
 1

Secure in 2010? Broken in 2011!

Matias Madou

Principal Security Researcher

Abstract

In 2010, a security research firm stumbled on a couple of

vulnerabilities in Apache OFBiz, a widely used open source

enterprise automation software project. As a proof of

concept, it posted a video showing how easy it was to

become an administrator exploiting one of the XSS issues

in the application. To remain credible, the OFBiz team was

forced to invest in security. In fact, as a result of digging

into its bug database, the OFBiz team gathered security

knowledge from different sources to make its product

better, and made a big push to resolve the known issues in

early 2010. Barely a year later, the exact same code base

thought to be secure is again seriously broken. This

scenario actually occurs quite frequently for several

reasons.

In this Whitepaper, we discuss:

• The experiment

• The test application

• What’s new in 2011

o New vulnerabilities

o New assessment techniques

• Continued testing

• Conclusion

 2

 The experiment

While investigating our gray-box analysis technique, we

wanted to gather some empirical data to prove that we

were taking a new approach to finding security issues.

After choosing our test application and beginning our

investigation, we actually found more interesting results

than what we had expected. We also wound up conducting

a white-box and black analysis to find out more about the

security of the application, and how that compared to the

state of the application only a year ago.

The test application

We looked for an application which was written in Java or

.NET without taking the underlying packages into

consideration. Most importantly, we had to choose an

application that was widely used and one in which security

improvements had been implemented.

After evaluating a dozen open source Enterprise Resource

Planning (ERP) and/or Customer Relationship

Management (CRM) packages, we chose the widely used

Apache OFBiz for our experiment. Apache OFBiz is ranked

the #1 Open Source ERP Software Application1, and we

saw additional value in Apache OFBiz for various reasons.

First of all, a long list of well known end users like 1-800-

flowers, Olympus.de, united.com and bt.com are using this

software. But on top of that, the framework itself is used in

various other products and projects. One of the most

known ERP/CRM solutions based on Apache OFBiz is

OpenTabs, which is used by enterprises like Toyota and

HoneyWell. Needless to say our test application is well

used and integrated in today’s businesses.

1 http://www.erpsoftware360.com/erp-open-source.htm

 3

The security of the Apache OFBiz solution seemed to have

undergone some scrutiny. By searching the web, it

becomes clear that numerous vulnerabilities like XSS were

reported and fixed from early on in the Apache OFBiz

history. The most notable security incident was in 2010

when a security research firm discovered a couple of

vulnerabilities in Apache OFBiz and posted a proof of

concept video showing how easy it was to become an

administrator exploiting one of the XSS issues in the

application. The OFBiz team took action and fixed the

security issues. In fact, as a result of digging into its bug

database, the OFBiz team gathered security knowledge

from different sources to make its product better, and

made a push to resolve the known issues in early 2010. So

from a security perspective, the application we’ve taken

for our experiment has undergone security improvements.

What’s new in 2011?

Both white hats and black hats seem to be coming up with

new ways to break applications. In most cases, new rules

can be added to current assessment techniques to find

these new categories of vulnerabilities. Here, we’ll discuss

a problem found in the SUN JVM which can lead to a

Denial-of-Service.

Second, new assessment techniques can find more of the

same. Where the typical white-box and black-box

techniques can find a big chunk of the vulnerabilities, a

novel assessment technique called gray-box analysis takes

the best of both worlds and finds additional exploits. We’ll

also discuss how the new gray-box analysis finds exploits

of well known vulnerability categories.

a) New vulnerabilities

2011 had barely begun when a problem was discovered in

the SUN JVM. CVE-2010-4476 points out that the Java

Runtime Environment hangs when converting

“2.2250738585072012e-308” to a binary floating-point

number. More concrete, when the mentioned value is

given as the first parameter in the API

Double.parseDouble(param1), the JVM goes in to an

infinite loop as it is oscillating between DBL_MIN (0x1p-

1022), and the largest subnormal double-precision

floating-point number (0x0.fffffffffffffp-1022) 2. While

chances are fairly slim that this value appears in regular

java applications, it’s obvious that an attacker can inject

this special value in the right place in order to hang the

application.

