White paper/Canape: Bytes your Bits

Canape: Bytes....
your Bits® ’

Inspecting and
Attacking the Citrix
ICA Protocol using
Canape

James Forshaw and Michael Jordon
whitepapers@contextis.com

Date: 16 March 2012

Context Information Security 30 Marsh Wall, London, E14 9TP +44 (0) 207 537 7515 www.contextis.com 1/25

mailto:whitepapers@contextis.com

White paper/Canape: Bytes your Bits

Contents
Introduction 3
Canape Overview 4
Modelling the Protocol State 9
Parsing the Main Protocol 10
Removing the Encryption 12
Disabling Compression 14
Citrix Vulnerability 15
Attack Method 15
Memory Corruption Bug 15
Heap Spraying 17
The Full Exploit 20
Configuring the Replay Server 20
Setting Up HTTP and Remote Shell Server 21
Conclusion 23
About Context 24
Works Cited 25

Context Information Security 30 Marsh Wall, London, E14 9TP +44 (0) 207 537 7515 www.contextis.com 2/25

White paper/Canape: Bytes your Bits

Infroduction

Canape is a new network protocol analysis and manipulation tool for Windows which aims
to reduces the amount of work required during a security review to assess an arbitrary
protocol. It is designed to act in a similar fashion to pre-existing Web application testing tools
such as CAT and Fiddleri, providing an interface to capfure, manipulate and then replay
network fraffic in any protocol, not just HTTP.

This whitepaper outlines how o use the tool fo develop a framework for manipulating the
Citrix Independent Computing Architecture (ICA) protocol. ICA is a proprietary networking
protocol used by Citrix to provide remote application and desktop functionality for clients.

This protocol has been chosen because it is a complex binary protocol, something that
Canape was developed to manipulate and it does not seem to have had significant
amounts of security research aimed at it. Documentation for the profocol is scarce, and
even Wireshark does not come with a dissector for ICA.

By the end of the whitepaper, the goal is to give the reader a better understanding of the
ICA protocol itself and to give a suitable example for demonstrating the flexibility of the
Canape tool for security testing and research.

Canape can be downloaded from Context website at http://canape.contextis.comii.

Context Information Security 30 Marsh Wall, London, E14 9TP +44 (0) 207 537 7515 www.contextis.com 3/25

http://canape.contextis.com/

White paper/Canape: Bytes your Bits

Canape Overview

Canape is a network testing tool for arbitrary protocols, but specifically designed for binary
ones. It contains built in functionality to implement standard network proxies and provide the
user the ability to capture and modify traffic to and from a server. The core can be
extended through multiple programming languages including C# and Python, to parse any
protocol as required thereby creating custom proxies tailored to the testing. It works at the
network application layer supporting both TCP and UDP connections through port
forwarding or by implementing a SOCKS or HTTP proxy. It does not capture data at the
Ethernet, IP or TCP layers directly.

Its main strength is reducing the amount of development effort usually associated with
effectively testing a new protocol. By providing a common mechanism to capture and
manipulate traffic, it aims to allow the security researcher to only develop the minimal
amount of code for the fruly bespoke aspects of a protocol.

Context Information Security 30 Marsh Wall, London, E14 9TP +44 (0) 207 537 7515 www.contextis.com

4/25

White paper/Canape: Bytes your Bits

Developing a Canape Project

Canape groups the resources required to analyse and manipulate a protocol into a single
project, similar in many respects to that used in an Integrated Development Environment
(IDE) such as Visual Studio or Eclipse. The project might contain resources such as:

o Networking services, for example a SOCKS or HTTP proxy
o Directed network graphs defining the data flow and state model of the protocol
e User developed basic parsers

e Custom script code to parse more complex traffic, or to manipulate traffic in specific
ways

o Captured data such as logs of packets

o Test harnesses, used to develop and test parsing code in isolation from a network
connection.

File View Trust Help

Citrix Parsers Test)/Cilrix State Graph } - X PFDJ:EEt Explorer ax
= =] Project
= @ q Jrees
4 Control o] Citrx Parsers
Propetties {Collection) - [#] Gitrbx Encryption
- Services
L. 59 Citrix Socks Proxy
=[5 Graphs

{2 Citnx State Graph
.2 Main Protocol Graph
-3 Data
Bl Tests
i) Citrie Parsers Test

Properties
Properties set on the graph itself

Figure 1 - Screenshot Showing Example Project

All project resources are saved info a single file, by default with the ‘.canape’ extension. This
whitepaper is accompanied by an example project to parse basic Citrix ICA protocol traffic;
subsequent sections will refer to this project to reduce repetition.

Context Information Security 30 Marsh Wall, London, E14 9TP +44 (0) 207 537 7515 www.contextis.com 5/25

White paper/Canape: Bytes your Bits

Initial Traffic Capture

The first step in analysing a bespoke network protocol is capturing some example fraffic; in
order to do this using Canape a mechanism is required to force the traffic through a
configured proxy. This can be done in a number of different ways, however some are more
flexible than others. The following list shows some example approaches to getting traffic into
Canape, in order of preference:

1. Configure the application to use a SOCKS or HTTP proxy
2. Use a third party tool (such as FreeCAPV) to convert an application into using SOCKS.

3. Configure the application to go to a fixed IP address and port, and then use a fixed
roxy.

4. If the application looks up network destinations through DNS add an entry to the
‘hosts’ file to redirect it to a fixed IP address.

5. Inthe case of enclosed devices (i.e. mobile phones) then a fake DNS server (which is
supported in Canape itself) can be used to redirect the traffic o Canape.

Fortunately in Citrix it is possible to configure a SOCKS proxy for use when connecting to a
server as show in the following client configuration file.

[WEClient]

Version=2
TcpBrowserAddress=1.1.1.1
ICASOCKSProtocolVersion=0
ICASOCKSProxyHost=127.0.0.1
ICASOCKSProxyPortNumber=1080

[ApplicationServers]
test=

[test]
TransportDriver=TCP/IP
WinStationDriver=ICA 3.0
DesiredHRES=800
DesiredVRES=600
DesiredColor=8
Address=1.1.1.1

Figure 2 - Example ICA File with Proxy Configuration Highlighted

To use this to capture traffic a SOCKS proxy can be created in Canape and started it up. By
default the proxy will capture all outgoing and incoming packets through the proxy and
display them in a packet log as shown:

Context Information Security 30 Marsh Wall, London, E14 9TP +44 (0) 207 537 7515 www.contextis.com

6/25

White paper/Canape: Bytes your Bits

File View Trust Help

Citrix Socks Proxy Project Explorer

£ Project
- Scripts

Timestamp Network - E‘B’ Services

LE9 O

25/02/2012 16:0116 12700152899 mCAW00 o Elpgh:“ Socks Proxy
29/02/2012 160116 12700.152899 . WCAWD 3 Do

