

Context Information Security 30 Marsh Wall, London, E14 9TP +44 (0) 207 537 7515 www.contextis.com 1 / 25

White paper/Canape: Bytes your Bits

Canape: Bytes

your Bits

Inspecting and

Attacking the Citrix

ICA Protocol using

Canape

James Forshaw and Michael Jordon

whitepapers@contextis.com

Date: 16 March 2012

mailto:whitepapers@contextis.com

Context Information Security 30 Marsh Wall, London, E14 9TP +44 (0) 207 537 7515 www.contextis.com 2 / 25

White paper/Canape: Bytes your Bits

Contents

Introduction 3

Canape Overview 4

Modelling the Protocol State 9

Parsing the Main Protocol 10

Removing the Encryption 12

Disabling Compression 14

Citrix Vulnerability 15

Attack Method 15

Memory Corruption Bug 15

Heap Spraying 17

The Full Exploit 20

Configuring the Replay Server 20

Setting Up HTTP and Remote Shell Server 21

Conclusion 23

About Context 24

Works Cited 25

Context Information Security 30 Marsh Wall, London, E14 9TP +44 (0) 207 537 7515 www.contextis.com 3 / 25

White paper/Canape: Bytes your Bits

Introduction

Canape is a new network protocol analysis and manipulation tool for Windows which aims

to reduces the amount of work required during a security review to assess an arbitrary

protocol. It is designed to act in a similar fashion to pre-existing Web application testing tools

such as CATi and Fiddlerii, providing an interface to capture, manipulate and then replay

network traffic in any protocol, not just HTTP.

This whitepaper outlines how to use the tool to develop a framework for manipulating the

Citrix Independent Computing Architecture (ICA) protocol. ICA is a proprietary networking

protocol used by Citrix to provide remote application and desktop functionality for clients.

This protocol has been chosen because it is a complex binary protocol, something that

Canape was developed to manipulate and it does not seem to have had significant

amounts of security research aimed at it. Documentation for the protocol is scarce, and

even Wireshark does not come with a dissector for ICA.

By the end of the whitepaper, the goal is to give the reader a better understanding of the

ICA protocol itself and to give a suitable example for demonstrating the flexibility of the

Canape tool for security testing and research.

Canape can be downloaded from Context website at http://canape.contextis.comiii.

http://canape.contextis.com/

Context Information Security 30 Marsh Wall, London, E14 9TP +44 (0) 207 537 7515 www.contextis.com 4 / 25

White paper/Canape: Bytes your Bits

Canape Overview

Canape is a network testing tool for arbitrary protocols, but specifically designed for binary

ones. It contains built in functionality to implement standard network proxies and provide the

user the ability to capture and modify traffic to and from a server. The core can be

extended through multiple programming languages including C# and Python, to parse any

protocol as required thereby creating custom proxies tailored to the testing. It works at the

network application layer supporting both TCP and UDP connections through port

forwarding or by implementing a SOCKS or HTTP proxy. It does not capture data at the

Ethernet, IP or TCP layers directly.

Its main strength is reducing the amount of development effort usually associated with

effectively testing a new protocol. By providing a common mechanism to capture and

manipulate traffic, it aims to allow the security researcher to only develop the minimal

amount of code for the truly bespoke aspects of a protocol.

Context Information Security 30 Marsh Wall, London, E14 9TP +44 (0) 207 537 7515 www.contextis.com 5 / 25

White paper/Canape: Bytes your Bits

Developing a Canape Project

Canape groups the resources required to analyse and manipulate a protocol into a single

project, similar in many respects to that used in an Integrated Development Environment

(IDE) such as Visual Studio or Eclipse. The project might contain resources such as:

 Networking services, for example a SOCKS or HTTP proxy

 Directed network graphs defining the data flow and state model of the protocol

 User developed basic parsers

 Custom script code to parse more complex traffic, or to manipulate traffic in specific

ways

 Captured data such as logs of packets

 Test harnesses, used to develop and test parsing code in isolation from a network

connection.

Figure 1 - Screenshot Showing Example Project

All project resources are saved into a single file, by default with the ‘.canape’ extension. This

whitepaper is accompanied by an example project to parse basic Citrix ICA protocol traffic;

subsequent sections will refer to this project to reduce repetition.

