Virt-ICE: next generation debugger
for malware analysis

Black Hat USA 2010, Las Vegas
July 29th

NGUYEN Anh Quynh, Kuniyasu SUZAKI
AIST, Japan

Who are we?

From the National Institute of Advanced Industrial
Science and Technology (AIST), Japan

., Post doctor researcher

= VNSecurity member ()

, senior researcher (PhD)

Multiple interests: Operating System,
Virtualization, Trusted computing, malware
analysis, forensic, rootkits, IDS, ...

http://vnsecurity.net/

VM-related research areas

= Practical security problems regarding Virtual
Machine (VM)

= Protect VM

= Live memory forensic for VM

= Malware scanner for VM

= Leverage VM for various security-related areas
= Dynamic binary analysis
= Vulnerability research

= efc ...

Virt-ICE preview

= A new debugger, specially built to analyze malware

= Have new approach to fix most problems of current
debuggers

= Provide rich functionalities targeting malware
analyst

= To ease the job of malware analyst

Presentation overview

Problems of debugger in malaware analysis

Virt-1CE solution

= Architecture, Design & Implementation

= Main features

LLive demo
Discussions

Conclusions

Q&A

Part |

Problems of debugger in malaware analysis

Virt-ICE solution

= Architecture, Design & Implementation

= Main features

L.ive demo
Discussions

Conclusions

Q& A

Malware analysis

= Static analysis

= Disassemble/decompile malware binary code

= Analyze dead-list to understand its activities

= Most malware are packed and obfuscated
= Dynamic analysis
= Run malware and monitor 1ts activities at run-time

= Analyze malware when it 1s running, lively

Debugger against malware

= Run malware under the monitor of a debugger

= Disassemble/Decompile malware binary

= Monitor execution flow

= Using software/hardware breakpoints

Monitor data flow
= Using memory watchpoints
= Single-step for fine-granularity tracing

= c{C...

Problems of debugger

= Malware can detect debugger and change behavior

= Knowing that it 1s being debugged/monitored,
malware can behave differently

= Xu et al [NDSSO8] reported the popularity of
anti-debugging malware

= 93.9% malware have anti-debugger
techniques!

= Malware can tamper with debugger

= Fool debugger, to make it function incorrectly

= Attack debugger

Detecting debugger (1)
= Debugger uses system service to handle debug events

= Windows OS leaves traces 1n various places about the
existence of debugger
= PEB::NtGlobalFlag
= PEB::BeingDebugged
= Windows OS even provide some APIs for applications
(and for malware, too) to check if a debugger 1s
running
= [sDebuggerPresent()
= CheckRemoteDebuggerPresent()
= NtQueryInformationProcess()
= NtQuerySystemInformation()
= NtQueryObject()

System service

Detecting debugger (2)

= Debugger modify malware

= Write software breakpoints (OxCC 1nsn) 1nto process
memory

= Malware can perform self-checking its code to detect
the integrity violation

Memory

Insert OxCC
at breakpoint

Debugger]

Cortrol of |
tlebugzes

" Cortrol trarsfers
OXCC(INT3) | -~ to debugger

Detecting debugger (3)

= Debugger 1s visible in the same system

= Detect that a debugger 1s 1nstalled 1n system

= Detect that a debugger 1s running

= Look for special processes, windows of particular
debuggers

= Look for special registries of particular debuggers

= Look for special kernel devices using by particular
debuggers

= Etc ...

777

Debugger P

Tamper with debugger

= Tamper with debugger operation to make it work
incorrectly

= Modify hardware breakpoint value if debugger uses
hardware breakpoints

= Reset software breakpoint (OxCC byte) to original
value, so debugger 1s not triggered any more

= Directly attack debugger

= For ex: terminate debugger with TerminateProcess()
function

g

= Detecting debugger is easy and unfortunately,
increasingly complicated techniques are
introduced

= Peter Ferrie, Anti-unpacker tricks - series 1~9

= and more is still coming :-(

= Attack and tamper with debugger 1s trivial

= Unfortuanately, unfixable!!

