

BEYOND SCANNING:
Automated Web Application Security Testing

Stephen de Vries

www.continuumsecurity.net

INTRODUCTION
Security Testing of web applications, both in the form of automated scanning and
manual security assessment is poorly integrated into the software development lifecycle
(SDL) when compared to other testing activities such as Unit or Integration tests.

Agile methodologies such as Test Driven Development advocate a test first approach,
where the tests themselves form the specification for the software. These effectively form
an executable specification that grows with the application. If the same approach could
be taken with security requirements and testing, then the security domain could also
benefit from the advantages of automated integration testing.

Existing testing frameworks and web integration testing tools can be used to create an
integration testing framework aimed specifically at security. This would provide security
testing templates which could be applied to common web application features, a
framework for writing bespoke security tests, and provide integration with existing web
scanning tools.

This paper presents such a security testing framework together with the tools required to
integrate it with the Burp Suite scanner.

PROBLEMS WITH SECURITY SCANNING
Security Testing is usually performed by external security consultants using broadly
defined testing methodologies. The result of which is a report containing a list of security
vulnerabilities - or in testing terms: test case failures. The test cases that were executed,
and test case successes are not usually included in the report.

There are a number of problems with this approach. Firstly, the software owner doesn’t
have a clear view on exactly which tests were performed.

Secondly, the security tester can’t guarantee that retesting the application will be
performed consistently.

And thirdly, since the security tests to perform are selected by the external security tester
they can’t be used as a security specification for the software before development even
starts.

The costs of performing manual retests for security assessments are also much higher
than that of running automated integration tests because of the lack of the automation.

AUTOMATED INTEGRATION TESTING
For the purposes of this paper automated integration testing (and integration testing)
refers to the practice of testing a web application at the web tier, such as by using
Selenium or other browser driver type tools.

Integration tests can be used to define the functional and non-functional requirements
for a web application by defining passing and failing scenarios. The tests are often run
using popular unit testing frameworks such as JUnit and TestNG. An example of a
JUnit test which tests basic login functionality in a web application using Selenium 2
(WebDriver) could be:

Two tests are defined (annotated with “@Test”) that describe how the login function
should behave when correct and incorrect passwords are used.

This approach can also be used to perform basic security tests such as:

As more tests are added, they effectively become the functional specification for the

application:

These integration tests are usually written by the developers themselves, or by specialist
testing houses. In cases, they require technical knowledge of a programming language in
order to understand the test. This doesn’t present a problem in small teams; but in
larger teams where there are non-technical business analysts and/or security architects,
who don’t necessarily understand the programming language used, then the tests alone
can’t be used to define the application’s specification.

public void login(String username,String password) {
 driver.get("http://www.ispatula.com:8081/ispatula/shop/signonForm.do");
 driver.findElement(By.name("username")).sendKeys(username);
 driver.findElement(By.name("password")).sendKeys(password);
 driver.findElement(By.name("update")).click();
}

@Test
public void testLoginWorksForCorrectCredentials() {
 login("bob","password");
 assertTrue(driver.getPageSource().contains("Welcome"));
}

@Test
public void testLoginFailsForWrongPassword() {
 login("bob","messerschmidt");
 assertFalse(driver.getPageSource().contains("Welcome"));
}

@Test
public void testLoginBypassWithSQLinjection() {
 login("bob';--","");
 assertFalse(driver.getPageSource().contains("Welcome"));
}

testThatLoginWorks()
testThatLoginWithWrongPasswordFails()
testThatLogoutWorks()
testAddItemToShoppingCart()
testCheckoutWithEmptyCart()
testCheckoutWithFullCart()
etc.

BEHAVIOUR DRIVEN DEVELOPMENT (BDD)
BDD is an evolutionary step from Test Driven Development and offers the ability to
define the behaviour of an application in a more natural language. BDD is effectively a
communication tool, allowing the business and security analysts to define functional and
non-functional behaviour in a natural language, while still allowing that behaviour to be
captured using automated tests written by developers.

There are a number of BDD frameworks available for different languages, such as EasyB
(Groovy), RSpec and Cucumber (Ruby), PyCukes (Python) and JBehave for Java.

BDD WITH JBEHAVE
JBehave uses a similar format to describing specifications (stories) as the popular
Cucumber framework for Ruby, i.e. plain text using special keywords to describe the
story and code that matches those statements to executable steps in Java. For example,

the login integration tests listed above could be translated into JBehave as follows:

The words “Given”, “When” and “Then” are JBehave keywords, as well as “And”
which can be used to add additional statements. A JBehave story (Specification) is
compromised of individual scenarios (tests) . Each step in the scenario is then mapped to
Java code, e.g.:

Scenario: Test the login works with valid credentials

Given the login page
When the user logs in with username: bob and password: password
Then the word: Welcome should be on the page

Scenario: Test login fails with wrong password

Given the login page
When the user logs in with username: bob and password: blah
Then the word: Invalid should be on the page

Scenario: Test login can't be bypassed using SQL injection

Given the login page
When the user logs in with username: bob';-- and password: blah
Then the word: Invalid should be on the page

The code would be written by a developer, while the specification could be written by a
business analyst, or security architect.