29/02/2012 16:01:16 12700.1:52899 . \wD03w000700.. 13 Tests

29/02/2012 160116 12700152899 . 100 w0013,

29/02/2012 16.01:16 12700152899 . ‘xDOHESF}w00wOLF...
29/02/2012 16:01:16 12700152899 . WZac P TIPL
29/02/2012 16.01:16 12700152899 . 040000
29/02/2012 160116 12700152839 2000200
29/02/2012 16.01:16 12700.152899 . w03w00404'00,
29/02/2012 16:0116 12700152839 w1 2u00d1C+0
29/02/2012 16:01:16 12700152899 . ‘w18w000cidIGE. .
29/02/2012 160116 12700152839 wOSu00sTyV
29/02/2012 16:01:16 12700152899 . wIGAWDIGASACS..
29/02/2012 16:01:16 12700152899 . EveD1 fmbacs>3..
29/02/2012 1601:16 127.00.152699 .. A@w010w06p:0A..
29/02/2012 16.01:16 12700152899 wD0wD1ER60\16..
29/02/2012 1601:16 127.00.152899 .. B@WwDIch 3%Z%s8...
29/02/2012 16.01:16 12700152898 . -Ew0IMGalofIvE...
29/02/2012 160116 12700152899 . BW0103nYOFER...
29/02/2012 16.01:16 12700152899 . w000 1/RY¥I06G. .

DGAVIINTT 10118 1770 M 1-RI904 Ve NE AV DY Ui
1

Settings | Packet Log | Log ICnnns I MNet Graphs I Iruednr|

=
]

i
2
3
4
5
3
7
8

Figure 3 - Traffic Captured Through SOCKS Proxy

By double clicking individual packefts it is possible fo inspect each entry in greater detail.
These packets can also be copied and pasted to other parts of the application as required,
for example it is possible to copy packets intfo a test harness to aid in the development of
custom parsers.

Through inspection of the ICA fraffic it becomes clear that there are three phases to the
protocol. First is a simple ‘hello’ identification phase, it starts with the server sending an ICA
magic string (as show in Figure 4), the client will then respond back with the same value.

<= & g =] 10f2363 -In - 127.0.0.1:50257 <=> 10.0.131.190:1494 - 29/02/2012 13:03:53

@ Hex () Tet Search: () Binary @ Text

00000000 fF 7F 49 43 41 00 - ICRE.

Selection Pos:0/0x0 Length:0/ Tl

Int32 {ittle) Signed: 1128850239/ (c434597F7F, Unsigned: 1128850239/ 0ed 3437F7F
Int32 {pig) Signed: 2133048259/ 7TF7F4943, Unsigned: 2135048259/ 0 7F7F4543
Int 16 {ittle) Signed: 32635/ 0«7F7F, Unsigned: 32639/ Q«7F7F

Int16 (i) Signed: 32639/ 7F7F, Unsigned: 32639/ 7F7F

Figure 4 - ICA Magic String

After the magic strings have been passed the protocol enters a negofiation phase where
the features of ICA are agreed. Each packet in the negoftiation starts with a single byte
representing the type of the packet. The next two bytes represent the length of the following
data in little endian format (which is somewhat more unusual for network protocols). The
negotiation is completed when a packet of type 4 is sent from the client.

Context Information Security 30 Marsh Wall, London, E14 9TP +44 (0) 207 537 7515 www.contextis.com 7/25

White paper/Canape: Bytes your Bits

£ 4 of 213 - Out - 127.0.01:53111 <=> 10.0.131.190:1494 - 28/02,/2012 16:15:43

Seacn O Bray © Tex
00000000 A3 00 A3 00 18 00 01 07 77 63 61 33 32 LT

00000010 65 78 65 00 00 00 00 00 00 00 00 00 438

00000020 10 67 90 BD 0C 00 24 00 00 08 00 00 01

00000030 00 00 00 00 00 00 SF 00 00 00 00 00 00

00000040 00 00 00 00 S8E CB 89 00 SF 00 00 00 00

00000050 00 00 07 00 00 OC 00 00 00 00 9C 00 1F

00000060 00 2C 7A 4R 76 68 6B &0 TE 3E 14 11 11 -« Z2dvhk ~3r>. ..
00000070 07 4B OF 1B 4F 15 50 &0 4F 4C 49 5D 6D ..K..0.FP'OJRLI]m
00000030 67 4A 06 29 29 2C 25 27 3F 5B 72 4D 75 Hgd.)),%'?.c[rMu
00000090 08 27 4B 6E 41 6&C 20 OF OF 01 19 75 28 4.

00000080 36 6A 36 74 2D 73 2E 73 2F 3C 00 3C 00 t6j6t-3.s/C.<.<.
00000080 05 01 02 54 44 57 53 54 43 2E 44 4C 4C «...TDWSTCPN.DLL
000000C0 00 00 00 OO0 00 00 0O 00 00 10 &7 90 BD

000000D0 00 B4 05 02 00 CF 77 7F 00 00 00 00 00

000000ED 00 00 00 OO0 00 00 0O 00 00 00 23 00 16

000000F0 01 02 50 44 52 46 52 41 4D 44 4C 4C 00 -..PDRFRAMN.DLL.
00000100 44 52 46 52 41 4D 45 00 43 67 90 BD 0C PDRFRAME.HG.g.%.
00000110 09 00 00 00 01 29 00 29 00 01 01 50 44

00000120 52 59 50 54 4E 2E 44 4C 4C 44 43 52 59 CRYPTN.DLL.PDCRY
00000130 54 31 00 48 36 10 &7 90 BD 0B 00 00 00 PT1.H6.g.%

Selection Pos:0/0x0 Length:0/00

Int32 (ittle) Signed: -14763513599/0<AB00AB01, Unsigned: 2818615257/ QAB00AB01
Int32 (big) Signed: 27787432/ 1AB00A8, Unsigned: 27787432/ 1AB00AS

Int16 (ittle) Signed: -22527/TcAB01, Unsigned: 43009/0cAB01

Int16 (big) Signed: 424/ bc1A8, Unsigned: 424/ 1A8

Figure 5 - Example Negotiation Packet

The final phase, which will be referred to as the ‘main’ protocol, now begins. Each packet is
again fairly simple on the outside. Each ‘frame’ of the protocol starts with a 12 bit little-
endian length field, followed by a 4 bit set of flags. This is followed by the number of bytes
indicated in the length field.

