

VULNEX: www.vulnex.com

Blog: www.simonroses.com

Twitter: @simonroses

ME?

TALK OBJECTIVES

•  Apps are the new Web

•  Peek into current state of Apps

security on Markets

•  Bugs will be revealed but not the
victims

DISCLAIMER

All Apps are considered
safe until proven guilty
by a security review

AGENDA

1.   IT’S	
 ALL	
 ABOUT	
 APPS	

2.   APPS	
 RISKS	

3.   CASE	
 STUDIES	

4.   SECURITY	
 DEVELOPMENT	
 TIPS	

5.   CONCLUSIONS	

1. WHY SMARTPHONE APPS?

•  IDC predict smartphone sales will rise to 982 million in 2015

•  Morgan Stanley Research estimates sales of smartphones will
exceed those of PCs in 2012

•  Average installed apps is 65, but average consumer uses only
15 apps per week

•  In 2011 an average of 701 apps were launched in the UK
version of Apple App Store every day!!!

•  An App for almost anything…

1. APPS BY THE NUMBERS

DOWNLOADED APPS

•  IPhone (February 2011)
 18 Billions

•  Android (December 2011)
 10 Billions

•  WP7: ¿?

1. SMARTPHONE DEVELOPMENT

(1) Parts of C in Java Apps / Full C apps at platform level
(2) Currently only Microsoft but is coming

2. APPS SECURITY RESEARCH

•  Rules of Engagement

Ø 100 apps analyzed from official markets
Ø Each app one hour review top or less
Ø Different categories analyzed:

•  Security
•  Social networking
•  Communications
•  Servers
•  Finance
•  Media
•  Productivity
•  Travel

2. APPS ANALYZED BY NUMBERS

•  Social Networking +2 million

•  Finance 500000

•  Productivity 10 million

•  Security 5 million

•  Media 100000

•  Travel 5 million

2. OWASP MOBILE PROJECT

•  OWASP started in 2010 a mobile
security project

•  Goal: To give developers and security
pros resources to secure mobile Apps

•  Milestones:
– OWASP Top 10 Mobile Risks
– Security development & testing guides
– OWASP GoatDroid Project

2. OWASP MOBILE TOP 10 RISKS

2. VULNEX APPS RISKS

3. CLEAR TEXT SECRETS

•  App fails to protect sensitive information, credentials

•  OWASP Mobile: M1- Insecure Data Storage

3. CLEAR TEXT SECRETS EXAMPLE:
 CREDENTIALS MANAGER (CVE-2011-1840)

3. CLEAR TEXT SECRETS MITIGATION

•  Use encryption and platform secure
features (Information at rest)

•  Set correct file permissions

•  Avoid to save data to external / public
storage areas (mostly SD Cards)

3. INSECURE CHANNELS

•  App sends data over network without
encryption (HTTP vs. HTTPS)
– Watch out for credentials
– PII data (chats, Facebook, etc.)

•  When using encrypted channels,

perform certification validation

•  OWASP Mobile: M3- Insufficient
Transport Layer Protection

3. INSECURE CHANNELS EXAMPLE:
 SOCIAL NETWORKING

3. INSECURE CHANNELS MITIGATION

•  Encrypt sensitive data going out
device (Protect information in transit)

•  Applies to any type of connection

3. DEBUG ENABLED

•  App ships to market with logging or debugging
features enabled

•  Helps attacker to learn Apps internal

•  OWASP Mobile: M8- Side Channel
 Data Leakage

3. DEBUG ENABLED EXAMPLE: FINANCE

3. DEBUG ENABLED EXAMPLE: SERVER

3. DEBUG ENABLED EXAMPLE: FINANCE

3. DEBUG ENABLED MITIGATION

•  For debug code:
– What data is saved to logs?
– Where is the data saved to?

•  Android: Eclipse turns off debuggable

by default on release

3. DATA VALIDATION

•  App fails to perform appropriate data
validation

•  Accounts for many common risks

•  OWASP Mobile: M4- Client Side Injection

3. DYNAMIC SQL EXAMPLE: FINANCE

3. CROSS SITE SCRIPTING (XSS) EXAMPLE:

3. CROSS SITE SCRIPTING (XSS) EXAMPLE, IN
CASE YOU MISSED IT

3. DATA VALIDATION EXAMPLE: MEDIA

3. DATA VALIDATION MITIGATION

•  Validate data for:
–  Valid
–  Safe
–  Length

•  For SQL queries use prepared statements

•  Validate (sanitize) and escape data before
render for web Apps

•  Use white list approach instead black list
approach. Check out OWASP ESAPI libraries

3. PII COMPROMISE

•  App can collect plenty of PII information
– User: username, contacts, bookmarks
– Device: S.O. ver, device name, IMEI, IMSI,

kernel version, UUID
– General info: geolocalization

–  OWASP Mobile Risk Classification: M8 – Side
 Channel Data Leakage

3. PII COMPROMISE MITIGATION

•  Apps don't need to collect all they can, just
what they need

•  If collecting PII:
– Where is that info going?

