionKey>

<d:RowKey>12521249962450735715 5c2dbee9-66d4-4e51-92ce-
b8100055b635</d:RowKey>

<d:Timestamp m:type="Edm.DateTime">2010-07-01T12:22:01</d:Timestamp>
</m:properties></content>



XML Comment Injection - SimpleDB

<soapenv:Body>

<PutAttributesRequest xmlns='http://sdb.amazonaws.com/doc/2069-84-15">
<Attribute><Name>Title</Name><Value>This is a message<!--</Value></Attribute>
<Attribute><Name>UserID</Name><Value>523</Value></Attribute>
<Attribute><Name>AvatarURL</Name><Value>http://myaccount.blob.core.windows.net/

guestbookpics/image 65fad49ae-1a73-4882-al15b-1b46389b855d. jpg</Value></Attribute>
<Attribute><Name>CommentText</Name><Value>--><Name>UserID</Name><Value>200</Value>

</Attribute><Attribute><Name>AvatarURL</Name><Value>http://myaccount.blob.core.windows

.net/guestbookpics/image 65fad49ae-1a73-4882-al5b-1b46389b855d. jpg</Value></Attribute>
<Name>CommentText</Name><Value>This is a comment</Value></Attribute>
<DomainName>MyDomain</DomainName>

<ItemName>Message012354</ItemName>
<Version>2009-04-15</Version>
</PutAttributesRequest>
</soapenv:Body>



Persistent Cross-Site Scripting

»

Encoding input is often used to prevent XML attacks
* <!--becomes &1t;!--
* <I[CDATA[ becomes &1t ;! [CDATA[

Encoding output is also used to prevent cross-site scripting

* <script>alert(‘xss’);</script> becomes
&1lt;script&gt;alert(‘xss’);&1t;/script&gt;

These encodings do not substitute for each other!
Input encoding on data storage is reversed before output






Persistent Cross-Site Scripting

<content type="application/xml">
<m:properties>
<d:Title>&lt;script&gt;alert(&apos;xss&apos;);&1t;/script&gt;</d:Title>
<d:UserID>523</d:UserID>
<d:AvatarUrl>http://myaccount.blob.core.windows.net/guestbookpics/

image 65fad49ae-1a73-4882-al15b-1b46389b855d. jpg</d:AvatarUrl>
<d:CommentText>&1t;script&gt;alert(&apos;xss&apos;);&1t;/script&gt;</d:CommentT
ext>

<d:PartitionKey>06232010</d:PartitionKey>

<d:RowKey>12521249962450735715_5c2dbee9-66d4-4e51-92ce-
b8100055b635</d:RowKey>

<d:Timestamp m:type="Edm.DateTime">2010-07-01T12:22:01</d:Timestamp>
</m:properties>
</content>



EFnumeration

* Cloud storage is often used to store public or semi-public
files for end-user download

* Massive storage capacity
* Cheap, scalable bandwidth
* Subscription-based sites run into difficulties
" Files not hosted behind site access control
* Often resort to security by obscurity
" Difficulty with tiered access levels






Preventing Enumeration

* Use of public buckets in access-controlled or multitenancy
situations Is Inappropriate

" Container/bucket names may be exposed on public forums
" Members of one tenant or access control level may access others
* Ineffective Mitigations

* Flash downloader on a site with referrer-checking
* Registered a separate domain CNAMEd to the AWS bucket

" Provide a script on an access-controlled site that proxies the
download



Preventing Enumeration

* Container-level access control

* Windows Azure has a setting to make blobs public but not allows
container access

* x-ms-blob-public-access=blob
* Prevents enumeration, but not URL sharing of files
" No enumeration tools for Azure Storage are currently available

* The right solution: private containers

* Windows Azure Storage Shared Access Signatures
* Amazon S3 Signed URLs




Account-Level Attacks

»

In addition to writing secure applications, the storage
account itself must be protected

Both AWS and Windows Azure use an email address &
password as an administrative credential

Never use the admin's normal Amazon account or Live ID
* Should be treated like a Domain Admin or root password