- 13 0of 213 - In-127.0.01:53111 ==> 10.0.131.190:1494 - 29/02/2012 16:15:43

@ Hex (O Search: () Binary @ Text
00000000 41 01 63 7D ofo o Eois S..ﬁc}
00000010 A3 3D BB CC .e=£0"e. .égsﬁ.»i
00000020 90 8B F7 03 ----X0:du(].3.
00000030 24 B1 8B 30 -§;3uM.é[.' (EG.=
00000040 F9 2C 6E A9 Lu, .E¥!'w .%HY.ne
00000050 88 3D 2F 1C ..=li.."..§:3-['."f.
00000060 64 SE A TF id.\i.é.vz.q‘{ﬁﬁi. B
00000070 12 61 F1 E3 XBaZ;-20f:i~[LA3
00000080 92 2D 82 26 1 e—B.%"}.Ce.I...
00000090 7D 9E 7B 5L u}.Eebyai'éeIlv{z
000000R0 E7 F9 ac 25 .Qﬁﬁfw.“..@ﬁVG.%

00000080 4E E3 05 CC .NAUKN..@" ! ad. .1
00000000 84 3D 22 75 4.=.0a.8w.0.,fi(u
00000000 C& 92 4F 5A TUE..5...1..~E60Z
000000ED 39 B2 L5 4F =9¢0!.0.E.D.BR¥0
000000FD 78 13 82 23 .x.T ..M.AT i;.#
00000100 9D 21 €5 3E p.'BEilz)cm.f.isk>
00000110 3D 31 E=1

Selection Pos:0/0x0 Length:0/0x0

Int32 {ittle) Signed: 1812021521/0<6C014111, Unsigned: 1812021521/ 16C014111
Int32 {big) Signed: 285472876/ (1141016C, Unsigned: 289472876/ 0 1141016C
Int 16 {ittle) Signed: 16657/ (4111, Unsigned: 16657/0d111

Int16 {big) Signed: 4417/0x 1141, Unsigned: 4417/ 1141

Figure 6 - Example Main Protocol Packet

Unfortunately there is now a problem, other than the initial length field and flags the rest of
the packet seems to be encrypted, or at least encoded. By default Citrix client and servers
employ ‘Basic’ encryption, this will need to be removed before the main protocol can be
attacked. First, Canape needs to be configured to handle the three protocol phases so that
specific parsing can be applied at the appropriate phase.

Context Information Security 30 Marsh Wall, London, E14 9TP +44 (0) 207 537 7515 www.contextis.com 8/25

White paper/Canape: Bytes your Bits

Modelling the Protocol State

In order to model the protocol state Canape provides a directed graph editor to represent
what is termed a ‘Net Graph' in the tool. These graphs serve two functions in Canape; firstly
they provide the ability fo model data flow. Each node on the graph represents some
discrete function, for example parsing of a particular protocol or causing a packet to be
logged (Canape only logs packets at points you explicitly tell it to). The other purpose is to
model state transitions, a state value can be set which reflects where in the protocol the
connection currently is, then simple decision nodes can be used to send packets for
different types of processing.

Detect And Set
EndoOfNeg

Figure 7 - Simple State Diagram for Citrix

Figure 7 shows the basic state diagram developed for the Citrix protocol. The inifial *hello’
and negotiation phases have been merged as distinguishing between them provides little
benefit. The large ‘SERVER’' node represents the location in the graph that packets coming
from the client enter the graph, these packets then flow along the edges and are affected
by the other nodes until it reaches the 'CLIENT' node. The ratfional for the naming convention
is the ‘SERVER’ is in this case bound to the listening TCP socket server in the proxy, while the
‘CLIENT" is bound fo the TCP client connecting over the network to the real server.

The grey nodes represent logging elements, any packet which traverses one of these nodes
is automatically logged to the packet log shown in Figure 3. The rhombus nodes are the
decision elements, if the current state is set to "EndOfNeg” then packets are sent through
the ‘main’ protocol parser (which in this example just means the packet is logged) otherwise
it is sent through as a negotiation packet.

The final blue node is the mechanism through which the state change is produced. This
node is configured to wait for the type 4 packet already described, at which point the state
is changed to indicate the end of negotiation.

Context Information Security 30 Marsh Wall, London, E14 9TP +44 (0) 207 537 7515 www.contextis.com

9/25

White paper/Canape: Bytes your Bits

Parsing the Main Protocol

Now that the protocol phases are separated out the main protocol can be parsed. As the
framing of this is a length/data based protocol, it is possible to do everything in Canape’s
built-in parser editor.

File View Trust Help

Citrix Parsers Project Explorer

E42H Project
[Enums
B Sequences

Bitrt12

i - @ Cirix_Frame Bitint
&5 Parsers System.Byte[Length]

i i@ Citrix_Frame_Parser

=]
4 Behaviour
DefaultEndian
4 Information
Description
Uuid
Misc
MemberCourt

Default Endian
The endian of the integer type for parsing

Figure 8 - Main Protocol Parser

Figure 8 shows the developed parser structure. It consists of a sequence of values and a
parsing wrapper. This can then be added to the graph as a ‘Dynamic’ node. Once
infroduced, logged packets change from the previous raw binary data into a free structure
as show on the left-hand side of Figure 9.

2 =] 110f130 - Qut - 127.0.0.1:53372 <=> 10.0.131.190:1494 - 29,/02/2012 17:19:00
© Bray © Tat
@ Hex () Text Search: () Binary @ Text

00000000 01 23 52 24 71 A7 F3 B3 F7 AS FO A2 B6& F5 5C 09 .fR§q§6’+¥6015\.
00000010 62 37 61 CD 9D C9 3C 30 b7aI.E. 0

Selection Pos:0/0x0 Length: 0/ Tl

Int32 {ittle) Signed: 603362683/ (24522301, Unsigned: 609362683/ 24522301
Int32 {big) Signed: 15092004/0x1235224, Unsigned: 15052004/ 1235224
Int 16 {ittle) Signed: 8961/0c2301. Unsigned: 8561/ [x2301

Figure 9 - Main Protocol Packet as a Tree

In order to allow for the packets to be converted back into a binary form each packet
carries with it the information required to serialize to a stream even if the length of the datfa
changes. This is especially important as it allows Canape to copy packets around, isolating

Context Information Security 30 Marsh Wall, London, E14 9TP +44 (0) 207 537 7515 www.contextis.com 10/ 25

White paper/Canape: Bytes your Bits

them from the network connection they originally came from. With the packets in this form it
is now possible fo remove the encryption.

Context Information Security 30 Marsh Wall, London, E14 9TP +44 (0) 207 537 7515 www.contextis.com 11/25

White paper/Canape: Bytes your Bits

Removing the Encryption

The default encryption used by Citrix is effectively a basic XOR cipher with a 1 byte key, not
the most secure of protocols. Deriving the actual algorithm is fairly trivial, but the simplest
way is to decompile the Java client and directly extract the algorithm.

public EncryptProtocolDriver ()
{

super (false, q);
= false;

false;

(bvte) (new Random()) .nextInt() ;
(bvwte) (1 | 0=43) ;

(bvte) (1 | 0x43);

o e b T

private final woid b(bvte abytel[], int 1l, int jl1)
{
int k1 = (il + j1) - 1;
byvte bytel abytel[kl];
bvte bytel 1;
for(int 11 = k1; 11 > il; 11--)
abyvtel[1ll] *= abytel[ll - 11 * bytel;

abvtel[il] *= 7 *~ bytel;
i = bytel;

Figure 10 - Java Code for Encryption Algorithm

As the encryption is a property of the connection rather than the individual packets (as it
uses the value of the previous encrypted byte to determine the value of the next one) this
cannot just be applied to the packet and copied around like with the parsing of the
framing. Instead it must be applied in the connection itself, with individual decrypt and
encrypt nodes (as shown in Figure 11). The graph shown is actually containing in a sub-
graph of the original state model (represented by a single node in the graph). This allows
easy reuse of the discrete functionality and reduces complexity.