Context Information Security 30 Marsh Wall, London, E14 9TP +44 (0) 207 537 7515 www.contextis.com 6 / 25

White paper/Canape: Bytes your Bits

Initial Traffic Capture

The first step in analysing a bespoke network protocol is capturing some example traffic; in

order to do this using Canape a mechanism is required to force the traffic through a

configured proxy. This can be done in a number of different ways, however some are more

flexible than others. The following list shows some example approaches to getting traffic into

Canape, in order of preference:

1. Configure the application to use a SOCKS or HTTP proxy

2. Use a third party tool (such as FreeCAPiv) to convert an application into using SOCKS.

3. Configure the application to go to a fixed IP address and port, and then use a fixed

proxy.

4. If the application looks up network destinations through DNS add an entry to the

‘hosts’ file to redirect it to a fixed IP address.

5. In the case of enclosed devices (i.e. mobile phones) then a fake DNS server (which is

supported in Canape itself) can be used to redirect the traffic to Canape.

Fortunately in Citrix it is possible to configure a SOCKS proxy for use when connecting to a

server as show in the following client configuration file.

Figure 2 - Example ICA File with Proxy Configuration Highlighted

To use this to capture traffic a SOCKS proxy can be created in Canape and started it up. By

default the proxy will capture all outgoing and incoming packets through the proxy and

display them in a packet log as shown:

[WFClient]

Version=2

TcpBrowserAddress=1.1.1.1

ICASOCKSProtocolVersion=0

ICASOCKSProxyHost=127.0.0.1

ICASOCKSProxyPortNumber=1080

[ApplicationServers]

test=

[test]

TransportDriver=TCP/IP

WinStationDriver=ICA 3.0

DesiredHRES=800

DesiredVRES=600

DesiredColor=8

Address=1.1.1.1

Context Information Security 30 Marsh Wall, London, E14 9TP +44 (0) 207 537 7515 www.contextis.com 7 / 25

White paper/Canape: Bytes your Bits

Figure 3 - Traffic Captured Through SOCKS Proxy

By double clicking individual packets it is possible to inspect each entry in greater detail.

These packets can also be copied and pasted to other parts of the application as required,

for example it is possible to copy packets into a test harness to aid in the development of

custom parsers.

Through inspection of the ICA traffic it becomes clear that there are three phases to the

protocol. First is a simple ‘hello’ identification phase, it starts with the server sending an ICA

magic string (as show in Figure 4), the client will then respond back with the same value.

Figure 4 - ICA Magic String

After the magic strings have been passed the protocol enters a negotiation phase where

the features of ICA are agreed. Each packet in the negotiation starts with a single byte

representing the type of the packet. The next two bytes represent the length of the following

data in little endian format (which is somewhat more unusual for network protocols). The

negotiation is completed when a packet of type 4 is sent from the client.

Context Information Security 30 Marsh Wall, London, E14 9TP +44 (0) 207 537 7515 www.contextis.com 8 / 25

White paper/Canape: Bytes your Bits

Figure 5 - Example Negotiation Packet

The final phase, which will be referred to as the ‘main’ protocol, now begins. Each packet is

again fairly simple on the outside. Each ‘frame’ of the protocol starts with a 12 bit little-

endian length field, followed by a 4 bit set of flags. This is followed by the number of bytes

indicated in the length field.

Figure 6 - Example Main Protocol Packet

Unfortunately there is now a problem, other than the initial length field and flags the rest of

the packet seems to be encrypted, or at least encoded. By default Citrix client and servers

employ ‘Basic’ encryption, this will need to be removed before the main protocol can be

attacked. First, Canape needs to be configured to handle the three protocol phases so that

specific parsing can be applied at the appropriate phase.

Context Information Security 30 Marsh Wall, London, E14 9TP +44 (0) 207 537 7515 www.contextis.com 9 / 25

White paper/Canape: Bytes your Bits

Modelling the Protocol State

In order to model the protocol state Canape provides a directed graph editor to represent

what is termed a ‘Net Graph’ in the tool. These graphs serve two functions in Canape; firstly

they provide the ability to model data flow. Each node on the graph represents some

discrete function, for example parsing of a particular protocol or causing a packet to be

logged (Canape only logs packets at points you explicitly tell it to). The other purpose is to

model state transitions, a state value can be set which reflects where in the protocol the

connection currently is, then simple decision nodes can be used to send packets for

different types of processing.

