
One-byte Modification for 
Breaking Memory Forensic 

Analysis 
 

Takahiro Haruyama / Hiroshi Suzuki 

Internet Initiative Japan Inc. 

for submission 



• Memory Forensics Overview 

– Memory Acquisition 

– Memory Analysis 

• Previous Works: Anti Memory 
Forensics 

• Proposed Anti Analysis Method 

• Improvement Plans 

• Wrap-up 

 

Summary 

2 



MEMORY FORENSICS OVERVIEW 
 

3 



• Analyzing volatile data is important to detect threats 
quickly 
– increasing amounts of disk data 
– anti disk forensic methods used by malwares 

• Memory forensics became popular over the last few 
years 

• 2 steps for memory forensics 
– memory acquisition and memory analysis 

4 

What’s Memory Forensics?  

Target Machine 

Investigator’s Machine 

Memory Image File 

1. Acquire RAM data 
as an image file 

2. Parse and analyze 
the image offline 



• Offline parsing a memory image doesn’t use 
system APIs 

• Memory forensics can get  
– unallocated data (e.g., terminated process) 
– data hidden by malware (e.g., hidden process) 

5 

Why Memory Forensics? 

Live  
Response 

Tool 

Memory Forensic 
Analysis Tool 

Running Process 

Hidden Process 

Terminated Process 

Allocated 

Unallocated 

Windows 
API 

Parse binary image and 
extract information from it  

Get information 
through system 
API 



• Raw Image Acquisition 
– HBGary FastDump Pro [1] 

– Guidance WinEn [2] 

– MoonSols Windd [3] 

• Crash Dump Image Acquisition 
– MoonSols Windd 

• Memory Image Conversion 
– MoonSols Windows Memory Toolkit [3]  

6 

Some Formats / Acquisiton 
Tools 

Memory Image File 

CPU Register Included 

Crash 

Dump 
Hibernation 

Not Included 

Raw 



Difference between Raw Image and 
Crash Dump  

• Crash dump file 
doesn’t include 
– 1st Page 

– Pages reserved by 
devices 

 

Run[0]  
BasePage = 0x1, PageCount 

= 0x9e 

Run[1] 
BasePage = 0x100,  
PageCount = 0xeff 

Run[2] 
BasePage = 0x1000,  
PageCount = 0xeef0 

Run[3] 
BasePage = 0xff00, PageCount = 

0x100 

1st Page (BIOS 
Reserved) 

Address Space  
Reserved by Devices 
(Not Included in crash dump) 

Physical 
Memory 
Address 
Space 
(e.g.,  
256MB  
RAM) 
 

7 



Evaluation of Memory Acquisition 
Tools  

• Can raw image acquisition tools get 1st 
page and device-reserved pages? [4] 

– WinEn 

– Win32dd /c 0 

• Memory Content (/c) option 

– Caution: /c 0 option may cause BSOD on x64 machine 

WinEn FDPro Win32dd 
/c 0 

Win32dd 
/c 1 

Win32dd 
/c 2 

1st Page ✔ ✔ ✔ ✔ 

Device 
reserved 
pages 

✔ ✔ 

8 



Analysis Example:  
Making Object Creation Timeline 

9 

• Volatility Framework [5] 

– timeliner plugin [6] 

• used kernel objects (process/thread/socket) 
• event logs 

SpyEye bot (dead process) 

TCP connection established  
by explorer.exe 

Code injection activity? 