Why these problems?

Unfixable debugger

= Because debugger 1s never designed to analyze
malware 1n the first place

= Only for legitimate software, built and debugged by
developers to find software bugs

= Developers never write software to defeat his
debugger :-)

= Unfortunately, malware does that with lots of
sophisticated tricks

Part |

Problems of debugger in malaware analysis

Virt-ICE solution

= Architecture, Design & Implementation

= Main features

L.ive demo
Discussions
Conclusions
: f%“{
Q&A oo

17

Ideas to solve problems

= Make the debugger invisible to malware
= Malware cannot see the debugger
= Put the debugger out of the reach of malware

= Having debugger in another protection domain, so
malware cannot attack it

Virt-1CE approach

= Run malware 1nside Virtual Machine (VM)

= Not introduce any problem, because analyst already
used VM for malware analysis that for a long time

= Fine-grain instrument guest VM to intercept guest
anytime/anywhere we want to

= Put the debugger in hypervisor/emulator layer

= Qut of the reach of malware running inside guest VM

Virt-ICE architecture

Virtual Machine

Other benefits

= Whole system view, so whole system analysis 1s
possbile

= Ring 0 code (rootkits included) debugging is better
than anything else available out there!

= Debug anywhere 1s possible

Fix the unfixable problems

= Virt-ICE 1s 1invisible to malware

= Debugger uses system service for debugging?

= Not more, because instrumentation from bottom can do
even provide better mechnism for debugging anywhere

= Debugger modify malware process?
* Instrumentation never modifies malware process
= Debugger 1s present in the same domain with malware?

= Stay in emulator layer, and never uses any agent inside
guest

= Virt-ICE cannot be attacked by malware
= Guaranteed by VM design

Virt-I1CE requirement

Understand guest context from outside

Instrument guest VM execution

= So it 1s possible to set breakpoint, watchpoint, ...
anywhere

Access to VM context

= Read/write to VM memory

= Read/write to CPU context
Manage VM

= Pause, resume VM

Understand guest context

= Must be done from outside, without any support of
guest VM

= VM instrospection problem
= Leverage works from last year

= See Syscan '09, FrHack '09, HITB '09, DeepSec '09
= EaglEye framework

= Extract OS semantic objects from VM's memory

= Support Windows OS

Eagllhye Framework

= Get access to guest memory and CPU context from host
= Provided by Kobuta framework (see later)

= Retrieve OS-objects from virtual/physical memory of
guest VM

= Focus on important objects, especially which usually
exploited by malware
= Network ports, connections
= Processes, DLL, registries, ...
= Kernel modules

= etc...

25

EaglEye architecture

EaglEye Framework Architecture

System Object Extracting

MS Windows objects Linux objects

LibDI
(debugging information analyzing)

26

Challenges

= Retrieve semantic objects requires excellent understanding on
OS internals

= Locate the objects

= Actually retrieve objects and its internals

= How the objects are structured?

= Structure size?
= Structure members?
= Member offset?

= Member size?

27

Locate OS's objects

Kernel modules
Processes/threads

System handles

Open files

Registries

DLLs

Network connections/ports

Drivers, symbolic links, ...

Retrieve objects' intenals

= Must understand object structure

= Might change between Windows versions, or even Service Pack

struct {
KPROCESS Pcb; — offset 0, size 0x6¢c
EX PUSH L OCK ProcessLock; — offset 0x6c, size 4
LARGE_INTEGER CreateTime; — offset 0x70, size 8
LARGE_INTEGER ExitTime; — offset 0x78, size 8

EX _RUNDOWN REF RundownProtect; — offset 0x80, size 4

29

Current solutions?

= Hardcode all the popular objects, with offsets & size
of popular fields?
= Does by everybody else

= But this 1s far from good enough!

= Limited to objects you specify
= Limited to only the offsets you specify

A dream ...

* To be able to query structure of all the objects, with their fields

= Support all kind of OS, with different versions
= On demand, at run-time, with all kind of objects

= Various questions are possible

= What 1s the size of this object?
= What is the offset of this member field in this object?