•  Log files
•  Data storages
•  Network

–  Protect it:
•  Transit
•  At Rest

3. 3RD PARTY LIBRARIES INTEGRATION

•  App integrates 3rd party libraries:

–  Facebook
–  Greendroid
–  Android.ads
–  Apache
–  google.android.apps.analytics
–  Json
– Mozilla
–  Javax
–  xmlrpc.android
–  slf4j

•  If using 3rd party libraries, use proven
libraries

•  What info are these libraries collecting?

•  Do we really need social networking libs
integrated into our finance apps?

3. 3RD PARTY LIBRARIES INTEGRATION
 MITIGATION

3. PERMISSIONS

•  It’s important to understand App
permissions

•  App can compromise device security
and user pocket

3. PERMISSIONS EXAMPLE - SEXYPIC

3. PERMISSIONS EXAMPLE - DROIDDREAM

3. PERMISSIONS MITIGATION

•  User: Apply common sense

•  Developer: Don’t abuse on
permissions request
(overprivileged)

3. WEAK CRYPTO

•  Incorrect use of crypto libraries

•  Implementing custom
bad ass crypto algorithm

•  M9 - Broken Cryptography

3. WEAK CRYPTO EXAMPLE - SECURITY

Default password in code

Encrypt pwd with MD5 (no salt)

Pwd stored in text file with world
perms

File stored in SD card

http://www.md5-hash.com/

3. WEAK CRYPTO MITIGATION

•  Use proven crypto libraries and read
documentation!

•  Forget about your own crypto

•  If using SHA1 or MD5 for passwords
apply salt, even better use SHA-256

•  If using SHA1PRNG set the seed

3. HARDCODED CREDENTIALS

•  App contains credentials embedded in
code

•  Easy to spot by attackers

•  OWASP Mobile: M10- Sensitive
Information Disclosure

3. HARDCODED CREDENTIALS EXAMPLE: SERVER

3. HARDCODED CREDENTIALS MITIGATION

•  Easy, don't write credentials into
code files J

•  What happens when the credentials
change? You need to upload a new
version on the app!

•  Credentials need to use secure data
storages

4. TIPS (I)

•  Apps need to pass Software Security
Assurance practices

•  Threat Modeling your Apps

•  Understand platform and Apps risks

•  Professional security reviews are expensive
but small ISV and single developers can use
available resources

4. TIPS (II)

•  You can add jailbreak detection but is a losing race.
Ø  Android:

•  Check if /system/app/Superuser.apk exist
•  Check if com.noshufou.android.su package exist
•  Can we write to directly to /data/data

Ø  IPhone
•  Call fork()
•  Check if /Applications/Cydia.app exist

Ø  WP7
•  Allowed by Microsoft, http://labs.chevronwp7.com/

•  Code Obfuscation

4. SECURITY RESOURCES

•  Iphone
–  https://developer.apple.com/library/mac/#documentation/

security/Conceptual/SecureCodingGuide/Introduction.html

•  Android
–  http://developer.android.com/guide/topics/security/security.html
–  http://developer.android.com/search.html#q=security&t=5

•  WP7
–  http://msdn.microsoft.com/en-us/library/ff402533(VS.92).aspx

•  OWASP Mobile Security Project
https://www.owasp.org/index.php/OWASP_Mobile_Security_Project

5. SUMMARY

•  Apps are a non stop business

•  Apps are really interesting for attackers, millions of
potential targets

–  Malware authors

•  With a short sample of analyzed Apps some interesting

bugs were discovered

•  Different classes of vulnerabilities but more exist than
showed here

5. NEXT STEPS

•  Automatize Apps analysis
– Static Analysis
– Dynamic Analysis

•  Study cross platform technologies

and their impact on security
– Managed Apps (Mono)
– Are bug cross platform?

 5. Q&A

•  Please fill out the black hat feedback
form

•  Thanks!