Analysis Example:  
Detecting Code Injection 

10 

• Detecting code injection 
– Volatility Framework malfind 
– EnCase EnScript [7] VadDump 
– Mandiant Redline [8] (GUI front-end for Memoryze [9])  

•  The tools check protection flag of Virtual Address Descriptor  



Mandiant 
Redline 
(Memoryze) 

HBGary 
Responder 
 

Volatility 
Framework 
2.0 

EnCase  
EnScirpt 

Supported 
Windows OS 

All All XP/Vista/7/ 
2003/2008 

XP/7/2003/ 
2008 

Supported 
Image Format 

Raw Raw Raw 
Crash dump 
Hibernation 

Raw 
Crash dump 

Supported CPU 
Architecture 

Intel x86 
AMD x64 

Intel x86 
AMD x64 

Intel x86 Intel x86 
AMD x64 

Extracting dead 
process/closed 
connection 

No No Yes Yes 

Note Malware Risk 
Index, 
MemD5 

Digital DNA, 
code 

graphing 

Open source, 
rich plugins 

Multilingual 
search,  
Entropy 

Comparison of Memory Analysis Tools 

11 



PREVIOUS WORKS:  
ANTI MEMORY FORENSICS 
 
 
 

12 



• ShadowWalker is proposed by Sherri Sparks and Jamie 
Butler to hide malicious memory regions 
– Installed page fault handler makes de-synchronized 

DTLB/ITLB 
• data access -> random garbage data 
• execute access -> rootkit code 

• Memory acquisition tools cannot prevent ShadowWalker 
from hiding memory pages 
– But Analysis tools can detect the IDT hooking 

 

13 

Anti Acquisition Methods: 
Shadow Walker [10] 



• Proof of concept script  
– killing specified processes or preventing driver loadings with the 

aim of memory acquisition failure 

• Very easy to implement 
– The evasion is also easy (e.g., random name) 
– Preventing driver loadings has an impact on the running system 

14 

Anti Acquisition Methods: 
Meterpreter Anti Memory Forensics 

Script [11] 



• Object carving is one technique to extract kernel object 
information 
– e.g., process object (_EPROCESS) 

• PTFinder: Type/Size in _DISPATCHER_HEADER 
• Volatility Framework: PoolTag in _POOL_HEADER 

• Brendan Dolan-Gavitt et al. warned an attacker could 
change the values to hide a specified object [12] 

– Instead, they proposed robust signatures causing BSOD or 
functionality failures if the values are changed 

15 

Anti Analysis Method:  
Anti Object Carving 

modifying 
header values 

of cmd.exe 



• Closed-source analysis tools can find the hidden 
process 
– How do they find it? 

• Other than object carving, there are several key 
operations for analyzing memory image 
– The operations are robust? 

• Let’s check it! 

16 

Anti Analysis Method: 
Anti Object Carving (Cont.) 

Memoryze HBGary Responder 



PROPOSED ANTI ANALYSIS 
METHOD 
 
 
 
 

17 



• Researched implementations of three major tools 
– Volatility Framework 2.0 
– Mandiant Memoryze 2.0 
– HBGary Responder Community Edition 2.0 

• Found three operations executed in memory 
analysis include a few unconsidered assumptions 
– Proposed method modifies one-byte of data related 

to the operations 
• The data is defined as “Abort Factor” 

– It can’t hide specific objects, but can abort analyses 
– No impact on the running system  

• No BSOD, no errors for a few days to 2 weeks 

18 

Abstract of Proposed Method 



• Virtual address translation in kernel 
space 

• Guessing OS version and Architecture 

• Getting kernel objects  

– traversing linked lists or binary trees 

– object carving 

 

 

19 

Sensitive Three Operations 
in Memory Analysis 



• Virtual address translation in kernel 
space 

• Guessing OS version and Architecture 

• Getting kernel objects  

– traversing linked lists or binary trees 

– object carving 

 

 

20 

Sensitive Three Operations 
in Memory Analysis 



• OS switches its context by loading Directory Table Base (DTB) 
of each process 
– DTB is stored in each process object (_EPROCESS) 

• Initially, analysis tools must get DTB value for kernel space 
• Two processes have the kernel DTB 

– PsInitialSystemProcess (System process) 
– PsIdleProcess (Idle process) 