... Comes true: LibDI

= Satisty all the above requests, and make your deam
come true

= Come 1n a shape of another framework

= Rely on public information on OS objects

= OS independence
= Windows and Linux are well supported so far

= Have information in debugging formats DWARF , and
extract their structure out at run-time

Windows internals information

= ReactOS file header prototypes

= Free & open to public (http://www.reactos.org)
= Support Win2k3 and up.

= Windows XP and prior are not supported

33

http://www.reactos.org/

Sample ReactOS code

typedef struct { ... // removed some fields for brevity
FAST_MUTEX WorkingSetLock;
ULONG WorkingSetPage;

EX PUSH_LOCK AddressCreationLock;
PETHREAD RotateInProgress;

KGUARDED MUTEX AddressCreationlock;
KSPIN_LOCK HyperSpacel.ock;

34

Windows objects

= Compile ReactOS file header prototypes with debugging
information

= Dynamically extract out information from object files

g++ -g windows.c -DNTDDI_XPSP3 -¢ -o windows_XPSP3.0

35

Windows objects - Problems

= ReactOS only supports Win2k3 and up

= Need to patch ReactOS headers to support WinXP and prior
VErsions

= From Windows debugging symbols data
= Patch size 1s small
= Fix incorrect and not updated data structures
= Windows Vista, Windows 2008
= Patch to support recent Windows OS, like Windows 7

Sample LibDI API

/* < > */

/* Get the struct size, given its struct name */

int di_struct_size(di_t , char *);

/* Get the size of a field of a struct, given names of struct and member. */
int di_member_size(di_t , char * , char *);

/* Get the offset of a field member of a struct */

int di_member_offset(di_t , char * , char *);

37

Sample code using LibDI

#include <libdi/di.h>

di_th;

/* Initialize LibDI to get a LibDI handle */
di_open("windows_XPSP3.0", &h);

/* retrieve the size of _EPROCESS */

int s1 = di_struct_size(h, " _EPROCESS");

/* retrieve the size of _EPROCESS::CreateTime */

int m1 = di_member_size(h, " EPROCESS", "CreateTime");
/* retrieve the offset of _EPROCESS::CreateTime */

int ol = di_member_offset(h, " EPROCESS", "CreateTime");
/* close when you are done with LibDI */

di_close(h);

38

EaglEye: retrieve objects

= Separate API for each kind of objects
= Designed so it 1s hard to be abused or tampered by guest VM

= Get first object 1n the list of objects
= Usually the head of object list must be located

= Or by scanning the pool memory, or scanning in physical
memory

= Using pattern-matching technique

= Get next objects

= One by one, until reach the last object

Sample EaglEye API (1)
[* < > */
/* @task: output value, pointed the the kernel memory keep task info */
int ee_get_task_first(ee_t , unsigned long *)3
[* @task: output value, pointed the the kernel memory keep task info */
int ee_get_task_next(ee_t , unsigned long *);
/* get the pointer to the process struct, given the process's pid.
int ee_get_task_pid(ee_t , unsigned long , unsigned long *)3
/* get the first open dll file of a task with a given process id.

* on return, dll points to the userspace memory that keeps dll info */

int ee_get_task_dll_first(ee_t , unsigned long , unsigned long *);
/* get the next open dll file of a task with a given process id.

int ee_get_task_dll_next(ee_t , unsigned long *);

40

Sample EaglEye API (2)

/* < > */
/* get process image filename, given its EPROCESS address */

int windows_task_imagename(ee_t , unsigned long , char * .
unsigned int count);

/* get process id, given its EPROCESS address */
int windows_task_pid(ee_t , unsigned long , unsigned long *);
/* get parent process i1d, given its EPROCESS address */

int windows_task_ppid(ee_t , unsigned long , unsigned long
*ppid);

/* get process cmdline, given its EPROCESS address */

int windows_task_cmdline(ee_t , unsigned long , Chalg™

unsigned int);

41

EaglEye architecture

EaglEye Framework Architecture

System Object Extracting

MS Windows objects Linux objects

LibDI
(debugging information analyzing)

42

Virt-1CE design

= Choose VM for Virt-ICE

= Open source, so customizable (therefore VMWare 1s
not suitable)
= Xen? KVM?
= VirtualBox?
= Bochs?
= Qemu?