Context Information Security 30 Marsh Wall, London, E14 9TP +44 (0) 207 537 7515 www.contextis.com 12/ 25

White paper/Canape: Bytes your Bits

Help

Project Explorer

CLIENTO [Ma.g:r;o;?ml H Decrypt }Eﬂgt Out

True

Propeties {Collectior

SelectionPal /
Filters

[» Fiters DataFrams

MatchAllFite False

Properties

MainProtocol

Parser

Textual key/value pairs to
provide arbitrany valuesto ..

Figure 11 - Main Protocol Graph with Crypto

(=] Project

The encryption and decryption nodes are implemented in custom code, as it falls outside of
basic parsing; this is however the only custom code required in the entire example project.
For the full code see the example project supplied with this whitepaper.

‘ CANAPE - C:\Users\test\Desktop\bh\citrix_example_project.canape

File View Trust Help

~ Citrix Encryption

v X

BREIVI¥BR@aY e ©
hsing Svstem;
2 nsing CANAPE.DataFrames;

4 class CitrixEncryptionNode :
{

CRNAPE.Nodes.BasePipelineNode

bool _lastByteSet = false:
int lastByte = 0;

// Called when a new frame is received
i

byte[] data = dataNode.ToArray():

SP TE mmemeeane o mmd srm mavrs am e me lesoar

I

Datalode datalode = frame.SelectSingleNode ("/Data");

protected override wvoid OnInput (CANAPE.DataFrames.DataFrame frame)

[

Message

Line

Column

n

~[#] Citrix Encryption
{5 Services

b EY Citrix Socks Proxy

“-[i5 Graphs

i{] Cirix State Graph

@] Main Protocol Graph

Figure 12 - Encryption Code

Context Information Security

30 Marsh Wall, London, E14 9TP

+44 (0) 207 537 7515

www.contextis.com 13/25

White paper/Canape: Bytes your Bits

Disabling Compression

Now that the encryption has been removed it exposes that the underlying protocol is also
compressed. The compression code is unfortunately not as simple as the basic encryption
and it is also proprietary so we cannoft easily repurpose existing code such as ZLib to
decompress it. Also the Java Client has many hundreds of lines of obfuscated code making
it difficult to extract. It is possible to disable it in the client through a registry modification but
it would be preferable to be able to do it on the wire.

To find out how to do this the following registry key was set to disable compression and the
packets compared.

HKEY LOCAL MACHINE\SOFTWARE\Citrix\ICA
Client\Engine\Configuration\Advanced\Modules \TCP/IP\Compress = Off

This identified a single change in the initial negotiation packets, if compressed a specific set
of bytesis set to 10 12, if compression is disabled they are set to 00 00.

<= Previous =p Next Differencel of1

000000R0 53 54 43 50 4E 2E 44 4C 4C 00 00 00 0C - || 000000R0 53 54 43 50 4E 2E 44 4C 4C 00 00 00 00 =
00000080 00 00 00 48 36 10 &7 90 BD OC 00 B4 0% 00000080 00 00 00 48 36 10 &7 90 BD 0OC 00 B4 05
000000C0 77 7F 00 00 01 00 00 0O 0O 00 00 00 OC 000000C0 77 7F 00 00 01 00 00 00 00 00 00 00 00
00000000 00 00 00 O1 23 00 25 00 16 04 01 02 5C 000000D0 00 00 00 01 23 00 28 00 16 04 01 02 50
000000ED 52 41 4D 4E 2E 44 4C 4C 00 50 44 52 4¢ Q00000ED 52 41 4D 4E 2E 44 4C 4C 00 50 44 52 4%
000000F0 45 00 48 36 10 67 90 BD O0C 00 0% 00 0C Q00000F0 45 00 48 36 10 &7 30 BD OC 00 08 00 00
00000100 00 29 00 15 04 01 01 50 44 43 52 59 5(00000100 00 29 00 15 04 01 01 50 44 43 52 59 50
00000110 44 4C 4C 00 50 44 43 52 59 50 54 31 0(|| 00000110 44 4C 4C 00 50 44 43 52 59 50 54 31 00
00000120 67 90 BD OC 00 0B 00 00 00 01 01 2C 0C 00000120 67 90 BD 0OC 00 0B 00 00 00 01 01 2C 00
00000130 04 01 01 50 44 43 4F 4D 50 4E 2E 44 4C 00000130 04 01 01 50 44 43 4F 4D 50 4E 2E 44 4C
00000140 00 00 00 00 00 00 00 00 00 48 36 FO &¢ 00000140 00 00 00 00 00 00 00 00 00 48 36 FO &6
00000150 00 OC 00 00 00 00 00 00 00 01 58 02 5% 00000150 00 0C 00 00 00 00 00 00 00 0L 58 02 58
00000160 01 09 57 44 49 43 41 33 30 4E 2E 44 4C 00000160 01 09 57 44 49 43 41 33 30 4E 2E 44 4C
00000170 44 49 43 41 00 00 00 00 43 36 10 67 9C 00000170 44 49 43 41 00 00 00 00 48 36 10 67 390

m

00000120 3B 47 47 5D 1D 02 DC 07 10 OF 2B 42 07 || 00000120 3B 47 47 5D 1D 02 DC 07 10 OF 28 42 07
00000130 03 00 56 00 83 13 2C 00 2C 00 FF FF FE || 00000130 08 00 56 00 83 13 2C 00 2C 00 FF FF FF
00000120 00 00 00 00 14 00 Bé oo 1ANEFNM00 oo 0% 000001R0 00 00 00 00 14 00 Be oo SNEEIEoo oo 03

000001B0 7E 01 00 00 28 00 19 00 80 02 C& 00 0Ff 00000180 7E 01 00 00 28 00 1% 00 80 02 C8 00 08
000001Ca 50 00 19 00 80 02 C3 00 03 08 02 00 5C 000001C0 50 00 19 00 80 02 C3 00 08 08 02 00 50
00000100 80 02 58 01 08 08 03 00 50 00 32 00 3C 000001D0 20 02 58 01 08 03 03 00 50 00 32 00 20
000001E0 08 08 04 00 50 00 3C 00 DO 02 EO 01 0¢F 000001ED 08 08 04 00 50 00 3C 00 DO 02 EO 01 0%
000001F0 24 00 1% 00 R4 04 90 01 09 10 0& 00 34 000001F0 24 00 19 00 R4 04 80 01 09 10 0& 00 24
00000200 R4 04 S5E 01 09 0B 07 00 54 00 32 00 R4 00000200 A4 04 S5E 01 09 03 07 00 84 00 32 00 R4
00000210 09 03 43 54 53 54 57 20 20 00 0% 00 432 00000210 0% 08 43 54 53 54 57 20 20 00 09 00 43
00000220 42 52 00 00 OC 00 43 54 58 43 44 4D acC 00000220 42 52 00 00 0OC 00 43 54 58 43 44 4D 20
00000230 43 54 58 43 50 4D 20 00 04 00 43 54 5& 00000230 43 54 58 43 50 4D 20 00 04 00 43 54 58
00000240 31 00 05 00 43 54 52 43 4F 4D 32 00 0¢ 00000240 31 00 05 00 43 54 52 43 4F 4D 32 00 08
00000250 58 4C 50 54 31 00 01 00 43 54 58 4C S5C _ || 00000250 58 4C 50 54 31 00 01 00 43 54 58 4C 50

