
Preventing “Oh Shit”
Moments for €20 or

Less

Philip A. Polstra, Sr.

University of
Dubuque

•  Why this talk?

•  Brief history of USB

•  How does USB work?

•  It’s all descriptors and endpoints

•  Bulk-only Mass Storage Devices

•  Keeping your toys intact

•  Microcontrollers are fun (and cheap)

•  How can I have more fun with USB?

Roadmap

•  USB flash drives have become defacto standard
for storing and exchanging info

•  Everyone uses them, but few understand them
•  Having your Katana drive deleted by antivirus

sucks
•  A cheap way of write-blocking your thumb drives

doesn’t suck

Why this talk?

Brief History or USB

•  Non-universal serial, PS/2 ports, & LPT
•  1996 USB 1.0 (1.5 or 12 Mbps)
•  1998 USB 1.1
•  2000 USB 2.0 (1.5, 12, or 480 Mbps)
•  Long pause
•  2008 USB 3.0 (up to 5 Gbps)

HOW DOES USB WORK?

Hardware

•  Simple 4-wire connection (power, ground, 2 data wires)

•  Cabling prevents improper connections

•  Hot pluggable

•  Differential voltages provide greater immunity to noise

•  Cable lengths up to 16 feet are possible

Pin Name Cable color Description

1 VBUS Red +5 V

2 D− White Data −

3 D+ Green Data +

4 GND Black Ground

Software

•  Automatic configuration

•  No settable jumpers

•  Enumeration

•  Standard device classes with corresponding drivers
–  HID

–  Printer

–  Audio

–  Mass Storage

Connecting a Device
•  Device is connected

•  Hub detects

•  Host (PC) is informed of new device

•  Hub determines device speed capability as indicated by location of pull-up resistors

•  Hub resets the device

•  Host determines if device is capable of high speed (using chirps)

•  Hub establishes a signal path

•  Host requests descriptor from device to determine max packet size

•  Host assigns an address

•  Host learns devices capabilities

•  Host assigns and loads an appropriate device driver (INF file)

•  Device driver selects a configuration

IT’S ALL DESCRIPTORS AND
ENDPOINTS

Endpoints

•  The virtual wire for USB communications

•  All endpoints are one way (direction relative to host)

•  Packet fragmentation, handshaking, etc. done by hardware (usually)

•  High bit of address tells direction 1=in 0=out

•  Types of endpoints

–  Control

–  Bulk transport

–  Interrupt

–  Isochronous

Control Endpoints

•  Primary mechanism for most devices to communicate
with host

•  Every device must have at least one in and out control
endpoint EP0

•  Device must respond to standard requests
–  Get/set address, descriptors, power, and status

•  Device may respond to class specific requests

•  Device may respond to vendor specific requests

Control Endpoints (continued)

•  May have up to 3 transport stages: Setup, Data, Status

•  Setup stage

–  Host sends Setup token then data packet containing setup request

–  If device receives a valid setup packet, an ACK is returned

–  Setup request is 8 bytes

•  1st byte is bitmap telling type of request & recipient (device, interface,
endpoint)

•  Remaining bytes are parameters for request and response

•  Data stage (optional) – requested info transmitted

•  Status stage – zero length data packet sent as ACK on success

Interrupt & Isochronous Endpoints

•  Interrupt endpoints
–  Used to avoid polling and busy waits

–  Keyboards are a good example

–  Usually low speed (allows for longer cables, etc.)

•  Isochronous endpoints
–  Guaranteed bandwidth

–  Used primarily for time-critical apps such as streaming
media

Bulk Endpoints

•  No latency guarantees

•  Good performance on an idle bus

•  Superseded by all other transport types

•  Full (8-64 byte packets) & high speed (512 byte packets)
only

•  Used extensively in USB flash drives (and external hard
drives)

•  Transactions consist of a token packet, 0 or more data
packets, and an ACK handshake packet (if successful)

Descriptors

•  They describe things (duh!)