Interestingly enough, this problem was not reported for

the first time in 2011. Dating back as early as 2001, there

were bugs revealing this problem. At that time, the bug

was not considered a 4-low priority, as its consequences

were not well understood. When it became clear that

application servers like Apache Tomcat were remotely

vulnerable-- regardless of the web applications they were

running, the bug got fixed in record time.

While the root cause of this problem lies in the SUN JVM,

some enterprise environments cannot quickly upgrade to

the latest JVM. These enterprises must also rely on other

mechanisms to reduce their exposure. As most enterprises

already use WAF technology, new rules can be added to

protect against this type of attack. However, as always, it’s

important not to forget any pattern. As the CVE only

mentions “2.2250738585072012e-308”, it’s incorrect to

only protect against this pattern. The rule should also

protect against “0.22250738585072012e-307” up till

“0.00…0022250738585072012”. Some comments on the

web also suggested that there are other tiny values that

can trigger this behavior too, so how to protect against

these?

2 http://www.exploringbinary.com/java-hangs-when-

converting-2-2250738585072012e-308/

 4

A second way to remediate is patching the exposed

applications. The Apache Tomcat problem was quickly

remediated by pushing out a fixed 5.5, 6.0 and 7.0 version.

The solution is a white-listing approach, where they only

accept strings with a certain length, making it impossible

for the magic value to go in the infinite loop.

Now, when looking in Apache OFBiz, we found numerous

of these problems using different analysis techniques.

Doing a simple grep of “Double.parseDouble” on the

Apache OFBiz application reveals the API is used some 25

times. However, that does not say anything about the

actual paths from a source which can be used by an

attacker to a vulnerable sink. By means of static analysis,

(white-box analysis), such smarter analysis can be done.

We scanned the code and found many of these paths. For

example, check out Figure 1: there is an analysis trace from

the Input class to the ShoppingCartItem. As static analysis

points out, paths that are possible in theory, doesn’t mean

they can be taken in practice. In this case, however, the

analysis trace can be executed in practice as well.

Figure 1: Example of a ShoppingCartItem

While static analysis does not have the “show-me” factor,

penetration testing tools (black-box analysis) do. When

attacking Apache OFBiz with a penetration testing tool

configured to find the Denial-of-Service problems, the

penetration testing tool takes the application down pretty

quickly. As such, there is plenty of opportunity to launch a

Denial-of-Service attack by exploiting this problem. A list

of example URLs:
http://yourofbiz.com/ecommerce/control/modi

fycart (update_0, update_1, …)

http://yourofbiz.com/ecommerce/control/addit

em/showcart (quantity, add_product_id)

http://yourofbiz.com/ecommerce/control/addit

em/quickadd (quantity)

http://yourofbiz.com/ecommerce/control/addit

em/keywordsearch (quantity)

http://yourofbiz.com/ecommerce/control/addit

em/advancedsearch (quantity)

http://yourofbiz.com/ecommerce/control/addit

em/showPromotionDetails (quantity)

http://yourofbiz.com/ecommerce/control/addit

em/product (quantity,add_amount)

http://yourofbiz.com/ecommerce/control/addit

em/lastViewedProduct (update_0)

http://yourofbiz.com/ecommerce/control/addit

em/showForum (quantity)

http://yourofbiz.com/ecommerce/control/addit

em/category (quantity)

http://yourofbiz.com/ecommerce/control/addit

em/main (quantity)

http://yourofbiz.com/ecommerce/control/addit

em (quantity)

http://yourofbiz.com/ecommerce/control/addit

em/setDesiredAlternateGwpProductID (…)

 5

b) New assessment techniques

Black-box analysis such as penetration testing and white-

box analysis such as static analysis are common these days

as enterprises take security seriously. The strength of

Black-box analysis is the evidence such tool can provide to

show that an issue is exploitable and the application is

really broken. The weakness of such tool is it fails to find

inputs to test all the executable paths through the

application which results in testing only a portion of the

application instead of the entire application. White-box

analysis’ strength and weakness are just the other way

around: the analysis is thorough while lacking the

convincing aspect of why an issue should really be fixed.

Gray-box analysis is about marrying the two analyses

techniques and overcoming each other’s weaknesses. The

goal is to find more issues and fix the issues faster. To find

more issues, white-box techniques are used to make sure

the coverage is satisfying. To fix issues faster, information

from inside and outside the application is given to prove

that the issue is real and information is provided as to

where the issue can be fixed.