= 0.12.4 version

Virt-ICE architecture

QEmu emulator

Guest VM

"

Virt-ICE module

Kobuta framework | EaglEye framework Virt-ICE
(instrumentation) {introspection) C | | ent

Instrument guest VM

= Kobuta framework

= (Generic Instrumentation framework
= Not only for Virt-ICE, but other internal projects
= Instrument binary translation process

= Put hooks at right places to call out to external
instrumentation handlers

= Support dynamic loaded module built on top of Kobuta

= Module provides external instrumentation handlers to be
executed when called from Kobuta hooks

Instrument guest VM — Challenges

= Originally, QEMU provides no support for
Instrumentation

= We are on our own, and have to build Kobuta
istrumentation framework from scratch

= QEMU uses Just-in-time (JIT) compiler to perform
binary translation

= Translated code 1s saved, and 1s not translated again if
available 1n cache

= We have to dig deeply into the translation process of
QEMU to provide instrumental hooks

QEMU JIT compiler

Translate guest code to TCG Intermediate Representative (IR),
then translate TCG IR to native (host) code to execute on host

The translated code 1s cached to be reused (to improve
performance)

Translation 1s done on code block basis

To improve performance, full CPU context (registers, segments,
CR*, ...) 1s only saved at the end of each translated block

= So CPU context 1s only guaranteed to be synchronized at
begining of each block

= At middle of a block, CPU context 1s out-of-synch

= We have to synchronize CPU context ourselves when needed

= On x86, only EFLLAGS value 1s out-of-sync

Instrumentation hooks

= Instrumentation is at TCG IR level (after target code 1s translated
to TCG IR)

= This 1s required due to translated code 1s cached for future
reference

= At all cost, avoid putting static hooks 1nto architecture related
code, so supporting all architecture can be done universally

= Instruction level instrumentation 1s exception

= Architecture specific instrumentation 1s also exception
= Update CR0/2/3/4, RDMSR, WRMSR, ...
= SYSENTER/SYSEXIT

= Make sure performance overhead 1s minimized when ho
instrumentation hook is registered

Sample Kobuta instrumentation

/* target-1386/op_helper.c */
void (void)
B
if (){ /* SYSENTER hook has been registered? */
/* Then is it necessary to synchronize CPU context? */
if (.)
kobuta_syn_cpucontext(); /* Synchronize CPU context on demand*/

kobuta_sysenter(); /* Finally, execute all registered handlers for SYSENTER */

Kobuta framework

= Hooking various places useful for generic purposes

= Fine grain instrumentation

= Begin/end of instruction/block

= Jump/call insn

= Interrupt begin/end

= Sysenter/Sysexit/Syscall/Sysret

= Input/Output insn

= Update control registers (CRO, CR2, CR3, CR4)

= RDMSR, WRMSR (read/write to Model-Specific-Register)

= Memory access (read/write)

Performance challenge

= Vanilla QEMU 1s quite slow
= Accelerate QEMU with KQEMU

= Software based solution to run most instructions directly
on CPU

= Dynamically enable and disable with Kobuta layer

= Turn on KQEMU when there nobody registeres for
Kobuta

= Turn off KQEMU when instrumentation 1s required

= Support dropped from QEMU 0.12.0 version
= Had to forward-port to 0.12.4

Kobuta module

= Need to register with Kobuta framework for interested
instrumentation events

= Then provide instrumentation handlers for those events

= Handlers be executed when events happen in guest VM

= Leverage exported functions (from Kobuta framework)
to manage guest VM

= Pause and Resume VM on demand

= Read and write to VM's memory (physical & virtual
memory) and CPU context

= Dynamically enable/disable instrumentation hooks

Kobuta module

= Design Kobuta module to be just a Dynamic Linked
module

= _so file in Linux, .DLL file in Windows

= Loadable into Qemu process, and supported by OS
Services

= Easy to implement your Kobuta module (just a
normal DL module running in host OS)