21 

Virtual Address Translation in Kernel Space 

OS loads  
Directory Table Base  

(Start physical address for 
address translation) 

into Control Register (CR3) 

x86 Address Translation - How PAE X86 Works 
http://technet.microsoft.com/en-us/library/cc736309(WS.10).aspx 



22 

Virtual Address Translation in Kernel Space: 
Process Object Structure 

_POOL_HEADER 

_OBJECT_HEADER 

 
 
 
 
 
 

_EPROCESS 

 
 

_KPROCESS 

_DISPATCHER_HEADER 

PoolTag: “Pro” 

Type and Size 

DTB 

ImageFileName: 
“System” or “Idle”  

Flags 



• Search _DISPATCHER_HEADER to get 
_EPROCESS 

• Check whether the ImageFileName is “Idle” 
– If the process is Idle, get DTB value in 

_KPROCESS 
 

 

 

23 

Virtual Address Translation in Kernel Space: 
Volatility Framework 

_DISPATCHER_HEADER 
(e.g., “¥x03¥x00¥x1b¥x00”) 

ImageFileName 



• Search “System” to find ImageFileName in 
_EPROCESS of PsInitialSystemProcess 

• Validate by using _DISPATCHER_HEADER in the 
_KPROCESS 
– All _DISPATCHER_HEADER patterns are checked 

24 

Virtual Address Translation in Kernel Space: 
Mandiant Memoryze 

OS version _DISPATCHER_HEADER 
Byte Sequence 

XP 32bit 03 00 1B 00 

2003 32bit 03 00 1E 00 

2003 64bit 03 00 2E 00 

Vista 32bit 03 00 20 00 

Vista 64bit 03 00 30 00 

7 32bit 03 00 26 00 

7 64bit 03 00 58 00 



• Validate by using the following values 

– Flags in _OBJECT_HEADER 

• The distance between PoolTag and 
_EPROCESS is calculated according to the 
value 

– PoolTag in _POOL_HEADER 

• Search PoolTag from _EPROCESS position and 
check whether the search hit offset is equal to 
the calculated distance  

• If all data is valid, get the DTB value 

 

 

 

25 

Virtual Address Translation in Kernel Space: 
Mandiant Memoryze (Cont.) 



• Search _DISPATCHER_HEADERs to 
get _EPROCESS 

• Get DTB value from the result and 
validate it 

• Responder seems to be equipped with 
the algorithm guessing kernel DTB 
– If DTBs of PsInitialSystemProcess and 

PsIdleProcess are not found, a guessed 
DTB value is used 

 

 

 

 

 
 

 

26 

Virtual Address Translation in Kernel Space: 
HBGary Responder 



27 

Virtual Address Translation in Kernel Space: 
Related Data 

Tool Related Data Abort 
Factor 

Remarks 

Volatility 
Framework 

_DISPATCHER_HEADER X PsIdleProcess 

ImageFileName in _EPROCESS X 
 

Mandiant 
Memoryze 

_DISPATCHER_HEADER X PsInitialSystemPr
ocess PoolTag in _POOL_HEADER X 

Flags in _OBJECT_HEADER  X 

ImageFileName in _EPROCESS X 

HBGary 
Responder 

_DISPATCHER_HEADER original guessing 
algorithm 



• Virtual address translation in kernel 
space 

• Guessing OS version and Architecture 

• Getting Kernel Objects  

– traversing linked lists or binary trees 

– object carving 

 

 

28 

Sensitive Three Operations 
in Memory Analysis 



• Size and definition of kernel data 
structures differ according to  
– OS version (e.g., XP SP2/SP3, 7 SP0/SP1) 
– architecture (x86 and x64) 

• All analysis tools guess the version using 
debug structures 

29 

Guessing OS version and 
Architecture 

OS version _EPROCESS size (bytes) 

