Entrapment: Tricking Malware with
Transparent, Scalable Malware Analysis

Paul Royal
Georgia Tech Information Security Center
paul@gtisc.gatech.edu

ABSTRACT

The detection of malware analysis environments has become pop-
ular and commoditized. Detection techniques previously reserved
for more sophisticated forms of malware are now available to any
novice cyber criminal. The use of next-generation virtualization-
based malware analysis technologies considerably reduces the num-
ber of possible transparency shortcomings, but still fails to han-
dle pathologically resistant malware instances that will only run on
physical hardware.

Traditionally, the execution of malware on physical (or baremetal)
hardware has been useful for one or a handful of malware samples
of interest. However, this activity was manually driven and time in-
tensive (e.g., infect, study, format, reinstall). This paper proposes a
way to resolve these long-outstanding shortcomings by describing
the design and implementation of a scalable, automated baremetal
malware analysis system, which can be constructed using inexpen-
sive commodity hardware and freely available technologies.

1. INTRODUCTION

Malware is the centerpiece of current threats to the in-
ternet. Examples of malicious software behavior include
the generation of unsolicited email, distributed denial-of-
service attacks, and the theft of personal information and
intellectual property. By aggregating the resources of com-
promised systems around the world, malware is used to con-
struct criminal infrastructure that fulfills the financial goals
associated with organized crime.

Malware analysis is the basis for understanding the in-
tentions of malicious programs. As malware analysis tech-
nologies have evolved, so too have the mechanisms to detect
them and mitigate their effectiveness. The commoditiza-
tion and increasing popularity of analysis environment de-
tections mandates that security practitioners develop mech-
anisms which extract intelligence from environment-aware
malware in a tenable manner.

In an effort to address the intelligence-gathering gap cre-
ated by analysis-resistant malware, this paper presents an
approach to scalable, automated malware analysis that uses
an ensemble of technologies to physicalize virtual machines
and thus does not contain any of the detectable artifacts as-
sociated with virtualization. To ensure the accessibility of
this approach by the general information security commu-
nity, the corresponding system—called NVM Trace—uses inex-
pensive, commodity hardware and open-source software.

The remainder of this paper is organized as follows. Sec-
tion 2 describes ways in which traditional malware analysis
environments are detected by malware and presents previ-
ously unpublished detection attacks. Section 3 introduces

the concept of physical (or baremetal) malware analysis and
details the design and implementation of NVMTrace, a pro-
totype baremetal malware analysis system. Section 4 briefly
provides some concluding remarks.

2. MALWARE ANALYSIS DETECTION

This section describes a few of the ways in which modern
malware detects analysis environments. It introduces exam-
ples of popular environment-aware malware, discusses detec-
tion commoditization, and concludes with the presentation
of previously unpublished environment detection methods.

2.1 Popular Environment-aware Malware

Recent years have witnessed the integration of analysis
environment detection in popular malware. For example,
Conficker—one of the largest botnets ever created—checks for
a relocated Local Descriptor Table [11]. This detection pri-
marily affects more traditional x86 reduced privilege guest
virtual machine monitors (e.g., VMware without Intel VT-x
or AMD SVM).

Newer environments (e.g., KVM) use hardware virtualiza-
tion extensions to operate a guest and thus do not need to
relocate data structures such as the Local Descriptor Table
or Interrupt Descriptor Table. However, these environments
still employ device emulation for non-CPU components and
can thus be detected. As an example, in 2011 variants of
TDL4 began using the WMI Query Language (WQL) to
identify the presence of an emulated hard disk drive [10].

Finally, environment detection can be a useful mechanism
of restraint for malware that would otherwise propagate
indiscriminately. As an example, Bredolab—which spreads
itself through email-uses the DeviceloControl() Windows
API to achieve hard drive emulation detection similar to
TDL4 [8]. By refusing to run in popular virtual environ-
ments (e.g., VMware, Virtual Box, QEMU), Bredolab can
reduce unwanted attention when instances of the malware
are automatically collected through spam traps and pro-
cessed in malware analysis farms.

2.2 Detection Commoditization

While the traditional role of an underground obfuscation
tool is to make the malicious portions of program code ap-
pear as seemingly benign data, more and more versions in-
clude anti-debugging, anti-instrumentation, and virtual ma-
chine detection techniques. Through these inexpensive tools,
analysis detection methods previously reserved for more so-
phisticated forms of malware are now available to any novice
malware author or botnet operator. As an example, RDG

Tejon Crypter, which lets the user detect any or all of ten
popular environments that can be or are used for malware
analysis, is available for less than US $50. A screenshot of
the analysis detection portions of this tool is shown in Fig-
ure 1.