Manage Kobuta module

= Manage Kobuta modules

= Extend QEMU with new command kmodule

= Allow unlimited number of Kobuta modules to be loaded at the same
time

= Reloading module with different parameter is supported
= Load module into Qemu process
= Simply using DLL service provided by host OS
= dlopen() in Linux, LoadLibrary() in Windows

= Load module with a string parameter
= Unload module from Qemu process

= Also use DLL service of host OS

= dlclose() 1n Linux

= But how about code (instrumentation handlers) still running?

Unloading Kobuta module

» Use reference counter for Kobuta instrumentation
handlers

= Associate each handler with a ref counter

= [ncrease counter before running a handler, and decrease
it when done

= Only run a hanlder when its module 1s in enable state

= Have a manage thread to unload Kobuta module

= Firstly, put the module 1n disable state
= Signal the module to interrupt itself

= Periodically checking for ref counter, and unload module
when refcount = 0

Export functions (1)

= Kobuta module needs to manage guest VM

= Pause & resume the guest
= Access to guest memory and CPU context

= Register instrumentation hooks and instrumentation
handlers with Kobuta framework

= But all these functions stay deeply inside QEMU and
Kobuta layer

= Need to export them out for external Kobuta module to
use

Export functions (2)

= Two ways to export these tfunctions from QEMU/Kobuta
to external modules

= Refactor QEMU code to export required functions out to an
external DLL library

= The same DLL lib can be linked to both QEMU and Kobuta
module

= Complicated due to too much code needed to be refactored

= Selectively exports needed function pointers to Kobuta
module

= Transfer these pointers to Kobuta module when external
module when loading it

= Extremely easy to implement, and require mimimum
modifycation to QEMU

/>X<

Exported functions (3)

*/

struct kobuta_ins {

15

kobuta_cpu_t cpu_read; /* read CPU context */

kobuta_cpu_t cpu_write; /* modify CPU context */
kobuta_pmem_rw_t mem_rw; /* physical memory read/write */
uint64_t ram_size; /* memory size of guest VM */
kobuta_virt2phys_t v2p; /* find physical address of a virtual address */
kobuta_vm_t vm_pause; /* request to pause guest VM */

kobuta_vmm_t vm_resume; /* request to resume guest VM */
kobuta_manager_t event_manager; /* manage instrumentation hooks */

int unload(); /* request (from Kobuta layer) to unload this module */

Exported functions (4)

enum kobuta_handler_reg_t {

KOBUTA_HANDLER_INSTALL, KOBUTA_HANDLER_DELETE, ...
I§
enum kobuta_cpusync_t {
KOBUTA_CPUSYNC_DISABLE =0, KOBUTA_CPUSYNC_ENABLE, ...
I
enum kobuta_event_t {
KOBUTA_EVENT_JMPCALL, KOBUTA_EVENT_INSN_BEGIN,
KOBUTA_EVENT_INSN_END, KOBUTA_EVENT_SYSENTER,
KOBUTA_EVENT_MEM_READ, KOBUTA_EVENT_MEM_WRITE,
b

typedef void (*kobuta_manager_t)(enum kobuta_ handler . neg t
enum kobuta_event_t , enum kobuta_cpusync_t+ \ i,

void *);

Sample of Kobuta module

static void sysenter(void)

{
}

int k_module_init(struct kobuta_ins *ins, const char *args)

{

ins->event_manager(
: , sysenter);

}

int k_module_exit(void)

{

return 0;

Virt-ICE debugger design

= A Virt-ICE server: a Kobuta module

= Register related instrumentation hooks (on demand)

= JmpCall (to intercept function call)

= Begin/end 1nsn (for single-step purpose)

= Begin/end interrupts (to intercept syscalls thru Int 2E)