DATA TABLES
Looking at the three scenarios listed above, the steps of each scenario is identical - the
only difference is the data supplied. This can be used to take advantage of another
JBehave feature: tabular data input. Instead of writing three separate scenarios they can

be combined into one and a date table used to supply the data:

THE PAGE OBJECT PATTERN
THE NEED FOR ABSTRACTION

Using Selenium WebDriver directly in the tests, as shown below, means that they are
tied to the navigation code. A change to the web UI, such as changing the username
text field name from “username” to “uname” would mean changing the tests- potentially
in more than one place.

@Given("the login page")
public void gotoLoginPage() {
 driver.get("http://www.ispatula.com:8081/ispatula/shop/signonForm.do");
}

@When("the user logs in with username: $username and password: $password")
public void login(String username, String password) {
 driver.findElement(By.name("username")).sendKeys(username);
 driver.findElement(By.name("password")).sendKeys(password);
 driver.findElement(By.name("update")).click();
}

@Then("the word: $matchWord should be on the page")
public void findWordInPage(@Named("matchWord") String matchWord){
 assertThat(driver.getPageSource(),containsString(matchWord));
}

Scenario: Test login with valid and invalid data

Given the login page
When the user logs in with <username> and <password>
Then the <matchWord> should be on the page

Examples:
username	password	matchWord
bob	password	Welcome
bob	blah	Invalid
bob';--	blah	Invalid

This presents a problem for test maintenance as well as scalability of the test scripts.

SIMPLE PAGE OBJECT
The Page Object Pattern applies the concept of object oriented design to navigating web
pages. Each page is represented by a class, and functions within that page are

represented by methods in the class. This would allow the above code to be changed to:

The details of how the login method is implemented is hidden from the test and can be
re-used in other instances of the LoginPage class. A simple example of a Page Object

could be:

This uses the familiar: driver.get() and driver.findElement() methods to first navigate to
the page, and then set the value on certain elements.

@When("the user logs in with username: $username and password: $password")
public void login(String username, String password) {
 driver.findElement(By.name("username")).sendKeys(username);
 driver.findElement(By.name("password")).sendKeys(password);
 driver.findElement(By.name("update")).click();
}

@When("the user logs in with username: $username and password: $password")
public void login(String username, String password) {
 loginPage.login(username, password);
}

public class LoginPageOrig {
 WebDriver driver;

 public LoginPageOrig(WebDriver driver) {
 this.driver = driver;
 }

 public LoginPageOrig open() {

 driver.get("http://www.ispatula.com:8081/ispatula/shop/signonForm.do");
 return this;
 }

 public void login(String username,String password) {
 driver.findElement(By.name("username")).sendKeys(username);
 driver.findElement(By.name("password")).sendKeys(password);
 driver.findElement(By.name("update")).click();
 }
}

ENHANCED PAGE OBJECT
Selenium provides some convenience methods to implementing this pattern- and the
BDD framework takes it further by creating a “Page” base class which leads to more

terse page objects:

The WebElements are silently initialised in the parent class’s open() method using
WebDriver’s PageFactory class. If they’re not found, then an exception is thrown. By
default the field names are matched to the element IDs- and if this fails, then they’re
matched to element names. If an alternate matching strategy is required, this can be

implemented using annotations:

In addition to the benefit of abstraction, page objects can also be reused by different
testing teams. The integration and functional testing team, who ensure that the
application behaves as expected- and that it renders correctly in multiple browsers could
define the page objects and these could then be re-used by the security or performance
testing teams. When the UI or navigation flow is changed, it only has to be changed in
the page object itself, without having to change the tests that use it.

ONE MORE LEVEL OF ABSTRACTION
In order to write security testing templates that can easily be applied to different web
applications, it’s convenient to apply another layer of abstraction and encapsulate
specific features into predefined interfaces that are implemented by a single class. To
this end, BDD-Security defines the following interfaces:

public class IspatulaLoginPage extends Page {
 static final String url =
"http://www.ispatula.com:8081/ispatula/shop/signonForm.do";

 WebElement username;
 WebElement password;
 WebElement update;

 public IspatulaLoginPage(WebDriver driver) {
 super(url,driver);
 }

 public void login(String usernameParam,String passwordParam) {
 username.sendKeys(usernameParam);
 password.sendKeys(passwordParam);
 update.click();
 }
}

 @FindBy(how = How.LINK_TEXT, using = "click me")
 WebElement username;

More generic features will be added in the future to cater to a wider variety of web
applications, e.g.