Figure 7 - Simple State Diagram for Citrix

Figure 7 shows the basic state diagram developed for the Citrix protocol. The initial ‘hello’

and negotiation phases have been merged as distinguishing between them provides little

benefit. The large ‘SERVER’ node represents the location in the graph that packets coming

from the client enter the graph, these packets then flow along the edges and are affected

by the other nodes until it reaches the ‘CLIENT’ node. The rational for the naming convention

is the ‘SERVER’ is in this case bound to the listening TCP socket server in the proxy, while the

‘CLIENT’ is bound to the TCP client connecting over the network to the real server.

The grey nodes represent logging elements, any packet which traverses one of these nodes

is automatically logged to the packet log shown in Figure 3. The rhombus nodes are the

decision elements, if the current state is set to “EndOfNeg” then packets are sent through

the ‘main’ protocol parser (which in this example just means the packet is logged) otherwise

it is sent through as a negotiation packet.

The final blue node is the mechanism through which the state change is produced. This

node is configured to wait for the type 4 packet already described, at which point the state

is changed to indicate the end of negotiation.

Context Information Security 30 Marsh Wall, London, E14 9TP +44 (0) 207 537 7515 www.contextis.com 10 / 25

White paper/Canape: Bytes your Bits

Parsing the Main Protocol

Now that the protocol phases are separated out the main protocol can be parsed. As the

framing of this is a length/data based protocol, it is possible to do everything in Canape’s

built-in parser editor.

Figure 8 - Main Protocol Parser

Figure 8 shows the developed parser structure. It consists of a sequence of values and a

parsing wrapper. This can then be added to the graph as a ‘Dynamic’ node. Once

introduced, logged packets change from the previous raw binary data into a tree structure

as show on the left-hand side of Figure 9.

Figure 9 - Main Protocol Packet as a Tree

In order to allow for the packets to be converted back into a binary form each packet

carries with it the information required to serialize to a stream even if the length of the data

changes. This is especially important as it allows Canape to copy packets around, isolating

Context Information Security 30 Marsh Wall, London, E14 9TP +44 (0) 207 537 7515 www.contextis.com 11 / 25

White paper/Canape: Bytes your Bits

them from the network connection they originally came from. With the packets in this form it

is now possible to remove the encryption.

Context Information Security 30 Marsh Wall, London, E14 9TP +44 (0) 207 537 7515 www.contextis.com 12 / 25

White paper/Canape: Bytes your Bits

Removing the Encryption

The default encryption used by Citrix is effectively a basic XOR cipher with a 1 byte key, not

the most secure of protocols. Deriving the actual algorithm is fairly trivial, but the simplest

way is to decompile the Java client and directly extract the algorithm.

Figure 10 - Java Code for Encryption Algorithm

As the encryption is a property of the connection rather than the individual packets (as it

uses the value of the previous encrypted byte to determine the value of the next one) this

cannot just be applied to the packet and copied around like with the parsing of the

framing. Instead it must be applied in the connection itself, with individual decrypt and

encrypt nodes (as shown in Figure 11). The graph shown is actually containing in a sub-

graph of the original state model (represented by a single node in the graph). This allows

easy reuse of the discrete functionality and reduces complexity.

Context Information Security 30 Marsh Wall, London, E14 9TP +44 (0) 207 537 7515 www.contextis.com 13 / 25

White paper/Canape: Bytes your Bits

Figure 11 - Main Protocol Graph with Crypto

The encryption and decryption nodes are implemented in custom code, as it falls outside of

basic parsing; this is however the only custom code required in the entire example project.

For the full code see the example project supplied with this whitepaper.

Figure 12 - Encryption Code

Context Information Security 30 Marsh Wall, London, E14 9TP +44 (0) 207 537 7515 www.contextis.com 14 / 25

White paper/Canape: Bytes your Bits

Disabling Compression

Now that the encryption has been removed it exposes that the underlying protocol is also

compressed. The compression code is unfortunately not as simple as the basic encryption

and it is also proprietary so we cannot easily repurpose existing code such as ZLib to

decompress it. Also the Java Client has many hundreds of lines of obfuscated code making

it difficult to extract. It is possible to disable it in the client through a registry modification but

it would be preferable to be able to do it on the wire.