= Sysenter/sysexit (to intercept syscalls)

= Memory access events (to intercept memory read and write)

= Leverage EaglEye framework to access to objects in guest
memory

= A Virt-ICE client

= Simple front-end to send request and receive results from
Virt-ICE module

Virt-ICE architecture

QEmu emulator

Guest VM

"

Virt-ICE module

Kobuta framework | EaglEye framework Virt-ICE
(instrumentation) {introspection) C | | ent

Handling request for Virt-ICE

= Have a separate thread to handle external commands from
Virt-ICE client

= TCP protocol

= Receive commands from client

= Built-in protocol for exchanging data between module « client

= Debugging commands (disasm, breakpoints, watchpoints,
singlestep, etc)

= Monitoring VM status
= Using exported functions from Kobuta to manage VM

= Read/write CPU context and memory
= Run VM into single-step mode

= Enable instrumentations on demand

Virt-I1CE generic commands

= Inspect malware process running inside VM
= pe: PE file analyzing
= view: View memory in hex/string format
= dump: Dump memory out (physical or process or kernel)
= write: Write to memory
= search: Searching (pattern matching, regex, ...)
= ps/pstree: Processes
= dlls: DLLs, registry: Registries, files: Open files, vad: VADs
= kmod: Kernel modules
= address: Attributes of a memory address
= connection: Open network connections, socket: open sockets
= disasm: Disassemble memory range

= register: View all the registers

64

Virt-1CE debug commands

Set execution breakpoint: db -s <address>
= Set syscall breakpoint

Set memory watchpoint: db -m <address> -¢ <count> -t <RIWIA>
Single-step: db -s

Step over: db -O

Run until RET: db -R

Disassemble

Pause guest VM: db -C | Ctrl+C
Resume guest VM: db -r

Virt-I1CE advanced features

= Malware behavior monitoring

= API monitoring: db -M <filename>

= Popular Windows APIs (with semantic arguments)

= Kernel32, User32, GDI32, AdvApi32, WS2_32, Shell32,
OLE32, ...

= Malware related API monitoring

= File, Registry, Http, Keylogger, Process, Service, Code
injection, ...

= Syscall monitoring (with semantic arguments)
= db -Y [filenamelALLINULL]

= Report anti-debugging techniques used by malware
= db -A

= Focus on most popular tricks so far

Anti Virt-ICE
= Detecting Virt-ICE?

= Timing attack based on delay execution introduced by
the Kobuta instrumentation framework

= Timing debugger delay using external clock

= Everybody suffers, not only us!

= We fix the problem with internal clock, however

= Attack Virt-ICE?

= Not possible by design due to strong 1solation between
guest and emulator

= Anti-virtualization malware?

= Out-of-scope of this research

= Everybody suffers, too :-)

69

Future plan - Development

Improve binary analysis

= More semantic information

= GUI?

Unpacking tool (in progress)
Taint analysis tool (in progress)

Improve performance
= Using KVM to speed up even further
= Even currently, KQEMU is not too bad, either
Re-playable debugger
= So replay debug process 1s possible

= Take snapshot of memory and HDD and rollback

Conclusions

= Virt-ICE 1s a new debugger that can fix most
problems of current debuggers against malware

= Leverage VM technology
= Invisible (mostly) against malware
= Tamper-resistant against malware

= Provide rich functionality for malware analysis

References

= Peter Ferrie [VIRUS BULLETIN]

Anti-Unpacker tricks (series)
= Xu Chen [NDSSO8]

Towards an Understanding of Anti-virtualization and Anti-
debugging Behavior in Modern Malware

= BitBlaze project
Presented in BH US' 10 (yesterday)

TEMU framework targets tainting analysis

Not a generic instrumentation framework like Kobuta

Based on old version of QEMU (0.9) with very different JIT
engine

Virt-ICE: next generation debugger
for malware analysis

Q&A

NGUYEN Anh Quynh <aquynh @ gmail.com>
Kuniyasu SUZAKI <k.suzaki @ aist.go.jp>

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide40
	Slide 73