• ITwoStepLogin for applications that require a secondary authentication step, after the
primary.

• IWizardSession for applications that don’t have a login, but still maintain a session
which is initiated after the user enters some data.

All web applications should derive from a base class, and then implement the

appropriate methods, e.g.:

GENERIC SECURITY TESTS
BDD-SECURITY

BDD-Security is a BDD based testing framework for web applications. It’s built on
JBehave and includes a number of predefined security specifications for web
applications. It was designed in order to make use of re-usable page objects so that the
tests should not require modification between different web applications.

public interface ILogin {
 Page login(Credentials credentials);
 Page openLoginPage();
 boolean isLoggedIn(String role);
}

public interface ILogout {
 Page logout();
}

public class IspatulaApplication extends WebApplication implements
ILogin,ILogout {

 ...
}

ARCHITECTURE

The security story templates make use of the user defined application class which must
inherit from the parent WebApplication class. This class should then implement the
predefined interfaces as is appropriate for its functionality.

CONFIGURATION
Each project should have a config.xml file defining various configuration settings for the
tests:

The more important user configurable elements are detailed in the following table:

Element Description

defaultDriver The default WebDriver implementation to use.
BDD-Security has subclassed popular drivers and
added HTTP inspection features which are missing
from the stock WebDriver implementations.
Currently HtmlUnit and Firefox are the only
supported options.

burpDriver The WebDriver used during automated testing
through Burp. Currently only HtmlUnit and
Firefox are supported using the values:
BurpHtmlUnit and BurpFirefox

baseUrl The base URL for the application under test.

Class The custom Java class that extends WebApplication.

burpHost The host running resty-burp

<?xml version="1.0" encoding="ISO-8859-1" ?>
<web-app>
 <defaultDriver>HtmlUnit</defaultDriver>
 <burpDriver>BurpHtmlUnit</burpDriver>
 <baseUrl>http://www.ispatula.com:8081/ispatula/</baseUrl>
 <class>IspatulaApplication</class>

 <sessionIds>
 <name>JSESSIONID</name>
 </sessionIds>

 <users>
 <user username="bob" password="password">
 <role>user</role>
 </user>
 <user username="alice" password="password">
 <role>user</role>
 </user>
 <user username="admin" password="password">
 <role>user</role>
 <role>admin</role>
 </user>
 </users>

 <burpHost>127.0.0.1</burpHost>
 <burpPort>8080</burpPort>
 <burpWSUrl>http://127.0.0.1:8181/</burpWSUrl>
 <storyUrl>src/main/stories/</storyUrl>
 <reportsDir>reports</reportsDir>
 <latestReportsDir>target/jbehave/</latestReportsDir>

</web-app>

Element Description

burpPort Burp’s proxy port

burpWSUrl The WS Url used to communicate to resty-burp

sessionIDs The cookie names used to store the session IDs.

user The valid users of the application, currently only
supports username and password authentication.

role The roles that the user belongs to.

In addition to the configuration file, the custom Java class defining the application
should also be defined, for example:

Access Control Tests
BDD-Security also provides a vertical access control test that can be used to test
authorisation logic between users in different roles. In order to use this, two items should
be configured:

Firstly, the config.xml file should be updated so that users belong to specified roles (see
example above).

Secondly, methods that should only be visible to certain roles should be annotated with
the “@Roles” annotation in the Java class, for example:

public class IspatulaApplication extends WebApplication implements ILogin,ILogout {

 public IspatulaApplication(WebDriver driver) {
 super(driver);
 }

 public LoginPage openLoginPage() {
 return new LoginPage(driver).open();
 }

 public Page login(Credentials credentials) {
 return openLoginPage().login(credentials);
 }

 // Convenience user/pass login method
 public Page login(String username,String password) {
 return login(new UserPassCredentials(username,password));
 }

 public Page logout() {
 return new LogoutPage(driver).open().logout();
 }

 public Page search(String query) {
 return new SearchPage(driver).open().search(query);
 }

 // Check whether the given role is currently logged in.
 // In it's simplest form, it ignores the role.
 public boolean isLoggedIn(String role) {
 try {
 new AccountInfoPage(driver).open();
 return true;
 } catch (Exception e) {
 return false;
 }

 }

}

In order for the tests to work, the restricted method must throw an
UnexpectedPageException if an unauthorised user attempts to load the page. In the
example above, this is implemented by checking the text on the ListOrdersPage. In this
simple online shopping applicatoin, if authorised users in the “admin” role view this page
then the page contains the text “All Orders”. If an unauthorised user in any other role
attempts to view the page, then that text will not be present. This behaviour is coded

into the page object as follows:

The Page.open() method calls verify() in order to verify that it is on the correct page. By
overriding the verify() method in the ListOrdersPage, the method will throw an
exception if the text is not present.