To find out how to do this the following registry key was set to disable compression and the

packets compared.

HKEY_LOCAL_MACHINE\SOFTWARE\Citrix\ICA

Client\Engine\Configuration\Advanced\Modules \TCP/IP\Compress = Off

This identified a single change in the initial negotiation packets, if compressed a specific set

of bytes is set to 10 12, if compression is disabled they are set to 00 00.

Figure 13 - Packet Differences between Compressed and Uncompressed

Using a built in node type in Canape it is possible to do arbitrary binary replacements to

change the values to zeros before passing along to the server. Doing this allows the project

to disable encryption without having to change the client’s configuration any more than

necessary.

The example project is now complete, it is possible to now add functionality to fuzz and

modify packets as they traverse the network and find vulnerabilities. The next section

describes one such issue which was previously identified and subsequently has been fixed

by Citrix.

Context Information Security 30 Marsh Wall, London, E14 9TP +44 (0) 207 537 7515 www.contextis.com 15 / 25

White paper/Canape: Bytes your Bits

Citrix Vulnerability

This section of the whitepaper discusses the technique used to exploit the Citrix client

vulnerability. The vulnerability itself is quite old, originally found in February 2008 but took the

Vendor 2 years to fully fix the issue in all the affected clientsv. Context found and exploited

the vulnerability on Windows XP SP2, but the patch covered the following clients:

 Windows

 Linux (x86 and ARM)

 Solaris (Sparc and x86)

 Windows Mobile

 Mac

Attack Method

The attack works by enticing a victim to a malicious website which downloads an ICA file

configured to connect to a fake ICA server. Standard web browsers with Citrix installed will

automatically download an ICA file and pass it to the Citrix client which will then use the

details in the file to connect to the ICA server.

The file is in the style of a simple INI file which contains the IP address of the target server. For

the Proof of Concept that we developed the server was not a real Citrix server but an

instance of Canape (in 2008 when the vulnerability was initially exploited, Canape was not

available so custom code was used). The exploit is then sent to the ICA client and the

machine exploited.

Memory Corruption Bug

The actual bug that was exploited was in the Citrix ThinWire virtual driver that is responsible

for the graphics being displayed to the user. The bug was in an index overflow where a

bounds check was not performed on data being received from the server. This issue was

found by fuzzing the binary ICA protocol which resulted in the following crash:

Figure 14 - Citrix crash during fuzzing.

Context Information Security 30 Marsh Wall, London, E14 9TP +44 (0) 207 537 7515 www.contextis.com 16 / 25

White paper/Canape: Bytes your Bits

This crash is in the VDTW30N module which is Virtual Driver Thin Wire responsible for the

graphical updates. This crash is due to the value of ECX being out-of-bounds for the lookup

at the fixed offset of 669317C8. The fuzz value used for this case was FFB7 which can be seen

in the lower part of the EAX register. A read violation is an indication of a bug but is often not

exploitable directly. Therefore further analysis of the crash and the subsequent code to

determine code execution flow was employed. The following screenshot shows the

surrounding code:

Figure 15 - Reverse Engineering the Crash

The first highlighted section shows the current crash location, the second shows a call to

execute the memory at EAX. Further analysis shows that the value that we control influences

the ultimate value of EAX at this point and thus where the code will be executed.

The complexity comes from determining how the value from the ICA packet is used to

derive the value for EAX and therefore where the code is going to be executed. It was

found to be easiest to brute force the value and examine the crashes that occur to find an

input value which will result in the code running through to the call to EAX with a value

which is in a memory area where we can influence. The brute forcing resulted in a value

which caused the following crash:

Context Information Security 30 Marsh Wall, London, E14 9TP +44 (0) 207 537 7515 www.contextis.com 17 / 25

White paper/Canape: Bytes your Bits

Figure 16 - Control EAX

As can be seen the program is trying to execute code at the address 01F2E800. There is

currently no code at this address but by examining the memory layout we can work out if it

is possible to heap spray up to that location:

Figure 17 - Memory layout before heap spray

Currently the highest addressed heap block starts at offset 01770000 as can be seen in

Figure 17, which is just below the location where the exploit will jump to. Therefore if we can

get the application to allocate more heap memory with data that we control then we will

call into the area where we have placed our data.

