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Introduction 

Canape is a new network protocol analysis and manipulation tool for Windows which aims 

to reduces the amount of work required during a security review to assess an arbitrary 

protocol. It is designed to act in a similar fashion to pre-existing Web application testing tools 

such as CATi and Fiddlerii, providing an interface to capture, manipulate and then replay 

network traffic in any protocol, not just HTTP. 

This whitepaper outlines how to use the tool to develop a framework for manipulating the 

Citrix Independent Computing Architecture (ICA) protocol. ICA is a proprietary networking 

protocol used by Citrix to provide remote application and desktop functionality for clients.  

This protocol has been chosen because it is a complex binary protocol, something that 

Canape was developed to manipulate and it does not seem to have had significant 

amounts of security research aimed at it. Documentation for the protocol is scarce, and 

even Wireshark does not come with a dissector for ICA.  

By the end of the whitepaper, the goal is to give the reader a better understanding of the 

ICA protocol itself and to give a suitable example for demonstrating the flexibility of the 

Canape tool for security testing and research. 

Canape can be downloaded from Context website at http://canape.contextis.comiii.  

http://canape.contextis.com/
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Canape Overview 

Canape is a network testing tool for arbitrary protocols, but specifically designed for binary 

ones. It contains built in functionality to implement standard network proxies and provide the 

user the ability to capture and modify traffic to and from a server. The core can be 

extended through multiple programming languages including C# and Python, to parse any 

protocol as required thereby creating custom proxies tailored to the testing. It works at the 

network application layer supporting both TCP and UDP connections through port 

forwarding or by implementing a SOCKS or HTTP proxy. It does not capture data at the 

Ethernet, IP or TCP layers directly.  

Its main strength is reducing the amount of development effort usually associated with 

effectively testing a new protocol. By providing a common mechanism to capture and 

manipulate traffic, it aims to allow the security researcher to only develop the minimal 

amount of code for the truly bespoke aspects of a protocol.  
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Developing a Canape Project 

Canape groups the resources required to analyse and manipulate a protocol into a single 

project, similar in many respects to that used in an Integrated Development Environment 

(IDE) such as Visual Studio or Eclipse. The project might contain resources such as: 

 Networking services, for example a SOCKS or HTTP proxy 

 Directed network graphs defining the data flow and state model of the protocol 

 User developed basic parsers 

 Custom script code to parse more complex traffic, or to manipulate traffic in specific 

ways 

 Captured data such as logs of packets 

 Test harnesses, used to develop and test parsing code in isolation from a network 

connection. 

 

Figure 1 - Screenshot Showing Example Project 

All project resources are saved into a single file, by default with the ‘.canape’ extension. This 

whitepaper is accompanied by an example project to parse basic Citrix ICA protocol traffic; 

subsequent sections will refer to this project to reduce repetition.  
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Initial Traffic Capture 

The first step in analysing a bespoke network protocol is capturing some example traffic; in 

order to do this using Canape a mechanism is required to force the traffic through a 

configured proxy. This can be done in a number of different ways, however some are more 

flexible than others. The following list shows some example approaches to getting traffic into 

Canape, in order of preference: 

1. Configure the application to use a SOCKS or HTTP proxy 

2. Use a third party tool (such as FreeCAPiv) to convert an application into using SOCKS. 

3. Configure the application to go to a fixed IP address and port, and then use a fixed 

proxy.  

4. If the application looks up network destinations through DNS add an entry to the 

‘hosts’ file to redirect it to a fixed IP address. 

5. In the case of enclosed devices (i.e. mobile phones) then a fake DNS server (which is 

supported in Canape itself) can be used to redirect the traffic to Canape. 

Fortunately in Citrix it is possible to configure a SOCKS proxy for use when connecting to a 

server as show in the following client configuration file.  