•  Have a standard format
–  1st byte is the length in bytes (so you known when you’re done)

–  2nd byte determines type of descriptor

–  Remaining bytes are the descriptor itself

•  Common types
–  Device: tells you basic info about the device

–  Configuration: how much power needed, number of interfaces, etc.

–  Interface: How do I talk to the device

–  Endpoint: Direction, type, number, etc.

–  String: Describe something in unicode text

Device Descriptor
Offset	
 Field	
 Size	
 Value	
 Description	

0	
 bLength	
 1	
 Number	
 18 bytes	

1	
 bDescriptorType	
 1	
 Constant	
 Device Descriptor (0x01)	

2	
 bcdUSB	
 2	
 BCD	
 0x200	

4	
 bDeviceClass	
 1	
 Class	
 Class Code	

5	
 bDeviceSubClass	
 1	
 SubClass	
 Subclass Code	

6	
 bDeviceProtocol	
 1	
 Protocol	
 Protocol Code	

7	
 bMaxPacketSize	
 1	
 Number	
 Maxi Packet Size EP0 	

8	
 idVendor	
 2	
 ID	
 Vendor ID	

10	
 idProduct	
 2	
 ID	
 Product ID	

12	
 bcdDevice	
 2	
 BCD	
 Device Release Number	

14	
 iManufacturer	
 1	
 Index	
 Index of Manu Descriptor	

15	
 iProduct	
 1	
 Index	
 Index of Prod Descriptor	

16	
 iSerialNumber	
 1	
 Index	
 Index of SN Descriptor	

17	
 bNumConfigurations	
 1	
 Integer	
 Num Configurations	

Configuration Descriptor (header)
Offset Field Size Value Description

0 bLength 1 Number Size in Bytes

1 bDescriptorType 1 Constant 0x02

2 wTotalLength 2 Number Total data returned

4 bNumInterfaces 1 Number Num Interfaces

5 bConfigurationValue 1 Number Con number

6 iConfiguration 1 Index String Descriptor

7 bmAttributes 1 Bitmap b7 Reserved, set to 1.
b6 Self Powered
b5 Remote Wakeup
b4..0 Reserved 0.

8 bMaxPower 1 mA Max Power in mA/2

Interface Descriptor
Offset Field Size Value Description

0 bLength 1 Number 9 Bytes

1 bDescriptorType 1 Constant 0x04

2 bInterfaceNumber 1 Number Number of Interface

3 bAlternateSetting 1 Number Alternative setting

4 bNumEndpoints 1 Number Number of Endpoints used

5 bInterfaceClass 1 Class Class Code

6 bInterfaceSubClass 1 SubClass Subclass Code

7 bInterfaceProtocol 1 Protocol Protocol Code

8 iInterface 1 Index Index of String Descriptor

Endpoint Descriptor

Offset Field Size Value Description

0 bLength 1 Number Size of Descriptor (7 bytes)

1 bDescriptorType 1 Constant Endpoint Descriptor (0x05)

2 bEndpointAddress 1 Endpoint b0..3 Endpoint Number.
b4..6 Reserved. Set to Zero
b7 Direction 0 = Out, 1 = In

3 bmAttributes 1 Bitmap b0..1 Transfer Type 10 = Bulk
b2..7 are reserved. I

4 wMaxPacketSize 2 Number Maximum Packet Size

6 bInterval 1 Number Interval for polling endpoint data

String Descriptors

Offset Field Size Value Description

0 bLength 1 Number Size of Descriptor in Bytes

1 bDescriptorType 1 Constant String Descriptor (0x03)

2 bString n Unicode Unicode Encoded String

Note: String 0 is a special case that lists available languages.
Most common is 0x0409 – U.S. English

BULK-ONLY MASS STORAGE
DEVICES

Now that we have learned a little about general devices, without
further delay…

USB Flash Drives

•  Hardware
•  Software
•  Filesystems
•  Talk to a flash drive

Hardware

Hardware (continued)

•  Typically utilize NAND flash memory

•  Memory degrades after 10,000 write cycles

•  Most chips not even close to high-speed USB speed (480 Mbps)

•  Can only be written in blocks (usually 512, 2048, or 4096 bytes)