Ensure complete control of the email account's domain
* Webmail providers like Hotmail or GMail often have password reset
Entire enterprises have been compromised via email password reset

Use multifactor authentication where available

-

L




Defenses and Mitigations

Input Validation

Encoding

Windows Communication Foundation

* SOAP toolkits and WSDL-based code generation
Encryption

Multifactor authentication

Shared access signatures and Signed URLs
Application design and defense in depth



Input Validation

All of these attacks come from malicious user input

Blacklist-based platform mitigations
* ASPNET ValidateRequest

" Apache mod_security
Whitelist-based mitigations

* Allow only the types of data you expect
* Easy for formatted types like ZIP, SSN, or SHA-256 hash
" Very difficult for XML/HTML input or Unicode global applications

* Microsoft Web Protection Library AntiXSS Encoders
(http://wpl.codeplex.com/)




Heldelellgle

* Render potentially malicious input or output harmless

* XML Encoding vs. data storage attacks

* Can wrap user input in a <![CDATA[ 11> block, but watch for
closing sequences in the input

* HTML/XML encoding is fairly standard with few metacharacters,
and many encoding libraries available (including AntiXSS)

* HTML Encoding vs. cross-site scripting
* Encode output before sending it to the user
" Separate from data storage encoding

" Still not foolproof — multiple encoding attacks are very
sophisticated especially with multi-tier globalized applications

Trustworthy Computing



Windows Communication Foundation

»

NET libraries for abstract data access

" Application uses object model or LINQ queries

* WCEF translates these to appropriate protocol based on user code
* Can be used with any storage back-end

* Default interface for Azure Table Storage in ASPNET
" StorageClient assembly provided in Windows Azure SDK
* Automatically performs proper XML encoding
" Roughly equivalent to parameterizing queries

* No vulnerabilities found in WCF encoders

* Only works if you use it — not every application is in ASPNET
* Developer still constructs query strings



SOAP Toolkits

* SOAP is rarely written by string concatenation

* Most AWS developers use REST API

* SOAP API interfaces are generated from WSDL with tools
* Many SOAP toolkits are available

* System.Web.Services namespace & WSDL tool in Visual Studio
NET

" Similar tools available for Java, PHP, and other platforms

* Generated interface code generally performs necessary
XML encoding and CDATA usage



Heleg¥olilela

»

Use HTTPS when communicating with storage endpoints
* AWS forces you to anyway — no HTTP option in many cases

* Very little reason not to — you don't pay for compute time on
storage nodes in Azure or AWS

* Critical if communicating over the Internet

* Should still use HTTPS even when communicating inside
the cloud service provider's services

* VMs are shared with other customers

" Provider datacenter is a "black box" to you
* Probably very safe, but very little reason not to do it




Multifactor Authentication

* Amazon Web Services

* Offers administrator multifactor authentication via a dynamic
password token

* Nominal fee to purchase token
* One level of access

e Mlcrosoft Windows Azure

* Developer access can be via certificates, including smart card
certificates at no charge

" Supported by development tools like Visual Studio .NET
" One level of access
* Administrative login with password cannot be disabled




Shared Access Sighatures

* Prevent enumeration and unauthorized access to
blobs/objects in cloud storage

* Shared Access Signatures (Azure)/Signed URLs (AWS)
* Set blob or object as private

" Application issues signed URLs, accessible in the browser, that are
valid only for a limited time and only for the specified object

* User is not provided direct links to files

" Link to an application page which generates a signed URL for the
desired object and only for a short time, then redirects browser

* Transparent to users, but makes public sharing of URLs difficult
and short-duration



Windows Azure Shared Access Signatures

http://myaccount.blob.core.windows.net/musicdownloads
/filename.mp3

http://myaccount.blob.core.windows.net/musicdownloads
/filename.mp3?st=2010-07-28T11:20Z&se=2010-07 -
29T12:20Z&sr=c&sp=r&si=YWI]jZGVmZw%3d%3d&sig=dD80ihBh5
JFNpymO5Hg1IdiJIEVHCcIpCMiCMnN%2fRnbI%3d