O &nti-SandB oxie

O &ntivvittual PC

[&ntiDa Debugger

O &ntiCwSandbos

O &ntiNarman S andhox

O &ntivvirtualBos

O &ntivdittual Machine (Max)
O &nti-SurBelt SandBo:

[0 Delay Execution lIl

O &nti-énubis

[£nti-ThreatE xpert :--D Redlign Sections (EOF)
O éntidocBos -0 w1

O ntitvMwiare F-H M2) - Redlign

O &ntiDebugger 2 :--D Random EOF Place

O £nti-Panda SandBox O Antitwine [Linue)

O &ntiDeep Freeze O Antitden vtd

O &nti-Retumril v & O £nti-Shadow User Pra

O &nti-al Defender O &ntiClean Slate

[£nti Spstem Safety Wanitor [Disable windows Firewal
O &nti- SandBiow-Fartres

Options

Lo

Step 2 H Step 3 H Step 4 l Step & H Step B H Final Step H About

Figure 1: Analysis environment detections offered
by the RDG Tejon Crypter obfuscation tool.

2.3 Detecting Specific Environments

Transparency shortcomings arise as a fundamental side ef-
fect of virtualizing an environment. The virtualization pro-
cess may include emulating an x86 processor (e.g., QEMU),
software binary translation and data structure relocation
(e.g., VMware), or the use of extensions to the x86 ISA that
create additional rings of privilege (e.g., KVM). Although
their discovery and derivation can be involved, the resulting
detection vulnerabilities are relatively easy to understand.

QEMU, a CPU emulator that serves as the core of popu-
lar malware analysis technologies such as Anubis (and Virt-
ICE [4], presented at Black Hat 2010), is vulnerable to tech-
niques that detect unfaithful CPU emulation. One previ-
ously unpublished example is the execution of the IRETD
instruction with the 0x26 prefix [6]. As this prefix is not
valid for IRETD, attempted execution of the corresponding
instruction should generate a handleable exception. How-
ever, in QEMU, this illegal instruction produces an effect
similar to a successful execution of IRETD, which causes
the program to exit with an unhandled exception. Code for
this detection attack, which works on all tested versions of
QEMU (including 1.0.1), is presented in Appendix A.

Older versions of VMware, whose operation included soft-
ware binary translation, likewise produce detectable differ-
ences in behavior. For example, some VMware products
treat the SYSRET instruction as a NOP when it is executed
in ring 3, instead of correctly raising an exception [6].

Finally, while the use of hardware virtualization exten-
sions (e.g., Intel VT-x) significantly reduces the detection

footprint, that same use can introduce opportunity for de-
tection. Under hardware virtualization extensions, some in-
structions executed in the guest produce VMEXxits that must
be handled by the software hypervisor. Unfortunately, these
exits are not always handled correctly. As an example, guest
execution of the VMREAD instruction on older versions of
KVM (e.g., the version installed by Debian 5.0, codename
Lenny) produces an unhandled VMExit, which results in
termination of the virtual machine.

3. BAREMETAL MALWARE ANALYSIS

This section describes how to perform scalable, automated
malware analysis without virtualization. It includes discus-
sion of the challenges associated with using physical hard-
ware for malware analysis, the technologies used to address
those challenges, and concludes with a description of NVM-
Trace, a prototype software controller that automates the
baremetal malware analysis process.

3.1 Baremetal Challenges and Solutions

Historically, baremetal malware analysis has been used
only for one or a handful of malware samples because of its
time-intensive nature (e.g., infect a physical system, study
sample behavior, format, and reinstall). To be effective
relative to the volume of genuinely new malware released
each day, physical hardware must be used in a scalable, ef-
ficient manner. In addition to the general conveniences lost
through the absence of virtualization, the challenges created
by this mandate include resetting a physical system running
untrusted software, quickly restoring its disk to a sterile con-
dition for the next sample, and ensuring the longevity of the
hardware used.

In order to manage physical system state, hardware with
the Intelligent Platform Management Interface (IPMI [3])
is used. This technology allows a physical system to be re-
motely turned on, off, or reset regardless of that system’s
software state. As anecdotal evidence suggests that a power
supply unit’s duty cycle can quickly be reached when (dur-
ing sample processing) it is turned on and off several hun-
dred times each day, resets are used instead of power on and
power off directives.

Instead of outfitting a physical system with an actual hard
disk, a write-protectable USB stick is used. This stick is
flashed with a modified version of the gpl’ed Preboot eXe-
cution Environment (gPXE [2]), which acts as a lightweight
network bootloader. When the system boots, gPXE is loaded,
and a special piece of metadata returned with the DHCP
lease instructs the system to disklessly boot off of an ATA-
over-Ethernet (AoE [5]) target. This target corresponds to
a Windows XP partition that resides on a Linux host as a
copy-on-write block device. As it is created using the Linux
Device Mapper [1], this block device can be destroyed and
a clean version reassembled in a few hundred milliseconds.

The aggregate use of the technologies described above re-
duces and minimizes the inefficiencies traditionally associ-
ated with baremetal malware analysis. Through IPMI, a
system’s power state can be reliably reset without compro-
mising hardware longevity. Similarly, through gPXE, AoE,
and the Linux Device Mapper, a clean Windows environ-
ment can be quickly constructed for each malware sample.
Finally, as these technologies are freely available, anyone can
leverage them to build baremetal malware analysis systems.