SECURITY TESTING STORY TEMPLATES
The following predefined security stories are included in BDD-Security:

• Authentication Story: Security specifications that define how the authentication system
should behave.

• Authorisation Story: A single scenario that tests vertical access control.

• Session Management Story: A number of scenarios describing how session
management should behave.

• Automated Scanning: A number of scenarios using Burp as the scanner

public class IspatulaApplication extends WebApplication implements
ILogin,ILogout {
 ...
 @Roles({"admin"})
 public ListOrdersPage listOrders() {
 return new ListOrdersPage(driver).open();
 }
 ...

}

public class ListOrdersPage extends Page {
 ...
 public final static String expectedText = "All Orders";

 @Override
 public ListOrdersPage open() {
 return (ListOrdersPage)super.open();
 }

 @Override
 public void verify() {
 if (!getSource().contains((expectedText))) {
 throw new UnexpectedPageException("Did not find the
expected text: "+expectedText);
 }
 }
}

AUTOMATED SCANNING
Automated security scanning is a cost effective way to identify certain types of
vulnerabilities in web applications. The Burp Suite testing tool is popular for manual
assessments and includes plugin functionality which allows it to be extended.

RESTY-BURP
BDD-Security provides the overall framework for running tests, it would be convenient
to be able to execute automated scans from those tests. To this end, Resty-Burp was
developed, which is a burp extension that starts up an HTTP server within the Burp
instance and offers control of certain Burp features over a REST/JSON API.

This allows Burp to be controlled from many other languages, not just Java. The Resty-
Burp software is released with a Java client by default and supports the following
functions:

• scan $target

• getPercentComplete

• getIssues

• getProxyHistory

• get/set/update Config

• reset

INTEGRATION WITH BDD-SECURITY
BDD-Security uses the resty-burp service to perform automated scanning. In order to
support this, the application class must implement the IScanWorkflow interface and

define the navigateAll() method:

The navigation code included in the navigateAll() method is what is used to populate
Burp’s proxy logs -and therefore the scanner. Only the part of the application included
in the navigateAll() method will be scanned by Burp.

The automated scanning performed by BDD-Security is defined in the Automated
Scanning Story file.

public class IspatulaApplication extends WebApplication implements
IScanWorkflow {
 ...
 public void navigateAll() {
 search("hello");
 openLoginPage().login(
 Config.instance().getUsers().getDefaultCredentials("user"));
 new AccountInfoPage(driver).open();
 }
 ...

}

PUTTING IT ALL TOGETHER
BDD-Security can be run from the command line through maven, or from within an
IDE by executing the StoryRunner class. Specific scenarios or entire stories can be
included or excluded using meta tags. For example, to only execute the Authentication
story:

HTML, XML and TXT reports are generated after each run and copied both to:

 bdd-security/target/jbehave

as well as timestamped directory in:

 bdd-security/reports

The reports.html file provides a summary of the test execution, how many stories were
included/excluded and how many scenarios passed and failed.

Each story then has its own HTML report describing the scenarios in detail and their
results:

CONCLUSION
Behaviour Driven Development provides a very useful concept for defining and then
executing automated security tests. The improved readability of the specifications make
it suitable for use instead of, or in addition to traditional specification documents. By
implementing security tests in a BDD framework, they can take advantage of the features
of automated testing such as:

• Reliable regression testing

• Low cost retesting

• Integration into existing build tools

One of the biggest advantages is that the security requirements can be defined up front
by non-developers, and then interpreted and implemented by development staff.

The Page Object pattern allows testing code to stay free of navigation code, thereby
improving maintainability and scalability. Page Objects can be re-used by different
teams, but centrally managed and maintained. Changes to the page objects should not
require changes to the tests that use those objects.

Resty-Burp provides a standard client-server interface to the Burp Suite tool using a
REST/JSON API. This allows automated test scripts to use Burp as a security scanner.

The BDD-Security framework ties these concepts together to provide a generic set of
executable security requirements that should be applicable to a wide variety of web
applications. Furthermore, it provides a framework to easily extend the existing tests
with security tests that are specific to the web application under test.

TOOLS
• BDD-Security: http://www.continuumsecurity.net/bdd-intro.html

• Resty-Burp: http://www.continuumsecurity.net/resty-intro.html

ABOUT THE AUTHOR
Stephen de Vries is an independent Security Consultant specialising in application
security and on improving the security practices in software development.

Stephen has worked in the security field since 1998 and has spent the last 12 years
focused on Security Assessment and Penetration Testing at Corsaire, KPMG and
Internet Security Systems. He was a founding leader of the OWASP Java project and
regularly presents talks on secure programming and security testing.