Figure 13 - Packet Differences between Compressed and Uncompressed

Using a built in node type in Canape it is possible to do arbitrary binary replacements to
change the values to zeros before passing along to the server. Doing this allows the project
to disable encryption without having to change the client’s configuration any more than
necessary.

The example project is now complete, it is possible to now add functionality to fuzz and
modify packets as they fraverse the network and find vulnerabilities. The next section
describes one such issue which was previously identified and subsequently has been fixed
by Citrix.

Context Information Security 30 Marsh Wall, London, E14 9TP +44 (0) 207 537 7515 www.contextis.com

14/ 25

White paper/Canape: Bytes your Bits

Citrix Vulnerability

This section of the whitepaper discusses the technique used to exploit the Citrix client

vulnerability. The vulnerability itself is quite old, originally found in February 2008 but took the

Vendor 2 years to fully fix the issue in all the affected clientsv. Context found and exploited

the vulnerability on Windows XP SP2, but the patch covered the following clients:

e Windows
e Linux (x86 and ARM)

e Solaris (Sparc and x86)
e Windows Mobile
e Mac

Attack Method

The attack works by enficing a victim to a malicious website which downloads an ICA file
configured to connect to a fake ICA server. Standard web browsers with Citrix installed will

automatically download an ICA file and pass it to the Citrix client which will then use the

details in the file to connect to the ICA server.

The file is in the style of a simple INI file which contains the IP address of the target server. For

the Proof of Concept that we developed the server was not a real Citrix server but an
instance of Canape (in 2008 when the vulnerability was initially exploited, Canape was not
available so custom code was used). The exploit is then sent to the ICA client and the

machine exploited.

Memory Corruption Bug

The actual bug that was exploited was in the Citrix ThinWire virtual driver that is responsible

for the graphics being displayed to the user. The bug was in an index overflow where a
bounds check was not performed on data being received from the server. This issue was
found by fuzzing the binary ICA protocol which resulted in the following crash:

OllyDbg - whica32.exe - [CPU - main thread, module ¥YDTW30N]

@File Wiew Debug Plugins Options window Help

=101 x|
=& %]

Sl x| wn] i+ $1E A] 4 JJJJJEQJEHJﬂJ i=[i] 7

s592730E| SBYCZ4 1C Ml EDI,DWORD FTR S5: [ESP+1C] Registers (FFPU)

EESETI0F| SEvdZd 24 Moy ESI,OWORD PTR S5: [ESF+24] Trr CIGerET

EESE7IES| GR4CE4 2 HOW ECH,OWORD PTR 55: [ESP+2&] ECY BBREFCO4

EE927IEY | vER 5 JHP SHORT UDTW38M. G69273EE ECY BEOEREET

EE927IED| 66 EEDE TEST EB¥,EBX EE DCOCBEGHE

SESEFIEL|w7E EC JHZ SHORT UDTWSEN. 6692744 EiF BB1ZEEEC

SESEFIEE(&8:E8987 HOU WORD PTR DS:[EDII, A% EEF BREIBSAE

SSEPEET| GE:SIEF @2 HOU WORD FTR DS:[EOI+21,EX S i

EE1SES1 CE1TEEN MOV A, WORD PTR DS: [ECE+EEI2170E] = D

B Fi E51 8947 B3 MaL WoORD PTR DS:[EDI+Z]1,RAH

Coacrani| 2o Frrresea |AND RK.BRRER oo reorrend s oo e
EEIZ7AE9| CI1EA B4 SHL EA, 4 -J E o Eg SS%E 355{5 SEFFFFE
GESErAEE| SE4dBE £ HOU_EAX, DWORD FTR OS: EAN+ECH+E] A B St ABES 35Bit AiFEFFH
£ESEraln| S50 TEST EAZ,ERR 1 DO: aoes 35Bit AiFFFFH
EESET41Z|wTd BE JE SHORT WOTW3EH, S632741C £ 6 FS Boen SSbit SFFhFEA
£E5E7414| SEE424 3C Moy EDX,DWORD FTR §5: [ESP+3C] T8 EE aooe RO

F=r=L=} a1 = D&

" =7
DI PRI B 08 LastErr ERROR_SUCCESS
EFL 42, i [

Address |Hex dump ASCII

EESE17LE| @R 00 BP9 B@| @1 @8 B2 06| W, .. 0.8, g:g
GA931708| FE 45 37 @[0@ @@ B8 @a|°Ev..... P
66931702 @2 @@ @R AA[1@ 49 37 @al@... k7. ivin M
EE2217ED| B1 QP B9 00[00 B8 99 0a(8....... e
SESS1FES| BB OO BE G860 98 88 @8l wf &7
Accezs violation when reading [BEIF145C] - uze Shift+F7/F8/F to pazs exception to pragram | Fauzed

Figure 14 - Citrix crash during fuzzing.

Context Information Security

30 Marsh Wall, London, E14 9TP

+44 (0) 207 537 7515

www.contextis.com

15/ 25

White paper/Canape: Bytes your Bits E

This crash is in the VDTW30N module which is Virtual Driver Thin Wire responsible for the
graphical updates. This crash is due to the value of ECX being out-of-bounds for the lookup
at the fixed offset of 669317C8. The fuzz value used for this case was FFB7 which can be seen
in the lower part of the EAX register. A read violation is an indication of a bug but is often not

exploitable directly. Therefore further analysis of the crash and the subsequent code to
determine code execution flow was employed. The following screenshot shows the
surrounding code:

65927 20B| 2SB7C24 1C Mol EDT, DWORD PTR S5: [ESP+1C]
EES2VE0F| SBV424 24 Mol ESI, DWORD FTR SS5:[ESP+24]
eE92vV3EZ| SB4C24 28 MOl ECy, DWORD PTR S55: [ESP+28]
BE9272EV|vEB BE JHP SHORT LOTW2EM. 66927 3EE
EES9Z2VEED| 661 850B TEST Bx,BH