3.2 Prototype Baremetal System [4] Q. N. Anh and K. Suzaki. Virt-ICE: Next Generation

NVMTrace is the implementation of a software controller Debugger for Malware Analysis. In Proc. of Black Hat
that facilitates automated baremetal malware analysis. It USA 2010, 2010.
is used to operate one or more baremetal malware analy- [5] B. Coile and S. Hopkins. AoE (ATA over Ethernet).
sis clusters, each of which comprises one Linux host, eight http://support.coraid.com/documents/AoEr11.txt.
baremetal processing nodes, and a network switch. For de- [6] A. Dinaburg. Personal Correspondence. March 2010.
ployments at the Georgia Tech Information Security Center, [7] A. Dinaburg, P. Royal, M. Sharif, and W. Lee. Ether:
a SuperMicro 5016I-MTF is used as the Linux host, while Malware Analysis via Hardware Virtualization
SuperMicro 5015A-PHFs act as the baremetal processing Extensions. In Proc. of the 15th ACM Conference on
nodes; the switch is a Cisco WS-C2960-24TC-S. Computer and Communications Security, 2008.

The above components were selected carefully in order to [8] S. Fagerland. Anti-VM check through
minimize cost. Fully configured, the Linux host costs about IOCTL_STORAGE_QUERY_PROPERTY.
$1200. Each baremetal processing node, which includes an http://blogs.norman.com/2011/malware-detection-
integrated Intel Atom dual-core processor, is less than $350. team/anti-vm-check-through-
The switch used to network everything together averages ioCt]»StOraﬂgeiqueryiproperty7
$420. Assuming a standard execution timeout, each NVM- 2011.
Trace cluster can process 2,850 malware samples per day. To [9] P. Royal. NVMTrace: Proof-of-concept automated
achieve the desired processing scale, multiple clusters can be baremetal malware analysis framework.
deployed; concurrency across clusters is a managed through http://code.google.com/p/nvmtrace.
a central database. [10] wakfu. TDL4, IDA.

As part of processil?g each malware sa{nple, NVMTrace http://blog.wdkfu.com /post /news_tdl4_ida, 2011.
makes the corresponding baremetal node’s network traffic [11] B. Zdrnja. More tricks from Conficker and VM

and disk contents available for analysis. While not as gran-
ular as some forms of virtualization-based malware analy-
sis (e.g., Ether [7], which offers fine-grained tracing), there
nonetheless exists opportunity to collect a rich amount of

threat intelligence. For example, network traffic can be APPENDIX

mined to extract structured representations of the sample’s A. QEMU DETECTION CODE

network-level activities (e.g., domains queried, HTTP re-

detection.
https://isc.sans.edu/diary.html?storyid=5842, 2009.

quests made, emails sent). Similarly, the baremetal node’s #include <stdlib.h>
disk contents, which exist as a mountable block device on #include <stdio.h>
the Linux host, can be used to identify and record changes to #include <windows.h>
the filesystem (e.g., files created or modified, registry keys
created or changed). These outputs can be subsequently int seh_handler(struct _EXCEPTION_RECORD *exception_record,
analyzed (e.g., using machine learning) to identify malicious void *established_frame,
infrastructure that an analysis-resistant sample would not struct _CONTEXT *context_record,
have contacted if it were processed in a virtual machine. void *dispatcher_context)
{

3 " 1 1 n .

4. CONCLUSION printf("Malicious code here.\n");

; . exit (EXIT_SUCCESS) ;
In order to be effective, malware analysis tools must re- }

main transparent to the samples they analyze. Fulfillment
of this requirement is complicated by analysis-resistant mal-
ware that will only run on physical hardware. In an ef-
fort to handle environment-aware malware without an un-
acceptable loss of efficiency, this paper has presented a way
to perform scalable, automated baremetal malware analy-
sis. To encourage its use by the security community, N VM-
Trace—the corresponding prototype system—has been open
sourced [9].

int main(int argc, char xargv[]) {
unsigned int handler = (unsigned int) seh_handler;
printf ("Attempting QEMU detection.\n");

_-asm("movl %0, %keax\n\t"
"pushl %%eax\n\t"::

Acknowledgements. The author would like to thank r" (handler): "Jeax");

Robert Edmonds, Michael Lee, Artem Dinaburg, and David

" hl %fs:0 t"
Dagon for their advice and feedback. —-ssn("pushl Lfs:0\n\

"movl %esp, %fs:0\n\t");

5. REFERENCES __asm(".byte 0x26, Oxcf");
[1] Device-mapper Resource Page. __asm("movl %esp, %eax");
http://sources.redhat.com/dm. __asm("movl Yeax, %fs:0");
[2] Etherboot/gPXE Wiki. __asm("addl $8, %esp");
http://etherboot.org/wiki/start.
[3] Supermicro Intelligent Management. return EXIT_FAILURE;
http://www.supermicro.com/products/nfo/IPMI.cfm. ¥