Application Design Mitigations

* Defense in Depth

" Use multiple layers of defense

" Keep compromises isolated

* Prevent elevation of privilege and cascading compromise
* Consider platform defenses

" Layers of protection

* Use cloud equivalents of traditional defenses
* Design the application for security

" Gatekeeper design pattern



Service-Layer Security Considerations

Service Layer
*Your product’s security architecture, compliance controls, and code quality
*Use of platform-provided threat mitigations and security features
*Mitigation of traditional web application security threats

Platform Layer




Mapping Traditional Defenses to the Cloud

Input Validation, Sanitization,
Fuzzing

Scoping Issues, Application-level
DoS protection

Authentication, Authorization,
Audit

Storage ACLs

Certificate Services

IPC

No change

Subdomain scope,
Application request
throttling

ADFSv2, WLID, ACS,
MDS

Shared-Access
Signatures

WACS via Azure
Development Portal
Internal Endpoints




Defenses Inherited by Azure Tenants

MR Tpering &

Disclosure
o~ -
VLANs
VM switch hardening Load-balanced

Infrastructure
Certificate Services
Network bandwidth

Shared-Access throttling
Signatures
DDoS protection on
HTTPS Storage nodes
Sidechannel Configurable scale-
Monitoring / protections out

Diagnostics Service

Partial Trust Runtime

Hypervisor custom
sandboxing

Virtual Service
Accounts




Developing a Secure Cloud Application

* The Microsoft Security Development Lifecycle (SDL) is
applicable to Windows Cloud applications
* SDL for Agile likely to be used more often
" www.microsoft.com/sd| covers SDL for Agile in detail
* Mandatory for Microsoft-developed software deployed in Azure

* Addresses security threats throughout the development process
" Threat modeling, best practices, test tools

* Performing checks proactively during development reduces bugs at
release

* These methods can be used by anyone to develop more
secure applications




Developing a Secure Azure Application

* Appropriate design patterns can take advantage of Azure
runtime trust models to create hardened applications

* Isolate web roles and separate duties of individual roles to
maximize the use of Windows Azure Partial Trust

* Secure externally-facing web roles

" Restricts access to file system, registry, local environment, sockets,
and web connections

* Gatekeeper design pattern can separate privileged and
unprivileged roles



Gatekeeper Design Pattern

/
Client Request Storage Request

GateKeeper
Web Role KeyMaster

Storage
(Partial Trust) Worker Role

Client

Returned Storage

\
Data Storage Data Return
N




Gatekeeper Design Pattern

* Gatekeeper role
" Services requests from the Internet
* Windows Azure Partial Trust

»

Keymaster role
Privileged back-end worker role

" Takes inputs only via a secure channel from the Gatekeeper
* Handles sanitized storage requests

" May be run in Windows Azure Full Trust with Native Code
Execution if necessary for the application




Gatekeeper Pattern Outside Azure

* Windows Azure trust model facilitates this design pattern
* ...but you can implement it anywhere, including AWS
* Separate presentation logic from storage logic
* Create a restricted boundary between tiers

* Configure least privilege on each tier

* Threat model back-end tiers under the assumption that the
front-end tiers are already compromised



Conclusion

»

Securlty an important consideration in the cloud

The work required to secure an application using cloud storage is
not new or more technically challenging than a traditional
database environment

Designers and developers must consider the threats to their
application and follow appropriate practices

Must use appropriate secure design and implementation
patterns to counter threats in a cloud environment

.




Microsoft

Your potential. Our passion.

© 2010 Microsoft Corporation. All rights reserved. Microsoft, Windows, Windows Azure and other product names are or may be registered trademarks and/or trademarks in the U.S. and/or other countries.
The information herein is for informational purposes only and represents the current view of Microsoft Corporation as of the date of this presentation. Because Microsoft must respond to changing market conditions,
it should not be interpreted to be a commitment on the part of Microsoft, and Microsoft cannot guarantee the accuracy of any information provided after the date of this presentation.
MICROSOFT MAKES NO WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, AS TO THE INFORMATION IN THIS PRESENTATION.




