
Entrapment: Tricking
Malware with Transparent,
Scalable Malware Analysis

Paul Royal
paul@gtisc.gatech.edu

Agenda
 Modern Malware

–  Obfuscations, Server-side Polymorphism,
Collection Volume

 Malware Analysis Detection
–  Commoditization, Popularity, Transparency
–  Detecting QEMU, VMware, KVM

 Baremetal Malware Analysis
–  Hardware, Technologies
–  Non-Virtual Machine Trace (NVMTrace), a

PoC Baremetal Malware Analysis Tool
 Conclusion/Future Work

Modern Malware

Modern Malware

 The centerpiece of current threats
on the Internet
– Botnets (spamming, DDOS, etc.)
–  Information Theft
– Financial Fraud

 Used by Real Criminals
– Criminal Infrastructure
– Domain of Organized Crime

Malware Cont’d

 There is a pronounced need to
understand malware behavior
– Threat Discovery and Analysis
– Compromise Detection
– Forensics and Asset Remediation

 Malware authors make analysis
challenging
– Direct financial motivation

Malware Obfuscations

 Pictorial Overview

 Project ZeroPack

ZeroPack

Push EBP
MOV EBP, ESP
SUB ESP, 8
CALL 00401170
…

Program A

Encrypt/
Compress/
Transform

Obfuscation Tool

<Unpack Code>
(
(
(
(
…

Program A’

Machine Code
Transformed

Machine Code
(Appears as Data)

Obfuscations Cont’d

 Server-side Polymorphism
– Automate mutations

 When done professionally: Waledac
Collected on 12/30/2008

Collected on 2/25/2009

Why Automation?

 Vastly increased volume of
samples

 GTISC averages 1M new samples/
month
– Higher for commercial security

organizations
 Volume makes manual analysis

untenable

Malware Analysis
Detection

Malware Analysis Detection

 Environment-aware Malware
– Conficker

•  Checks for relocated LDT
– TDL4

•  Checks for device emulation via WQL
– Bredolab

•  Checks for for device emulation via
DeviceIoControl()

Detection Cont’d

 Analysis tool/environment detection
is a standard, inexpensive option

Transparency Requirements

 Higher Privilege
 No Non-privileged Side Effects
 Same Instruction Execution

Semantics
 Identical Exception Handling
 Identical Notion of Time

Requirements Cont’d
 In-Guest Tools

– No higher privilege
– Non-privileged side effects
– Exception handling issues

 Reduced Privilege Guests (VMware,
etc)
– Non-privileged side effects

 Emulation (QEMU, Simics)
– No identical instruction execution

semantics

Detecting QEMU

 IRETD with 0x26 prefix
#include <stdlib.h>
#include <stdio.h>
#include <windows.h>

int seh_handler(struct _EXCEPTION_RECORD
 *exception_record,

 void *established_frame,
 struct _CONTEXT *context_record,
 void *dispatcher_context)
{
 printf("Malicious code here.\n");
 exit(0);
}

int main(int argc, char *argv[]) {

 unsigned int handler =
 (unsigned int) seh_handler;

 printf("Attempting QEMU detection.\n");

 __asm("movl %0, %%eax\n\t"
 "pushl %%eax\n\t"::
 "r" (handler): "%eax");

 __asm("pushl %fs:0\n\t"
 "movl %esp, %fs:0\n\t");

 __asm(".byte 0x26, 0xcf");

 __asm("movl %esp, %eax");
 __asm("movl %eax, %fs:0");
 __asm("addl $8, %esp");

 return EXIT_SUCCESS;
}

Detecting VMware, KVM
 VMware

– Older versions primarily use binary
software translation
•  SYSRET treated as NOP when executed in

ring 3
 KVM

– Uses hardware virtualization
extensions
•  Certain instructions cause VMExits
•  Older versions terminate with unhandled

exit on guest execution of VMREAD

Why Transparency?

 Analysis environment detection
commoditized, popular

 Detection vulnerability trend does
not suggest decrease over time

 Certain types of detection
vulnerabilities automatically
discoverable

Baremetal
Malware Analysis

Baremetal Challenges

 Conceptual
– Physicalizing virtual machine

 Scalability
– Cost of hardware
– Efficiency of processing

 Automation
– Managing system state
– Ensuring longevity of hardware

Baremetal Cluster Hardware

 Baremetal Controller
– Supermicro 5016I-MTF

•  X3430 Processor, 8GB RAM, 4 x 250GB disks

 Baremetal Non-Virtual Machine (NVM)
– Supermicro 5015A-PHF

•  Integrated Atom processor, 1GB RAM

 Cluster Networking
– Cisco WS-C2960-24TC-S

•  24 10/100Mb, 2 1Gb Ethernet ports

Baremetal Cluster Technologies

 Linux Device Mapper
– Create Copy-on-Write (CoW) block device

 ATA-over-Ethernet (AoE)
– Make CoW device available over network

 g Preboot eXecution Environment
(gPXE)
– Boot NVM into OS on network CoW

device
 Intelligent Platform Management

Interface (IPMI)
– Manage NVM system state

NVMTrace

 Software controller for automated
baremetal malware analysis
– Executes each sample in its own

sterile, isolated non-virtual machine
 Provides access to NVM disk

contents and network traffic
– Use with your favorite network traffic

and disk forensic tools

NVMTrace Corner Cases

 System Clock
– Sample can modify system time
– Modify gPXE to set sane value, sync

immediately prior to sample execution
 NVM PSU Lifetime

– Turning NVM on, off hundreds of
times each day quickly destroys PSU

– Use resets instead

Conclusion

 Analysis environment detection
commoditized, increasingly popular
– Virtualization still a valuable analysis

tool, but can be supplemented
 Advances in hardware make

scalable baremetal malware
analysis possible

 NVMTrace facilitates automated
baremetal malware analysis

Future Work

 AoE Disk Forensics
– Examine controller-NVM AoE network

traffic
– Record disk-level events as they occur

 Arduino Boards
– Connect to NVM via USB
–  Inject keyboard/mouse events
– Activate trigger-based malware

Acknowledgements

 Robert Edmonds
– System design

 Michael Lee
– System implementation

 Artem Dinaburg
– Environment detection

 David Dagon
– System concept

Please fill out your
feedback forms.

Questions?

NVMTrace Source
http://code.google.com/p/nvmtrace