Windows XP SP3 32bit 0x260 

Windows 7 SP0 32bit 0x2C0 

Windows 7 SP0 64bit 0x4D0 

Windows Vista SP2 32bit 0x270 

Windows Vista SP2 64bit 0x3E8 



30 

Guessing OS version and Architecture: 
Debug Structures and Key Values 

_KPCR 

_DBGKD_GET_VERSION64 

_KDDEBUGGER_DATA64 

KdVersionBlock 

DebuggerDataList 

Header 

CmNtCSDVersion 

_DBGKD_DEBUG_DATA_ 
HEADER64 

OwnerTag: “KDBG” 

Size 

KernBase 

KernBase 

PrcbData 

PsActiveProcessHead 

PsLoadedModuleList 

_KPRCB 

CurrentThread 



• Users must specify OS version and Architecture 
– e.g., --profile=WinXPSP2x86 

• If the version is unknown, imageinfo command 
can guess it 
– scan _DBGKD_DEBUG_DATA_HEADER64 [13] 

31 

Guessing OS version and Architecture: 
Volatility Framework 

OwnerTag: “KDBG” 
Size 



• Supposedly determine OS and architecture 
based on _DISPATCHER_HEADER 

• Validate them by using an offset value of 
ImageFileName in _EPROCESS 

32 

Guessing OS version and Architecture: 
Mandiant Memoryze 

OS version offset value of 
ImageFileName 

XP 32bit 0x174 

2003 32bit SP0 0x154 

2003 32bit SP1/SP2 0x164 

XP/2003 64bit  0x268 

Vista 32bit 0x14C 

Vista 64bit 0x238 

7 32bit 0x16C 

7/2008 64bit 0x2E0 



• Try to translate a virtual address of 
ThreadListHead in _KPROCESS 

– If possible, the OS version and 
architecture are correct 

• Get SP version from CmNtCSDVersion 
in _KDDEBUGGER_DATA64 

33 

Guessing OS version and Architecture: 
Mandiant Memoryze (Cont.) 



• Get KernBase value  
– _DBGKD_GET_VERSION64 or 

_KDDEBUGGER_DATA64 

• Validate the PE header signatures 
– DOS header “MZ” and NT header “PE” 

• Get OS version 
– OperatingSystemVersions in Optional Header 

• e.g., Windows7 
– MajorOperatingSystemVersion=6 

– MinorOperatingSystemVersion=1  

• Get more specific version 
– TimeDataStamp in File header 

 
34 

Guessing OS version and Architecture: 
HBGary Responder 



35 

Guessing OS version and Architecture: 
Related Data 

Tool Related Data Abort 
Factor 

Remarks 

Volatility 
Framework 

_DBGKD_DEBUG_DATA_HEADE
R64 

X 

Mandiant 
Memoryze 

_DISPATCHER_HEADER X PsInitialSystemPr
ocess offset value of ImageFileName X 

ThreadListHead in _KPROCESS 

CmNtCSDVersion in 
_KDDEBUGGER_DATA64 

HBGary 
Responder 

KernBase in 
_DBGKD_GET_VERSION64 or  
_KDDEBUGGER_DATA64 

PE Header of 
Windows kernel 

PE header signatures “MZ”/”PE” 

OperatingSystemVersion in  
Optional Header 

X 

TimeDataStamp in File Header 



• Virtual address translation in kernel 
space 

• Guessing OS version and Architecture 

• Getting Kernel Objects  

– traversing linked lists or binary trees 

– object carving 

 

 

36 

Sensitive Three Operations 
in Memory Analysis 



• Traversing linked lists or binary trees 
– Generally, use special lead/root addresses 

• PsActiveProcessHead for process list 
• PsLoadedModuleList for kernel module list 
• VadRoot for Virtual Address Descriptor tree 

• Object carving 
– Generally, use fixed values in headers 

• _POOL_HEADER 
• _DISPATCHER_HEADER 

• My research focused on getting 
_EPROCESS 

37 

Getting Kernel Objects  



• Process list is two-way link 
– Each _EPROCESS includes ActiveProcessLinks  

• _LIST_ENTRY (Flink and Blink) 

– PsActiveProcessHead and PsInitialSystemProcess 
are bound up together 

 

 
 

 

38 

Getting Kernel Objects: 
Process Linked List 

PsActiveProcessHead 
_EPROCESS 
“System” 

_EPROCESS 
“smss.exe” 

_EPROCESS 
“win32dd.exe” 

FLINK 

BLINK 

FLINK 

BLINK 

FLINK 

BLINK 

FLINK 

BLINK 

... 