 

Figure 2 - Example ICA File with Proxy Configuration Highlighted 

To use this to capture traffic a SOCKS proxy can be created in Canape and started it up. By 

default the proxy will capture all outgoing and incoming packets through the proxy and 

display them in a packet log as shown: 

 

[WFClient] 

Version=2 

TcpBrowserAddress=1.1.1.1 

ICASOCKSProtocolVersion=0 

ICASOCKSProxyHost=127.0.0.1 

ICASOCKSProxyPortNumber=1080 

 

[ApplicationServers] 

test= 

[test] 

TransportDriver=TCP/IP 

WinStationDriver=ICA 3.0 

DesiredHRES=800 

DesiredVRES=600 

DesiredColor=8 

Address=1.1.1.1 
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Figure 3 - Traffic Captured Through SOCKS Proxy 

By double clicking individual packets it is possible to inspect each entry in greater detail. 

These packets can also be copied and pasted to other parts of the application as required, 

for example it is possible to copy packets into a test harness to aid in the development of 

custom parsers. 

Through inspection of the ICA traffic it becomes clear that there are three phases to the 

protocol. First is a simple ‘hello’ identification phase, it starts with the server sending an ICA 

magic string (as show in Figure 4), the client will then respond back with the same value.   

 

Figure 4 - ICA Magic String 

After the magic strings have been passed the protocol enters a negotiation phase where 

the features of ICA are agreed. Each packet in the negotiation starts with a single byte 

representing the type of the packet. The next two bytes represent the length of the following 

data in little endian format (which is somewhat more unusual for network protocols). The 

negotiation is completed when a packet of type 4 is sent from the client. 
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Figure 5 - Example Negotiation Packet 

The final phase, which will be referred to as the ‘main’ protocol, now begins. Each packet is 

again fairly simple on the outside. Each ‘frame’ of the protocol starts with a 12 bit little-

endian length field, followed by a 4 bit set of flags. This is followed by the number of bytes 

indicated in the length field.  

 

Figure 6 - Example Main Protocol Packet 

Unfortunately there is now a problem, other than the initial length field and flags the rest of 

the packet seems to be encrypted, or at least encoded. By default Citrix client and servers 

employ ‘Basic’ encryption, this will need to be removed before the main protocol can be 

attacked. First, Canape needs to be configured to handle the three protocol phases so that 

specific parsing can be applied at the appropriate phase. 
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Modelling the Protocol State 

In order to model the protocol state Canape provides a directed graph editor to represent 

what is termed a ‘Net Graph’ in the tool. These graphs serve two functions in Canape; firstly 

they provide the ability to model data flow. Each node on the graph represents some 

discrete function, for example parsing of a particular protocol or causing a packet to be 

logged (Canape only logs packets at points you explicitly tell it to). The other purpose is to 

model state transitions, a state value can be set which reflects where in the protocol the 

connection currently is, then simple decision nodes can be used to send packets for 

different types of processing.  

 

Figure 7 - Simple State Diagram for Citrix 

Figure 7 shows the basic state diagram developed for the Citrix protocol. The initial ‘hello’ 

and negotiation phases have been merged as distinguishing between them provides little 

benefit. The large ‘SERVER’ node represents the location in the graph that packets coming 

from the client enter the graph, these packets then flow along the edges and are affected 

by the other nodes until it reaches the ‘CLIENT’ node. The rational for the naming convention 

is the ‘SERVER’ is in this case bound to the listening TCP socket server in the proxy, while the 

‘CLIENT’ is bound to the TCP client connecting over the network to the real server. 

The grey nodes represent logging elements, any packet which traverses one of these nodes 

is automatically logged to the packet log shown in Figure 3. The rhombus nodes are the 

decision elements, if the current state is set to “EndOfNeg” then packets are sent through 

the ‘main’ protocol parser (which in this example just means the packet is logged) otherwise 

it is sent through as a negotiation packet.  

The final blue node is the mechanism through which the state change is produced. This 

node is configured to wait for the type 4 packet already described, at which point the state 

is changed to indicate the end of negotiation. 
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Parsing the Main Protocol 

Now that the protocol phases are separated out the main protocol can be parsed. As the 

framing of this is a length/data based protocol, it is possible to do everything in Canape’s 

built-in parser editor.  

 

Figure 8 - Main Protocol Parser 

Figure 8 shows the developed parser structure. It consists of a sequence of values and a 

parsing wrapper. This can then be added to the graph as a ‘Dynamic’ node. Once 

introduced, logged packets change from the previous raw binary data into a tree structure 

as show on the left-hand side of Figure 9.  