•  Chips are somewhat easily removed from damaged drives for
forensic recovery

•  Some controllers have JTAG capability which can be used for
memory access

•  Some controller chips steal some flash memory for themselves

Hardware (continued)

•  Nearly all flash drives present themselves as SCSI hard drives

•  “Hard drive” sectors are typically 512, 2048, or 4096 bytes

•  SCSI transparent command set is used

•  Most drives are formatted as one partition or logical unit

–  Additional logical units can hide info from Windows machines

•  Reported size may not match actual media size

–  Info can be hidden in higher sectors

–  Some cheap drives are out there that grossly over report size

–  A typical 512 byte sector needs 16 bytes for error correction

Software

•  Usually implemented in firmware within specialized controller chips

•  Must:

–  Detect communication directed at drive

–  Respond to standard requests

–  Check for errors

–  Manage power

–  Exchange data

Filesystems

•  Most preformatted with FAT or FAT32

•  NTFS

•  TrueFFS

•  ExtremeFFS

•  JFFS

•  YAFFS

•  Various UNIX/Linux file systems

Talking to a Flash Drive
•  Bulk-Only Mass Storage (aka BBB) protocol used

–  All communications use bulk endpoints

–  Three phases: CBW, data-transport (optional), CSW

–  Commands sent to drive using a Command Block Wrapper
(CBW)

–  CBW contains Command Block (CB) with actual command

–  Nearly all drives use a (reduced) SCSI command set

–  Commands requiring data transport will send/receive on bulk
endpoints

–  All transactions are terminated by a Command Status Wrapper
(CSW)

Command Block Wrapper
typedef struct _USB_MSI_CBW {

 unsigned long dCBWSignature; //0x43425355 “USBC”

 unsigned long dCBWTag; // associates CBW with CSW response

 unsigned long dCBWDataTransferLength; // bytes to send or receive

 unsigned char bCBWFlags; // bit 7 0=OUT, 1=IN all others zero

 unsigned char bCBWLUN; // logical unit number (usually zero)

 unsigned char bCBWCBLength; // 3 hi bits zero, rest bytes in CB

 unsigned char bCBWCB[16]; // the actual command block (>= 6
bytes)

} USB_MSI_CBW;

Command Block
•  6-16 bytes depending on command

•  Command is first byte

•  Format Unit Example:
typedef struct _CB_FORMAT_UNIT {

 unsigned char OperationCode; //must be 0x04

 unsigned char LUN:3; // logical unit number (usually zero)

 unsigned char FmtData:1; // if 1, extra parameters follow command

 unsigned char CmpLst:1; // if 0, partial list of defects, 1, complete

 unsigned char DefectListFormat:3; //000 = 32-bit LBAs

 unsigned char VendorSpecific; //vendor specific code

 unsigned short Interleave; //0x0000 = use vendor default

 unsigned char Control;

} CB_FORMAT_UNIT;

Command Block (continued)
•  Read (10) Example:
typedef struct _CB_READ10 {

 unsigned char OperationCode; //must be 0x28

 unsigned char RelativeAddress:1; // normally 0

 unsigned char Resv:2;

 unsigned char FUA:1; // 1=force unit access, don't use cache

 unsigned char DPO:1; // 1=disable page out

 unsigned char LUN:3; //logical unit number

 unsigned long LBA; //logical block address (sector number)

 unsigned char Reserved;

 unsigned short TransferLength;

 unsigned char Control;

} CB_READ10;

Command Block (continued)
•  Some Common SCSI

Commands:

 FORMAT_UNIT=0x4, //required

 INQUIRY=0x12, //required

 MODE_SELECT6=0x15,

 MODE_SELECT10=0x55,

 MODE_SENSE6=0x1A,

 MODE_SENSE10=0x5A,

 READ6=0x08, //required

 READ10=0x28, //required

 READ12=0xA8,

 READ_CAPACITY10=0x25, //required

 READ_FORMAT_CAPACITIES=0x23,

 REPORT_LUNS=0xA0, //required

 REQUEST_SENSE=0x03, //required

 SEND_DIAGNOSTIC=0x1D, //required

 START_STOP_UNIT=0x1B,

 SYNCHRONIZE_CACHE10=0x35,

 TEST_UNIT_READ=0x00, //required

 VERIFY10=0x2F,

 WRITE6=0x0A, //required

 WRITE10=0x2A,

 WRITE12=0xAA

Command Status Wrapper

•  Read Sense command can be used for details on failed operations

typedef struct _USB_MSI_CSW {

 unsigned long dCSWSignature; //0x53425355 “USBS”

 unsigned long dCSWTag; // associate CBW with CSW response

 unsigned long dCSWDataResidue; // difference between requested
data and actual

 unsigned char bCSWStatus; //00=pass, 01=fail, 02=phase error, reset

} USB_MSI_CSW;

HOW DO I KEEP MY TOYS
INTACT?

Now that we know how bulk-only mass storage devices work…

Blocking Write Operations

•  Free ways
–  Some flash drives have write-protect switches

(somewhat rare)

–  HKEY_LOCAL_MACHINE\SYSTEM
\CurrentControlSet\Control\ StorageDevicePolicies\
WriteProtect

•  Blocks writing to ALL USB devices

•  Non-free ways
–  Commercial write-blockers (seem to be pricey)

–  Microcontroller-based device (discussed next)

MICROCONTROLLERS ARE
FUN (AND CHEAP)

Enough background. Let the fun begin…

Fun with Microcontrollers

•  Chip Choice
•  A Microcontroller-Based Write Blocker

Chip Choice Options
•  AVR (as found in Arduino family)

–  Cheap

–  Well understood

–  Loads of code out there

–  Too underpowered to do USB without external components (<20MHz)

•  PIC family

–  Relatively cheap

–  Programming somewhat more involved than AVR

–  Newer chips SMD only, not easy DIP package

–  Some USB device code, but not host code out there

Chip Choice Winner
•  None of the above

•  FTDI Vinculum II

–  Relatively new chip

–  A little faster than AVRs (48 MHz)

–  Real-time multi-threaded OS

–  Libraries for several standard USB classes

•  BOMS is one – but we can’t use it for this project, unfortunately

–  Unlike AVR, different pin packages differ only with GPIO lines available

•  Same flash memory

•  Same RAM

Chip Choice
•  FTDI Vinculum II dual USB host/slave controller

–  2 full-speed USB 2.0 interfaces (host or slave capable)

–  256 KB E-flash memory

–  16 KB RAM

–  2 SPI slave and 1 SPI master interfaces

–  Easy-to-use IDE

–  Simultaneous multiple file access on BOMS devices

•  Several development modules available

–  Convenient for prototyping (only SMD chips available)

–  Cheap enough to embed in final device

–  One format is Arduino clone (Vinco)

Chip Choice (continued)

Chip Choice (continued)

Chip Choice (continued)

Chip Choice (continued)

Package A - Small & only 4 Pins to Solder

Package B – Slightly Larger-No Soldering

Microcontroller-Based Write Blocker
•  Need to block bad command blocks that could modify our

drive

•  If we are lazy we just block the “bad” commands

•  Best practice and future proofing would dictate white
listing instead

•  All VNC2 chips have the same memory and flash
–  Only difference is number of GPIO lines available

–  Same software will almost run on both packages

•  Vinco board requires toggling a GPIO line to provide power to host
port

Write Blocker High-Level Design
•  One thread associated with slave port to appear as a BOMS device

–  One thread watches control endpoint and services requests from host

•  One thread associated with the host port for talking to flash drive

–  Thread enumerates the device and gets endpoints. Then periodically
checks to see if the drive is still there