BE92FV3EC|~ 75 SC JHE SHORT WOTWZ8M. 66927 44H

25927 3EE| 6618907 Mol WorRD PTR DS: CEODID, Ax
EEYZVEFL| BE1895F B2 == R e R =Rt e e e
EES2VEFS| B618BE1 ML A WORD PTR DS:[ECH+66931?EE]I
BE92VIFC| 6618947 B3 : .
EE92V40E| 2B4C2d4 2C Mol ECx, DWORD PTR S5: [ESP+2C]
EES92V4E4| 25 FFFFERER AMO ERX, BFFFF

ee927483| ClEA B4 SHL ER#, 4

cE92740c| SB4483 B3 Mol ER:, OWORD PTR 0O5: [EAK+ECH+E]
eE927418| 25CH TEST ERX,ERX

eE927412| w74 ag JE SHORT UDTWZEM. 66927410
ee92v414| 8BS54:24 3C Mol EDw, OWORD PTR S55: [ESP+3C]
ee92v412) 57 PUSH EDI

EE927419] 52

e632v41A| FFOA CHLL EAX

SO0 TAIT onAATA AA T = DTE ST FCCDaaAAT

Figure 15 - Reverse Engineering the Crash

The first highlighted section shows the current crash location, the second shows a call to
execute the memory at EAX. Further analysis shows that the value that we control influences
the ultimate value of EAX aft this point and thus where the code will be executed.

The complexity comes from deftermining how the value from the ICA packet is used to
derive the value for EAX and therefore where the code is going to be executed. It was
found to be easiest to brute force the value and examine the crashes that occur to find an
input value which will result in the code running through fo the call to EAX with a value
which is in a memory area where we can influence. The brute forcing resulted in a value

which caused the following crash:

Context Information Security

30 Marsh Wall, London, E14 9TP

+44 (0) 207 537 7515 www.contextis.com 16 /25

White paper/Canape: Bytes your Bits

0OllyDbg - wfica32.exe - [CPU - main thread] 1Ol =l
@ File Wiew Debug Plugins Options ‘Window Help - |ﬁ||5|

Bl x] »ju] v+ 34]] LjEjmiTjwin[cl/|x[BR]. 5] =E]?]

= @ ERX BI1FZESER
ECH 66938Egg UDOTW2EM, 662336

EDI @170993C
EIF @1FzEZ88

ES BB23 232bit BIFFFFF]
CS BB1E 22hit BIFFFFF]

a
1
A @ S5 823 3Zhit BIFFFFF]
£ B D5 B823 32bit BIFFFFF
£ @ F% 6892E 22bir TFFOFGO
% E g GE @80 HULL
0@ LastErr ERROR_SUCCESH
EFL POBERZEE [
Address | Hext dump ASCII
GEIOEE0E[BE DR B0 60| 08 26 44 OE| ... B80.
HE45BEEZ B8 ©E 08 oo
Bo4o6a1%| b BY o
BE45EEEA| O B 43 wii. A, - | S91ZEEl -
Access violation when executing [01F2E800] - use Shift+F7/F8/F to pazs exception to program Pauzed

Figure 16 - Control EAX

As can be seen the program is frying to execute code at the address 01F2E800. There is
currently no code at this address but by examining the memory layout we can work out if it
is possible to heap spray up to that location:

(5 e a1 N 2 T R Hi- v | Bl Hl
H1 336860 BAEE1BEE Friv| R Ell
H1 348880 BAEEFBEH Map | Rl Ell
B13FEEE0| BEC0RE00 Fi-iv| Rl Ell
B1 406880 | BEEEZE00 Fi-iv| Rl Ell
B1 500880 | BEEEZE00 Fiiv| Rl Ell
B15 16860 BEEEIEEH Fiiv| Bl Ell
B16 16880 BAEE1BEE hnetofg FE header Imag| R RUWE
H1&11880) BEE3FEEH hnetofg | . tedt code, import{ Imag| B RUWE
B1EEBEAEH| BAEE1AEH hnetofg | . orpc Imag| R RUWE
A1651888| AAEE1EE8A| hnetocfa | . data data Imag| R RUE
B1EE2860) BAE11800) hnetofg | Wrsrc CESOUCSES Imag| R RUE
B1&653880| BEEEEE0N hnetofg | Wreloc relocat ions| Imag| B RUWE
B1FSEBBE| BEEE1BEH Friwv| Bl Gua) Bl
B1FEFEEE| BEEE1BEE stack of th]Priv|EW Gual Bl
H17F7EEEE| BEEE1BEE P i Rl Ell
EE2SHEAN BHADH1BEH HETARPI32 FE header Imag R RUWE
EE251860| BAR408600 HETAFPIZZ| . tent code, import{ Imag| R RUWE
SBOAEDGE| DBAR3GEY| NETAPL32| .data | data Inag| RUE

Figure 17 - Memory layout before heap spray

Currently the highest addressed heap block starts at offset 01770000 as can be seenin
Figure 17, which is just below the location where the exploit will jump to. Therefore if we can
get the application to allocate more heap memory with data that we control then we will
call into the area where we have placed our data.

Heap Spraying

We used a standard heap spray technique to ensure that we have data at the location
where the exploit will call. For ICA, we used a Thinwire Virtual Driver packet sent multiple
fimes to fill the heap. The client was found to be allocating data for these packets but not
releasing them. A second flaw in the Citrix client allowed us to cause large amounts of
memory fo be filled using only a smaller sized packet. This bug was in the way that the Citrix
client would not check the length field within a packet and would copy the amount of data
that was stated into memory. This data was copied out of a static buffer that was used to
receive all ICA packets and therefore we could set a long length and it would copy that
amount of datfa. The data that was not actually in the packet would be replaced with data
from the previous packet.

Context Information Security 30 Marsh Wall, London, E14 9TP +44 (0) 207 537 7515 www.contextis.com 17 /25

White paper/Canape: Bytes your Bits

So to heap spray the memory we send an initial large packet to prime the static packet
buffer and then send thousands of small packets with a large inner length field to populate
the heap. Figure 18 shows the memory layout that is the result of this flood.

B1 326880 BA0E] B0E FPriv| Rl Ell
H1336E8H| BA0E] B0E Friv| R Rl
81340880 BE0EFE0E Map | Rl Eill
B13CHEAN| BADE] BOE Fi-iv| Rl Fill
B13EBEEN | BECEHB0E Fiiv| Rl Rl
B13FEEEE| BEDEZEHE Fiiv| Bl Ell
B14FEEEE | BADESEEE P i) Bl Ell
BH1EHHEEL | BEHEHSEHE Friv| B Bl
Bl &0EEAEH| BAEE1BA0E | hnetcfg PE header Imag| R RWE
H16E1888| AAASFEEE| hnetocfg | .tert code, import] Imag| R RUE
B1&4BE80) BE0E1808| hnetofa | .orpc Imag| R RWE
B1&41880) BAOE1B0E hnetofg | .data data Imag| R RUWE
Bl&d42880) BAE]1 18068 hnetofg | .rsrc CESOUTCES Imag| R EWE
B1653880 | BADEEAEE hnetofg | .reloc relozations| Imag| R RWE
H1FEEHAE | BELHE] BHE Friv| Bl Gual Bl
H1FEFEAE| BAEE] BEE stack of thiPriv| Bl Gual Rl
H17FEHEEE| B8 1FEARR Friv| Rl Rl
81046880 BESFEADE P i) Bl Eill
B2 146880 | BETZ21 8068 P i) Rl Fill
SEEZSHEE0) BA0E] B0E HETAPI3Z2 FE header Imag| R RWE
EE2S1860) BA04080H HETAPI3Z| . teut code, importy Imag| R EWE
EEZHERAN | BADEIAEE HETAPI3Z2| .data data Imaa| R RWE
SESE1006| 9BDO1068| NETHPISE| .rsre | resources | Imad|R RIE