 

Figure 9 - Main Protocol Packet as a Tree 

In order to allow for the packets to be converted back into a binary form each packet 

carries with it the information required to serialize to a stream even if the length of the data 

changes. This is especially important as it allows Canape to copy packets around, isolating 
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them from the network connection they originally came from. With the packets in this form it 

is now possible to remove the encryption. 

 



 

 

Context Information Security 30 Marsh Wall, London, E14 9TP +44 (0) 207 537 7515 www.contextis.com 12 / 25 

 

White paper/Canape: Bytes your Bits  

Removing the Encryption 

The default encryption used by Citrix is effectively a basic XOR cipher with a 1 byte key, not 

the most secure of protocols. Deriving the actual algorithm is fairly trivial, but the simplest 

way is to decompile the Java client and directly extract the algorithm.  

 

Figure 10 - Java Code for Encryption Algorithm 

As the encryption is a property of the connection rather than the individual packets (as it 

uses the value of the previous encrypted byte to determine the value of the next one) this 

cannot just be applied to the packet and copied around like with the parsing of the 

framing. Instead it must be applied in the connection itself, with individual decrypt and 

encrypt nodes (as shown in Figure 11). The graph shown is actually containing in a sub-

graph of the original state model (represented by a single node in the graph). This allows 

easy reuse of the discrete functionality and reduces complexity.  
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Figure 11 - Main Protocol Graph with Crypto 

The encryption and decryption nodes are implemented in custom code, as it falls outside of 

basic parsing; this is however the only custom code required in the entire example project. 

For the full code see the example project supplied with this whitepaper. 

  

Figure 12 - Encryption Code 
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Disabling Compression 

Now that the encryption has been removed it exposes that the underlying protocol is also 

compressed. The compression code is unfortunately not as simple as the basic encryption 

and it is also proprietary so we cannot easily repurpose existing code such as ZLib to 

decompress it. Also the Java Client has many hundreds of lines of obfuscated code making 

it difficult to extract. It is possible to disable it in the client through a registry modification but 

it would be preferable to be able to do it on the wire.  

To find out how to do this the following registry key was set to disable compression and the 

packets compared.  

HKEY_LOCAL_MACHINE\SOFTWARE\Citrix\ICA 

Client\Engine\Configuration\Advanced\Modules \TCP/IP\Compress = Off 

This identified a single change in the initial negotiation packets, if compressed a specific set 

of bytes is set to 10 12, if compression is disabled they are set to 00 00. 

 

Figure 13 - Packet Differences between Compressed and Uncompressed 

Using a built in node type in Canape it is possible to do arbitrary binary replacements to 

change the values to zeros before passing along to the server. Doing this allows the project 

to disable encryption without having to change the client’s configuration any more than 

necessary.  

The example project is now complete, it is possible to now add functionality to fuzz and 

modify packets as they traverse the network and find vulnerabilities. The next section 

describes one such issue which was previously identified and subsequently has been fixed 

by Citrix. 
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Citrix Vulnerability 

This section of the whitepaper discusses the technique used to exploit the Citrix client 

vulnerability.  The vulnerability itself is quite old, originally found in February 2008 but took the 

Vendor 2 years to fully fix the issue in all the affected clientsv. Context found and exploited 

the vulnerability on Windows XP SP2, but the patch covered the following clients: 

 Windows 

 Linux (x86 and ARM) 

 Solaris (Sparc and x86) 

 Windows Mobile 

 Mac 

Attack Method 

The attack works by enticing a victim to a malicious website which downloads an ICA file 

configured to connect to a fake ICA server. Standard web browsers with Citrix installed will 

automatically download an ICA file and pass it to the Citrix client which will then use the 

details in the file to connect to the ICA server.   

The file is in the style of a simple INI file which contains the IP address of the target server. For 

the Proof of Concept that we developed the server was not a real Citrix server but an 

instance of Canape (in 2008 when the vulnerability was initially exploited, Canape was not 

available so custom code was used). The exploit is then sent to the ICA client and the 

machine exploited. 