Gray-box analysis starts off as black-box analysis where

attacks are sent out to a running application. In addition, a

monitor component is installed in the running application

which observes the incoming attacks and the execution of

the application. We call the attacking component the

Dynamic Analysis and the runtime component the Real-

Time Analysis. By observing the executed code, the

monitor can give real time feedback to the Dynamic

Analysis that is attacking the application.

In essence, the Real-Time Analysis component can give

multiple hints to the Dynamic Analyzer. First, the Real-

Time Analyzer can tell the Dynamic Analyzer the attack

surface. It may be the case that not all pages in the

application have a link from the main application. Normal

black-box analysis has a minimal chance of penetrating

these hidden pages. Now, with gray-box analysis, it’s trivial

for the monitor to tell about these pages which we call the

attack surface. Second, the Real-Time Analyzer can

describe the exact consequence of an attack performed by

the Dynamic Analyzer, while in a black-box analysis

scenario, the success of an attack was determined based on

what ,(if anything at all), was coming back to the black-box

analyzer. Now, the Real-Time Analyzer knows if an attack

was successful or not, and can transfer that piece of

information back to the Dynamic Analyzer.

In the case of our test application, Apache OFBiz, we

analyzed the increase in attack surface, the effect of this

increase on the findings, and the number of findings in

general compared to pure black analysis. First, it was

obvious that the number of scanned directories improved

dramatically. The number of scanned directories was

3.5Xpure black box analysis. These new directories were

the direct reason of a dozen new Cross-Site Scripting (XSS)

vulnerabilities in Apache OFBiz. Where the pure black-box

analysis didn’t find the “webslinger” directory, the gray-

box analysis did scan this directory and found five new XSS

issues.

From an attacker perspective, at least five new URLs could

be created to get the XSS in the “webslinger” directory.

However, with the information we saw in the Real-Time

Analyzer component, the analyzer determined that all five

issues had one root cause in the code. Now, really detailed

information can be given back to the developer to fix this

problem. In gray-box analysis, the five URLs together with

line of code details where the problem occurs in the

application can be transferred to the developer. In this

case, the developer fixing this problem in the code has to

fix one root issue in code and will as such reduce the

exposure of the application to XSS by five issues.

 6

Continues testing

Let’s come back to the root question, how could the team

working on this application prevent the application being

broken in 2011? The only solution is continuous,

automated testing of the application, even if that

application’s code is frozen and in production. Companies

with a good security initiative do continuous testing of

their applications while they are under development,

however, once someone signs off for the security in the

applications and they are in production, the applications

may go out of that cycle of continuous testing. From that

moment on, companies rely on bandages in the form of a

WAF to “fix” problems when they appear. In most cases,

the code is fixed when breached, so the code is always

patched too late.

Conclusion

Applications in production need continuous, automated

testing with the latest security knowledge. When a new

vulnerability comes to light, it’s important to scan the

applications in production for these problems. Similarly,

when analysis techniques are available which take a

different approach, it may be a good idea to scan the

applications in production to see if they have kept up with

the latest vulnerability finding techniques. The attackers

can use these techniques too, which means they know

more about the applications you’re running!

 7

About the author

Matias Madou is Principal Security Researcher for HP

Enterprise Security Products (former Fortify). He works

on technical projects, ranging from kicking off an insider

threat project, to spearheading new protection

mechanisms in the runtime tools, to leading the

correlation and integration of current HP Fortify security

solutions and has been instrumental in defining and

refining the HP Fortify solutions offerings.

When he’s away from his desk, he’s serving as an

instructor to advanced training courses, helping the field

on short notice or presenting at anchor industry

conferences including: DefCon, RSA, BruCon, Owasp, and

more.

He holds a Ph.D. in computer engineering from Ghent

University, where he studied application security through

program obfuscation to hide the inner workings of an

application. During his Ph.D., he collaborated with top

research and industry players in the field of program

obfuscation, which has helped mold the research he

continues to work on today.

References

• Real-Time Hybrid Analysis: Find More, Fix Faster

by Brian Chess