Heap Spraying

We used a standard heap spray technique to ensure that we have data at the location

where the exploit will call. For ICA, we used a Thinwire Virtual Driver packet sent multiple

times to fill the heap. The client was found to be allocating data for these packets but not

releasing them. A second flaw in the Citrix client allowed us to cause large amounts of

memory to be filled using only a smaller sized packet. This bug was in the way that the Citrix

client would not check the length field within a packet and would copy the amount of data

that was stated into memory. This data was copied out of a static buffer that was used to

receive all ICA packets and therefore we could set a long length and it would copy that

amount of data. The data that was not actually in the packet would be replaced with data

from the previous packet.

Context Information Security 30 Marsh Wall, London, E14 9TP +44 (0) 207 537 7515 www.contextis.com 18 / 25

White paper/Canape: Bytes your Bits

So to heap spray the memory we send an initial large packet to prime the static packet

buffer and then send thousands of small packets with a large inner length field to populate

the heap. Figure 18 shows the memory layout that is the result of this flood.

Figure 18 - Memory layout post heap spray

Thus offset 01F2E800 is now a valid address. However, the exact data at this location is not

deterministic. It maybe a valid heap allocation from our heap spray or it might be in a block

of zero bytes which are between allocations. Therefore we needed the exploit to execute

through the zeroed block, into the data we control, through our NOP sled ultimately into the

shellcode. A zero block of memory is disassembled in Figure 19.

Figure 19 - Zero memory NOP sled

This is a valid NOP instruction for this exploit as EAX will be pointing to a writable location. We

know that we call the value of EAX and therefore it is guaranteed to be on the heap.

The next section of bytes that will be executed will be a heap header block. In Windows XP

(which was used for the PoC) the header has the following structure:

Figure 20 - Heap Header Layout

The first two bytes are the size of the allocation (in 8 byte units); this is derived from the size of

the packet and therefore is something we control. The other values are all fixed with the

exception of the cookie value which is random. We therefore need this header block to be

interpreted as instructions which causes no serious side effects. By examining the x86

instruction set a value was found that would ensure the dynamic value in the header block

Context Information Security 30 Marsh Wall, London, E14 9TP +44 (0) 207 537 7515 www.contextis.com 19 / 25

White paper/Canape: Bytes your Bits

would be safely executed in both alignment situations. This value is 8100 as can be seen in

Figure 21. The zeros are the unallocated data this is followed by the head size which has

been set to 8100. This represents an ADD instruction to where EAX points to with the DWORD

value in the following four bytes. Due to the fact that EAX is a valid pointer, this command

will consume the random cookie value safely.

Figure 21 - NOP heap header

The OR instruction is also safe because it has only a minor side effect on EAX. Therefore the

heap flood packets must result in a memory allocation of 0x0408 bytes in length (which is

0x81 multiplied by 8). By doing this the exploit will execute from the heap through the zeros,

over the heap header and into the shellcode. It was also necessary to place a few jumps in

specific places in the packet to ensure it was a valid ThinWire packet but would still be

executed.

Context Information Security 30 Marsh Wall, London, E14 9TP +44 (0) 207 537 7515 www.contextis.com 20 / 25

White paper/Canape: Bytes your Bits

Putting It All Together

This final section describes how Canape can be used to exploit the vulnerability described in

the previous section using its built-in functionality. The tool supports the development of

custom networking services and clients. This allows a final exploiting server to be developed

entirely within Canape for demonstrating the vulnerability.

The Full Exploit

The steps for the exploit to work are as follows:

1. The victim visits a malicious site (and they have Citrix installed)

2. The site sends an ICA file to the client.

3. The ICA file instructs the client to connect to the malicious Citrix server.

4. The fake server then sends the hello and initial negotiation packets.

5. When the main stream is established a large packet is sent with the NOP sled and shellcode to prime

the heap.

6. 3000 small packets are sent with a large length field to fill the heap.

7. Finally the exploit trigger packet is sent to cause the offset overflow that executes the shellcode.

Configuring the Replay Server

To effectively replay the traffic from server to client the packets first need to be placed into

a separate packet log. This allows the built-in replay services to access the required data.