•  Main thread bridges slave and host

–  Non-CBW packets (data packets) are passed through to host port

–  Whitelisted CBWs are also passed on to host port

•  USB Host & Slave drivers built in to VOS create additional threads

–  Trying to do this yourself-> more complex & no improvement

Allowed Commands
 FORMAT_UNIT=0x4, //required

 INQUIRY=0x12, //required

 MODE_SELECT6=0x15,

 MODE_SELECT10=0x55,

 MODE_SENSE6=0x1A,

 MODE_SENSE10=0x5A,

 READ6=0x08, //required

 READ10=0x28, //required

 READ12=0xA8,

 READ_CAPACITY10=0x25, //required

 READ_FORMAT_CAPACITIES=0x23,

 REPORT_LUNS=0xA0, //required

 REQUEST_SENSE=0x03, //required

 SEND_DIAGNOSTIC=0x1D, //required

 START_STOP_UNIT=0x1B,

 SYNCHRONIZE_CACHE10=0x35,

 TEST_UNIT_READ=0x00, //required

 VERIFY10=0x2F,

 WRITE6=0x0A, //required

 WRITE10=0x2A,

 WRITE12=0xAA

The Main Thread
•  Waits for CBW packets to arrive on Bulk Out endpoint

•  Calls appropriate handler function based on command

–  Whitelisted commands:

•  Forward CBW to drive

•  Perform Data phase (if any) with drive and forward to PC

•  Received CSW from device and forward to PC

–  Non-whitelisted commands:

•  ACK CBW

•  Fake Data phase (if any)

•  Return CSW to PC

–  Some commands return success because Windows is unhappy with failures

Main Loop

usbSlaveBoms_readCbw(cbw, slaveBomsCtx);

switch (cbw->cb.formated.command)

{

 case BOMS_INQUIRY:

 handle_inquiry(cbw);

 break;

 …

}

Example Handler
void handle_inquiry(boms_cbw_t *cbw)

{

 unsigned char buffer[64];

 unsigned short responseSize;

 boms_csw_t csw;

 if (forward_cbw_to_device(cbw))

 {

 if (responseSize = receive_data_from_device(&buffer[0], 36))

 {

 forward_data_to_slave(&buffer[0], responseSize);

 if (receive_csw_from_device(&csw))

 {

 forward_csw_to_slave(&csw);
 }

 }

 }

}

Complications

•  Windows & Linux treat drives differently

–  Windows will try to look for and autoplay media

–  Windows doesn’t appear to see other than first LUN

–  Early prototype experience

•  Worked fine under Linux

•  Caused BSoD on Windows (exploit?)

–  Linux seems to pull in a lot of data up front

–  Windows misbehaves if you correctly fail some commands such as Write

Recommend Usage

•  Block writes on Windows

–  Allows you avoid risking damaging your flash drives loaded with tools

•  For forensics examination Linux is recommended

–  Windows might miss or mishandle upper LUNs

–  Linux has all the non-FAT filesystems you might encounter

–  You were probably running Linux already

–  Remember that even plugging in a drive will change timestamps!

•  This can hamper your investigation

•  This can contaminate evidence if you end up in court

IT’S DEMO TIME!
And now what you really wanted to see…

References
•  USB Complete: The Developers Guide (4th ed.) by Jan

Axelson
•  USB Mass Storage: Designing and Programming

Devices and Embedded Hosts by Jan Axelson
•  http://www.usb.org
•  http://www.ftdichip.com for more on VNC2
•  http://seagate.com for SCSI references
•  Embedded USB Design by Example by John Hyde
•  My 44Con USB Flash Drive Forensics Video http://

www.youtube.com/watch?v=CIVGzG0W-DM
•  All schematics and source code are available on

request via e-mail to ppolstra@dbq.edu

Lessons Learned
•  Sometimes straightforward ugly design is best

–  Adding more threads didn’t work out

•  Complexity increased

•  No real performance difference

•  Introduced possible timing issues & crashes

–  Quasi object-oriented design didn’t work out either

•  Differences in commands made generalized handler tricky

•  Micocontrollers are not the same as desktop CPUs

–  Not a lot of RAM so have to watch function calls and stack usage

–  Thread model is not as sophisticated

•  Open source makes the world better

–  If FTDI libraries were open source, this project would have been easier

Questions?

PLEASE REMEMBER TO PROVIDE
FEEDBACK ON THIS TALK