Memory Corruption Bug 

The actual bug that was exploited was in the Citrix ThinWire virtual driver that is responsible 

for the graphics being displayed to the user. The bug was in an index overflow where a 

bounds check was not performed on data being received from the server. This issue was 

found by fuzzing the binary ICA protocol which resulted in the following crash: 

  

 

Figure 14 - Citrix crash during fuzzing. 
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This crash is in the VDTW30N module which is Virtual Driver Thin Wire responsible for the 

graphical updates. This crash is due to the value of ECX being out-of-bounds for the lookup 

at the fixed offset of 669317C8. The fuzz value used for this case was FFB7 which can be seen 

in the lower part of the EAX register. A read violation is an indication of a bug but is often not 

exploitable directly. Therefore further analysis of the crash and the subsequent code to 

determine code execution flow was employed. The following screenshot shows the 

surrounding code: 

 

Figure 15 - Reverse Engineering the Crash 

The first highlighted section shows the current crash location, the second shows a call to 

execute the memory at EAX. Further analysis shows that the value that we control influences 

the ultimate value of EAX at this point and thus where the code will be executed. 

The complexity comes from determining how the value from the ICA packet is used to 

derive the value for EAX and therefore where the code is going to be executed. It was 

found to be easiest to brute force the value and examine the crashes that occur to find an 

input value which will result in the code running through to the call to EAX with a value 

which is in a memory area where we can influence. The brute forcing resulted in a value 

which caused the following crash: 
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Figure 16 - Control EAX 

As can be seen the program is trying to execute code at the address 01F2E800. There is 

currently no code at this address but by examining the memory layout we can work out if it 

is possible to heap spray up to that location: 

 

Figure 17 - Memory layout before heap spray 

Currently the highest addressed heap block starts at offset 01770000 as can be seen in 

Figure 17, which is just below the location where the exploit will jump to. Therefore if we can 

get the application to allocate more heap memory with data that we control then we will 

call into the area where we have placed our data. 

Heap Spraying 

We used a standard heap spray technique to ensure that we have data at the location 

where the exploit will call.  For ICA, we used a Thinwire Virtual Driver packet sent multiple 

times to fill the heap. The client was found to be allocating data for these packets but not 

releasing them. A second flaw in the Citrix client allowed us to cause large amounts of 

memory to be filled using only a smaller sized packet. This bug was in the way that the Citrix 

client would not check the length field within a packet and would copy the amount of data 

that was stated into memory. This data was copied out of a static buffer that was used to 

receive all ICA packets and therefore we could set a long length and it would copy that 

amount of data. The data that was not actually in the packet would be replaced with data 

from the previous packet. 
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So to heap spray the memory we send an initial large packet to prime the static packet 

buffer and then send thousands of small packets with a large inner length field to populate 

the heap. Figure 18 shows the memory layout that is the result of this flood. 

 

Figure 18 - Memory layout post heap spray 

Thus offset 01F2E800 is now a valid address. However, the exact data at this location is not 

deterministic. It maybe a valid heap allocation from our heap spray or it might be in a block 

of zero bytes which are between allocations. Therefore we needed the exploit to execute 

through the zeroed block, into the data we control, through our NOP sled ultimately into the 

shellcode. A zero block of memory is disassembled in Figure 19. 

 

Figure 19 - Zero memory NOP sled 

This is a valid NOP instruction for this exploit as EAX will be pointing to a writable location. We 

know that we call the value of EAX and therefore it is guaranteed to be on the heap.   

The next section of bytes that will be executed will be a heap header block. In Windows XP 

(which was used for the PoC) the header has the following structure: 

 

Figure 20 - Heap Header Layout 

The first two bytes are the size of the allocation (in 8 byte units); this is derived from the size of 

the packet and therefore is something we control. The other values are all fixed with the 

exception of the cookie value which is random. We therefore need this header block to be 

interpreted as instructions which causes no serious side effects. By examining the x86 

instruction set a value was found that would ensure the dynamic value in the header block 
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would be safely executed in both alignment situations. This value is 8100 as can be seen in 

Figure 21. The zeros are the unallocated data this is followed by the head size which has 

been set to 8100. This represents an ADD instruction to where EAX points to with the DWORD 

value in the following four bytes. Due to the fact that EAX is a valid pointer, this command 

will consume the random cookie value safely. 