... 

... 



• Traversing linked lists or binary trees 
– Search _DBGKD_DEBUG_DATA_HEADER64 
– get PsActiveProcessHead in _KDDEBUGGER_DATA64 

• Object carving 
– use PoolTag in _POOL_HEADER 

39 

Getting Kernel Objects: 
Volatility Framework 

Executing KDBGScanner 

Getting _DBGKD_DEBUG_DATA_HEADER64  
 (= _KDDEBUGGER_DATA64) address 



• Object carving 

– find _EPROCESS using address values 

• e.g.,  

– DTB is 0x20-bytes aligned 

– (Peb & 0x7ffd0000) == 0x7ffd0000 

– (ActiveProcessLinks.Flink & 0x80000000) == 
0x80000000 

– similar to robust signatures proposed by 
Brendan Dolan-Gavitt et al. [12] 

40 

Getting Kernel Objects: 
Mandiant Memoryze 



• Traversing linked lists or binary trees 

– get CurrentThread in _KPRCB 

– get _EPROCESS from the thread 

• e.g., ApcState.Process in _KTHREAD (XP) 

– start to traverse process list from the 
_EPROCESS 

• “System” string is compared with 
ImageFileName of _EPROCESS  

– for identifying PsActiveProcessHead  

– for detecting hidden process 

 
41 

Getting Kernel Objects: 
HBGary Responder 



42 

Getting Kernel Objects: 
Related Data 

Tool Related Data Abort 
Factor 

Remarks 

Volatility 
Framework 

_DBGKD_DEBUG_DATA_HEADER
64 

X 

PsActiveProcessHead in 
_KDDEBUGGER_DATA64 

X 

PoolTag in _POOL_HEADER 

Mandiant 
Memoryze 

address values in _EPROCESS 
(DTB, Peb, etc.) 

HBGary 
Responder 

CurrentThread in _KPRCB PsInitialSyste
mProcess 

_EPROCESS pointer in _KTHREAD  

ImageFileName in _EPROCESS X 



43 

Abort Factors 

Tool Virtual Address 
Translation in 
Kernel Space 

Guessing OS 
version and 
Architecture 

Getting Kernel 
Objects 

Volatility 
Framework 

2 factors: 
_DISPATCHER_ 
HEADER and 
ImageFileName 
(PsIdleProcess) 

1 factor: 
_DBGKD_DEBUG_ 
DATA_HEADER64 
 

2 factors: 
_DBGKD_DEBUG_ 
DATA_HEADER64 
and 
PsActiveProcessHead  

Mandiant 
Memoryze 

4 factors: 
_DISPATCHER_ 
HEADER, PoolTag, 
Flags and  
ImageFileName 
(PsInitialSystem 
Process) 

2 factors: 
_DISPATCHER_ 
HEADER and 
offset value of 
ImageFileName 
(PsInitialSystem 
Process) 

None 

HBGary 
Responder 

None 1 factor: 
OperatingSystem 
Version  
of kernel header 

1 factor: 
ImageFileName 
(PsInitialSystem 
Process) 



• Load a kernel driver into x86 XP VM 
– The driver modifies 1 byte of the following 

data 
• Size in _DISPATCHER_HEADER of PsIdleProcess 
• PoolTag in _POOL_HEADER of 

PsInitialSystemProcess 
• MajorOperatingSystemVersion in PE header of 

Windows kernel 

• Check the modification using WinDbg 
• Acquire the memory image using  

LiveCloudKd [14] 
• Analysis using three tools 

 
44 

Demo using PoC Driver (Video) 