Figure 22 - Attack Packets

Each individual phase is marked with a special ‘Tag’ value which is used by the replay server

to select the appropriate packet to send.

The replay server needs to be configured; this is done by creating a new network server and

specifying the ‘Full Replay Server’ type. The configuration of this server contains a set of filters

which match on specific packet data. When a match is made a ‘Tag’ is selected and the

server sends back only those packets which match the tag.

Context Information Security 30 Marsh Wall, London, E14 9TP +44 (0) 207 537 7515 www.contextis.com 21 / 25

White paper/Canape: Bytes your Bits

Figure 23 - Server Configuration

Setting Up HTTP and Remote Shell Server

The HTTP and Remote shell servers are configured in a similar way. For HTTP support Canape

contains a very basic HTTP server which will send back a simple block of data to a HTTP

request. For the Remote Shell a simple TCP server can be configured on port 4444 (which is

specific to the shell code).

Figure 24 - HTTP Server Configuration

A web browser can now be used to retrieve the ICA file which sets the whole exploit process

in motion.

The final packet sent to the ICA client is the one used to exploit the vulnerability; Figure 25

shows the exploit packet with the vulnerable value highlighted.

Context Information Security 30 Marsh Wall, London, E14 9TP +44 (0) 207 537 7515 www.contextis.com 22 / 25

White paper/Canape: Bytes your Bits

Figure 25 - The Exploit Packet

The reverse shell connection should now be available.

Figure 26 - Reverse Shell Connection

Context Information Security 30 Marsh Wall, London, E14 9TP +44 (0) 207 537 7515 www.contextis.com 23 / 25

White paper/Canape: Bytes your Bits

Conclusion

This whitepaper has demonstrated the process through which a bespoke binary protocol

can be analysed and manipulated in Canape without a substantial amount of

development effort. There is nothing particularly special in the use of Citrix ICA for this

demonstration, the tool can equally be used to develop frameworks for other protocols, it is

not even restricted to binary as text based protocols can be handled as well.

Further information on the usage of Canape as well as numerous tutorials is available on the

project website, http://canape.contextis.com.

http://canape.contextis.com/

Context Information Security 30 Marsh Wall, London, E14 9TP +44 (0) 207 537 7515 www.contextis.com 24 / 25

White paper/Canape: Bytes your Bits

About Context

Context Information Security is an independent security consultancy specialising in both

technical security and information assurance services.

The company was founded in 1998. Its client base has grown steadily over the years, thanks

in large part to personal recommendations from existing clients who value us as business

partners. We believe our success is based on the value our clients place on our product-

agnostic, holistic approach; the way we work closely with them to develop a tailored

service; and to the independence, integrity and technical skills of our consultants.

Context are ideally placed to work with clients worldwide with offices in the UK, Australia and Germany.

The company’s client base now includes some of the most prestigious blue chip companies

in the world, as well as government organisations.

The best security experts need to bring a broad portfolio of skills to the job, so Context has

always sought to recruit staff with extensive business experience as well as technical

expertise. Our aim is to provide effective and practical solutions, advice and support: when

we report back to clients we always communicate our findings and recommendations in

plain terms at a business level as well as in the form of an in-depth technical report.

Context Information Security 30 Marsh Wall, London, E14 9TP +44 (0) 207 537 7515 www.contextis.com 25 / 25

White paper/Canape: Bytes your Bits

Works Cited

i Context App Tool - http://cat.contextis.com
ii Fiddler - http://fiddler2.com/fiddler2/
iii Canape - http://canape.contextis.com
iv FreeCap - http://www.freecap.ru/eng/
v Citrix Security Advisory - http://support.citrix.com/article/CTX125975

Context Information Security Ltd

London (HQ) Cheltenham Düsseldorf Melbourne

4th Floor

30 Marsh Wall

London E14 9TP

United Kingdom

Corinth House

117 Bath Road

Cheltenham GL53 7LS

United Kingdom

Adersstr. 28, 1.OG

D-40215 Düsseldorf

Germany

Level 9

440 Collins Street

Melbourne

Australia

http://cat.contextis.com/
http://fiddler2.com/fiddler2/
http://canape.contextis.com/
http://www.freecap.ru/eng/
http://support.citrix.com/article/CTX125975