 

Figure 21 - NOP heap header 

The OR instruction is also safe because it has only a minor side effect on EAX. Therefore the 

heap flood packets must result in a memory allocation of 0x0408 bytes in length (which is 

0x81 multiplied by 8). By doing this the exploit will execute from the heap through the zeros, 

over the heap header and into the shellcode. It was also necessary to place a few jumps in 

specific places in the packet to ensure it was a valid ThinWire packet but would still be 

executed. 
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Putting It All Together 

This final section describes how Canape can be used to exploit the vulnerability described in 

the previous section using its built-in functionality. The tool supports the development of 

custom networking services and clients. This allows a final exploiting server to be developed 

entirely within Canape for demonstrating the vulnerability.  

The Full Exploit 

The steps for the exploit to work are as follows: 

1. The victim visits a malicious site (and they have Citrix installed) 

2. The site sends an ICA file to the client. 

3. The ICA file instructs the client to connect to the malicious Citrix server. 

4. The fake server then sends the hello and initial negotiation packets. 

5. When the main stream is established a large packet is sent with the NOP sled and shellcode to prime 

the heap. 

6. 3000 small packets are sent with a large length field to fill the heap. 

7. Finally the exploit trigger packet is sent to cause the offset overflow that executes the shellcode. 

Configuring the Replay Server 

To effectively replay the traffic from server to client the packets first need to be placed into 

a separate packet log. This allows the built-in replay services to access the required data.  

 

Figure 22 - Attack Packets 

Each individual phase is marked with a special ‘Tag’ value which is used by the replay server 

to select the appropriate packet to send. 

The replay server needs to be configured; this is done by creating a new network server and 

specifying the ‘Full Replay Server’ type. The configuration of this server contains a set of filters 

which match on specific packet data. When a match is made a ‘Tag’ is selected and the 

server sends back only those packets which match the tag. 
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Figure 23 - Server Configuration 

Setting Up HTTP and Remote Shell Server 

The HTTP and Remote shell servers are configured in a similar way. For HTTP support Canape 

contains a very basic HTTP server which will send back a simple block of data to a HTTP 

request. For the Remote Shell a simple TCP server can be configured on port 4444 (which is 

specific to the shell code).  

 

Figure 24 - HTTP Server Configuration 

A web browser can now be used to retrieve the ICA file which sets the whole exploit process 

in motion.  

The final packet sent to the ICA client is the one used to exploit the vulnerability; Figure 25 

shows the exploit packet with the vulnerable value highlighted. 
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Figure 25 - The Exploit Packet 

The reverse shell connection should now be available. 

 

Figure 26 - Reverse Shell Connection 
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Conclusion 

This whitepaper has demonstrated the process through which a bespoke binary protocol 

can be analysed and manipulated in Canape without a substantial amount of 

development effort. There is nothing particularly special in the use of Citrix ICA for this 

demonstration, the tool can equally be used to develop frameworks for other protocols, it is 

not even restricted to binary as text based protocols can be handled as well.  

Further information on the usage of Canape as well as numerous tutorials is available on the 

project website, http://canape.contextis.com. 

 

http://canape.contextis.com/
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About Context 

Context Information Security is an independent security consultancy specialising in both 

technical security and information assurance services. 

The company was founded in 1998. Its client base has grown steadily over the years, thanks 

in large part to personal recommendations from existing clients who value us as business 

partners. We believe our success is based on the value our clients place on our product-

agnostic, holistic approach; the way we work closely with them to develop a tailored 

service; and to the independence, integrity and technical skills of our consultants. 

Context are ideally placed to work with clients worldwide with offices in the UK, Australia and Germany. 

The company’s client base now includes some of the most prestigious blue chip companies 

in the world, as well as government organisations. 

The best security experts need to bring a broad portfolio of skills to the job, so Context has 

always sought to recruit staff with extensive business experience as well as technical 

expertise. Our aim is to provide effective and practical solutions, advice and support: when 

we report back to clients we always communicate our findings and recommendations in 

plain terms at a business level as well as in the form of an in-depth technical report. 
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