IMPROVEMENT PLANS 
 
 
 
 

45 



• Guessing based on address values 

• Minimum guessing 

• Separating implementations to get 
kernel objects 

46 

Improvement Plans 



• The modification of address values often causes 
BSOD or function failures 

– _EPROCESS object carving by Memoryze 
– _KPCR object carving by Volatility Framework [15] 

47 

Guessing Based on  
Address Values 

_KPCR address == SelfPcr and 
_KPRCB address == Prcb 



• Support crash dump format 
– Register values cannot be modified 

 
 

48 

Minimum guessing (1) 

Data in crash dump 
header 

Extracted from 
(Win32dd implementation) 

Abort 
Factor 

DTB CR3 register 

OS version nt!NtBuildNumber X 

PAE enabled CR4 register 

PsActiveProcessHead _KDDEBUGGER_DATA64 X 

PsLoadedModuleList _KDDEBUGGER_DATA64 X 



• Support argument passing options 
about DTB and OS version 

– Volatility Framework supports them 

• specify OS version by using “--profile” option 

• specify DTB value by using “--dtb” option 

49 

Minimum guessing (2) 



• If DTB value cannot be acquired, 
display the result minimally-extracted 
by object carving 

 

 

50 

Separating implementations to 
get kernel objects 

Getting these information  
doesn’t need DTB value 



WRAP-UP 
 
 
 
 
 

51 



• Proposed anti analysis method can abort 
memory analysis tools by modifying only 
one-byte 
– The method is effective for memory images 

of all OS versions and architectures 
– About the impact on the running system, 

long term evaluations may be needed 

• I hope  
– Developers improve the implementations 
– Users figure out internals of memory 

analysis and deal with analysis errors 

52 

Wrap-up 



53 

Questions? 
(twitter: @cci_forensics) 

 
Please complete the Speaker 

Feedback Surveys! 



[1]  HBGary FastDump Pro <http://www.hbgary.com/fastdump-pro> 

[2]  EnCase WinEn (build-in tool of EnCase) <http://www.guidancesoftware.com/> 

[3]  MoonSols Windows Memory Toolkit <http://www.moonsols.com/windows-memory-toolkit/> 

[4]  Reserved Address Space in Windows Physical Memory <http://cci.cocolog-
nifty.com/blog/2011/02/device-reserved.html> 

[5]  Volatility Framework <https://www.volatilesystems.com/default/volatility> 

[6]  timeliner plugin <http://gleeda.blogspot.com/2011/09/volatility-20-timeliner-
registryapi.html> 

[7] Update: Memory Forensic EnScript <http://cci.cocolog-nifty.com/blog/2011/03/memory-
forensic.html> 

[8]  Mandiant Redline <http://www.mandiant.com/products/free_software/redline/> 

[9]  Mandiant Memoryze <http://www.mandiant.com/products/free_software/memoryze/> 

[10] "SHADOW WALKER" Raising The Bar For Rootkit 
<http://www.blackhat.com/presentations/bh-jp-05/bh-jp-05-sparks-butler.pdf> 

[11] Meterpreter Anti Memory Forensics (Memoryze) Script 
<http://t0x1cs.blogspot.com/2012/02/meterpreter-anti-memory-forensics.html> 

[12] Robust Signatures for Kernel Data Structures 
<http://www.cc.gatech.edu/~brendan/ccs09_siggen.pdf> 

[13] Identifying Memory Images <http://gleeda.blogspot.com/2010/12/identifying-memory-
images.html> 

[14] YOUR CLOUD IS IN MY POCKET <https://media.blackhat.com/bh-dc-
11/Suiche/BlackHat_DC_2011_Suiche_Cloud_Pocket-wp.pdf> 

[15] Finding Object Roots in Vista (KPCR) <http://blog.schatzforensic.com.au/2010/07/finding-
object-roots-in-vista-kpcr/> 

54 

References 