Figure 18 - Memory layout post heap spray

Thus offset 01F2E800 is now a valid address. However, the exact data at this location is not
deterministic. It maybe a valid heap allocation from our heap spray or it might be in a block
of zero bytes which are between allocations. Therefore we needed the exploit to execute
through the zeroed block, intfo the data we control, through our NOP sled ultimately info the
shellcode. A zero block of memory is disassembled in Figure 19.

B1FZF10A| BBEa ADD BYTE PTR DS:[ERX],HL
BIFZFI0C| BEBEE ADD EBYTE PTR DS:[ERX], AL
B1FZFI0E| BBEBEA ADD BYTE PTR DS:L[ERX], AL
B1FZFLIEA| BBEBEE ADD BYTE PTR D5:[EAXI, AL
B1FZFLIEZ| BEEE ADD BYTE PTR DS:[ERXI, AL
BIFZF1E4| BB8Ea ADD BYTE PTR DS:[ERX], AL
B1FZF1EG| BBBEA ADD BYTE PTR DS:[ERX],HL
B1FZF1IEZ| BBBEA ADD BYTE PTR DS:[ERX], AL
H1FZF1EA| BBEBEA ADD BYTE PTR DS:[ERXI, AL
B1FZFLIEC| B@B8B8a ADD BYTE PTR D5:[EAXI, AL
G1FZF1EE| B@B8a8a ADD EYTE PTR DS:[ERXD, AL
BIFZF1FA| BBEa ADD BYTE PTR DS:[ERX],HL
BIFZFIFZ| BBEBEE ADD EBYTE PTR DS:[ERX], AL
B1FZF1F4| BBEBEAE ADD BYTE PTR DS:L[ERX], AL
B1FZFIFE| BEBEA ADD BYTE PTR D5:[EAXI, AL
B1FZFLIFZ| BEEa ADD BYTE PTR DS:[ERXI, AL
BIFZF1IFA| BB8Ea ADD BYTE PTR DS:[ERX], AL
BIFZFIFC| BB88a AOD BYTE PTR DS5:[ERXI, AL

Figure 19 - Zero memory NOP sled

This is a valid NOP instruction for this exploit as EAX will be pointing to a writable location. We
know that we call the value of EAX and therefore it is guaranteed to be on the heap.

The next section of bytes that will be executed will be a heap header block. In Windows XP
(which was used for the PoC) the header has the following structure:

Segment
Index

Prev Size Cookie Flags Unused

0 2 4 5 6 7 8

Figure 20 - Heap Header Layout

The first two bytes are the size of the allocation (in 8 byte units); this is derived from the size of
the packet and therefore is something we control. The other values are all fixed with the
exception of the cookie value which is random. We therefore need this header block to be
interpreted as instructions which causes no serious side effects. By examining the x86
instruction set a value was found that would ensure the dynamic value in the header block

Context Information Security 30 Marsh Wall, London, E14 9TP +44 (0) 207 537 7515 www.contextis.com 18 /25

White paper/Canape: Bytes your Bits

would be safely executed in both alignment situations. This value is 8100 as can be seenin
Figure 21. The zeros are the unallocated data this is followed by the head size which has
been sef to 8100. This represents an ADD instruction to where EAX points to with the DWORD
value in the following four bytes. Due to the fact that EAX is a valid pointer, this command
will consume the random cookie value safely.

BEEE ROD BYTE FTR DS:CERX],HL

BEEE ROD BYTE FTR DOS:CERX], AL

2188 Blals2al AOO DWaRD FTR DS:CERX], 169@1E1
ac a3 OF AL, =2

20 HOF

20 HOF

Figure 21 - NOP heap header

The OR instruction is also safe because it has only a minor side effect on EAX. Therefore the
heap flood packets must result in a memory allocation of 0x0408 bytes in length (which is
0x81 multiplied by 8). By doing this the exploit will execute from the heap through the zeros,
over the heap header and into the shellcode. It was also necessary to place a few jumps in
specific places in the packet to ensure it was a valid ThinWire packet but would still be
executed.

Context Information Security 30 Marsh Wall, London, E14 9TP +44 (0) 207 537 7515 www.contextis.com

19 /25

White paper/Canape: Bytes your Bits a

Putting It All Together

This final section describes how Canape can be used to exploit the vulnerability described in
the previous section using its built-in functionality. The tool supports the development of
custom networking services and clients. This allows a final exploiting server to be developed
entirely within Canape for demonstrating the vulnerability.

The Full Exploit
The steps for the exploit to work are as follows:

The victim visits a malicious site (and they have Citrix installed)

The site sends an ICA file to the client.

The ICA file instructs the client to connect to the malicious Citrix server.

The fake server then sends the hello and initial negotiation packefs.

When the main stream is established a large packet is sent with the NOP sled and shellcode to prime
the heap.

3000 small packets are sent with a large length field to fill the heap.

Finally the exploit trigger packet is sent fo cause the offset overflow that executes the shellcode.

o=

N o

Configuring the Replay Server

To effectively replay the traffic from server to client the packets first need to be placed info
a separate packet log. This allows the built-in replay services to access the required data.

File View Trust Help

Attack Packets

=
o

Timestamp Tag Network Data

29/02/2012 08:27:59 Log Inttial I~ 127.0.0.1:1295 <. WCAw00
29/02/2012 08:27:59 Negotigtion ... 127.0.0.1:1295 <... Megotiation: 0 ‘x07...
29/02/2012 08:27:59 Negotigtion ... 127.0.0.1:1295 <. Negotiation: 2 ...
29/02/2012 08:27:59 Negotigtion ... 127.0.0.1:1295 <. Megotiation: 2 'x0C...
29/02/2012 08:27:59 Negotigtion ... 127.0.0.1:1295 <... Megotiation: 2 ‘x08...
29/02/2012 05:00:18 Pre Flood Unknown Main_Sequence
25/02/2012 09:00:18 Pre Food Unknown Main_Sequence
29/02/2012 05:00:18 Pre Flood Unknown Main_Sequence
25/02/2012 09:00:18 Pre Food Unknown Main_Sequence
29/02/2012 05:00:18 Pre Flood Unknown Main_Sequence

1
2
3
4
5
6
=
8
5

Figure 22 - Attack Packets

Each individual phase is marked with a special ‘Tag’ value which is used by the replay server
to select the appropriate packet to send.

The replay server needs to be configured; this is done by creating a new network server and
specifying the ‘Full Replay Server’ type. The configuration of this server contains a set of filters
which match on specific packet data. When a match is made a ‘Tag’ is selected and the
server sends back only those packets which match the tag.

Context Information Security 30 Marsh Wall, London, E14 9TP +44 (0) 207 537 7515 www.contextis.com 20/ 25

White paper/Canape: Bytes your Bits

Trust Help

Replay Server]/ Shell Server]/ HTTP Server] Project Explorer
B+ 1] Project
—-{5 Scripts

Settings | Packet Log I Log I Conns I Net Graphs I Injector|

Met Graph: [Top Graph v] [

Details | S5
Local Port AnyBind [C] IPv6 @ TCP) LDP Broadcast

Server

Full Replay by Tag Endpoint Select 2] Negotiation Graph
Convert ToBasic True 2] Wain Graph
Packets Aitack Packets

> ReplayEntries ReplayBy TagEntryFactory[] Amay
TagOnStart Log Initial In

Convert ToBasic
If true then the packets are converted back to a basic byte form before sending

Figure 23 - Server Configuration
Setting Up HTTP and Remote Shell Server

The HTTP and Remote shell servers are configured in a similar way. For HTTP support Canape
contains a very basic HTTP server which will send back a simple block of data to a HTTP
request. For the Remote Shell a simple TCP server can be configured on port 4444 (which is
specific to the shell code).

File View Trust Help
Replay Server]/SheIIServer)/H'I'IP Server]
Settings | Packet Log I Log I Conns I Net Graphs I Injector|

Met Graph: [Default v] [

Details | SSL
localPot80 5] W] AyBnd [IPv6 @ TCP © UDP [| Broadcast

Server

Simple HTTP Server Select

CloseAfterSending
Contert Type
HitpPath
> NotFoundResponseData
> ValidResponseData

CloseAfterSending
Specify that the connection should be closed after sending

Figure 24 - HTTP Server Configuration

A web browser can now be used to retrieve the ICA file which sets the whole exploit process
in motion.

The final packet sent to the ICA client is the one used to exploit the vulnerability; Figure 25
shows the exploit packet with the vulnerable value highlighted.

Context Information Security 30 Marsh Wall, London, E14 9TP +44 (0) 207 537 7515 www.contextis.com 21/25

White paper/Canape: Bytes your Bits

<= = 3 2] 12 of 12 - Do Exploit - Unknown - 29/02/2012 09:00:25
Searh: © By ® Tox
=t / © Hex © Tex © Binary

00000000 00 1E 44 05
00000010 85 15 00 00
00000020 08 00 02 18
00000030 40 06 00 04
00000040 00 7 03 BN
00000050 90 90 90 90

00000060 80

Selection Pos:77/(edD Length: 2/

Int32 {ittle) Signed: -1869610057/ 30500367, Unsigned: 2425357239/ 030900387
Int32 {pig) Signed: -1224503152/B7035090, Unsigned: 3070464144/ 0B 7033050
Int16 fittle) Signed: 951/0x3B7, Unsigned: 951,387

Figure 25 - The Exploit Packet

The reverse shell connection should now be available.

File View Trust Help

Settings | Packet Log | Log I Conns I Met Graphs I Injector|

Timestamp Tag MNetwork Data

01/03/2012 14:15:10 10.0.10.89:108... Microsoft Windows XP [Version 5.1.2600]

01/03/2012 14:15:10 10.0.10.89:108... “oc0D'x0A(C) Copyright 1985-2001 Microsoft Corp. ‘0D DA 0D/

01/03/2012 14:15:53 10.0.10.89:108... dir'ecDD%DA

01/03/2012 14:15:53 10.0.10.89:108... dir'scDD"cDA

01/03/2012 14:15:53 10.0.10.85:108... Volume in drive C has no label "oc0D'ac0A Volume Serial Number i
@ MNegotiation Graph

]ﬂ Main Graph

=i Data

i e[Attack Packets

o Tests

Figure 26 - Reverse Shell Connection

Context Information Security 30 Marsh Wall, London, E14 9TP +44 (0) 207 537 7515 www.contextis.com 22 /25

White paper/Canape: Bytes your Bits

Conclusion

This whitepaper has demonstrated the process through which a bespoke binary protocol
can be analysed and manipulated in Canape without a substantial amount of
development effort. There is nothing particularly special in the use of Citrix ICA for this
demonstration, the tool can equally be used to develop frameworks for other protocols, it is
not even restricted to binary as text based protocols can be handled as well.

Further information on the usage of Canape as well as numerous tutorials is available on the
project website, http://canape.contextis.com.

Context Information Security 30 Marsh Wall, London, E14 9TP +44 (0) 207 537 7515 www.contextis.com 23 /25

http://canape.contextis.com/

White paper/Canape: Bytes your Bits

About Context

Context Information Security is an independent security consultancy specialising in both
technical security and information assurance services.

The company was founded in 1998. Its client base has grown steadily over the years, thanks
in large part to personal recommendations from existing clients who value us as business
partners. We believe our success is based on the value our clients place on our product-
agnostic, holistic approach; the way we work closely with them to develop a tailored
service; and fto the independence, integrity and technical skills of our consultants.

Context are ideally placed to work with clients worldwide with offices in the UK, Australia and Germany.

The company’s client base now includes some of the most prestigious blue chip companies
in the world, as well as government organisations.

The best security experts need to bring a broad portfolio of skills to the job, so Context has
always sought to recruit staff with extensive business experience as well as technical
expertise. Our aim is fo provide effective and practical solutions, advice and support: when
we report back to clients we always communicate our findings and recommendations in
plain terms at a business level as well as in the form of an in-depth technical report.

s]context

INFORMATION SECURITY

Context Information Security 30 Marsh Wall, London, E14 9TP +44 (0) 207 537 7515 www.contextis.com 24 /25

White paper/Canape: Bytes your Bits

Works Cited

i Context App Tool - hitp://cat.contextis.com

i Fiddler - htp://fiddler2.com/fiddler2/

it Canape - http://canape.contextis.com

v FreeCap - http://www.freecap.ru/eng/

v Citrix Security Advisory - http://support.citrix.com/article/CTX125975

Context Information Security Lid

London (HQ) Cheltenham Dusseldorf Melbourne
4th Floor Corinth House Adersstr. 28, 1.0G Level 9
30 Marsh Wal 117 Bath Road D-40215 DUsseldorf 440 Collins Street
Melbourne
London E14 9TP Cheltenham GL53 7LS Germany Australia
United Kingdom United Kingdom
Context Information Security 30 Marsh Wall, London, E14 9TP +44 (0) 207 537 7515 www.contextis.com 25/25

http://cat.contextis.com/
http://fiddler2.com/fiddler2/
http://canape.contextis.com/
http://www.freecap.ru/eng/
http://support.citrix.com/article/CTX125975

