

The heavy metal that poisoned
the droid

Tyrone Erasmus

2nd March 2012

PUBLIC

 PUBLIC Index

mwrinfosecurity.com PUBLIC
© MWR InfoSecurity 2 of 15

Index

1. Introduction ... 3
2. Previous research ... 3
3. Mercury framework ... 4

3.1 What is Mercury? ... 4
3.2 How does Mercury work? .. 4

3.2.1. Server modules ... 5
3.2.2. Client modules .. 5

3.3 Why create a framework like Mercury?... 6
3.4 Dynamic analysis using Mercury .. 6

4. Information pilfering techniques ... 7

4.1 Finding leaky content providers ... 7
4.2 Useful binaries ... 10
4.3 Attacking file permissions .. 10

5. Malware that takes without asking.. 11

5.1 Building a user profile .. 11
5.2 Test case: Low-privileged malware vs. <vendor_name>.. 11
5.3 Dirty tricks .. 13

6. Conclusion .. 15
7. Future Work ... 15
8. References ... 15

 PUBLIC Introduction

mwrinfosecurity.com PUBLIC
© MWR InfoSecurity 3 of 15

1. Introduction

A number of published security assessment methodologies currently exist to support researchers reviewing the
security of Android applications and devices. The majority of these methodologies include static analysis methods
and require the use of custom scripts and tools to perform single tasks. The general process of assessing the
security of Android applications typically involves the following steps:

 Download the target application packages
 Extract the application manifests
 Decompile the application into readable source code or byte code representations
 Analyse the application manifests and code
 Write a custom application to test anomalies in the entry points of the applications

This general process often requires a separate approach for each step, many different tools and lots of time,
especially when a large number of applications need to be assessed as part of a project. If the process can be
simplified and tools provided to automate the repetitive parts, it would enable a security researcher to assess
applications and devices in a more consistent manner and ultimately perform more comprehensive assessments.
This could also be done in less time whilst providing more assurance.

Mercury is a framework that solves this problem by providing interactive tools that allow for dynamic interactions
with the target applications running on a device. This dynamic interaction greatly benefits vulnerability hunters
and auditors who are under time constraints. At the time of writing, there were no known frameworks for
performing dynamic analysis on Android, making Mercury unique in its space.

This paper will lay the foundations for performing dynamic analysis and finding ways to automate some of the
tasks that are needed when assessing the security of Android applications and devices. It will also delve into some
techniques that could be used by malicious applications with minimal permissions to steal information from
devices.

2. Previous research

The Android documentation and a previous whitepaper by Nils [1] detailed the many different facets of Android
application architecture that need to be examined when performing a review against Android applications and
devices. A research paper by Timothy Vidas [2] was also reviewed that categorized different types of attacks
against Android security and laid out potential attack vectors for malicious applications. These components were
all taken into consideration during the development of the Mercury framework to ensure that it is flexible and
provides a platform to assess the whole attack surface. The modular design would also allow for future expansion
should new features be added to Android.

 PUBLIC Mercury framework

mwrinfosecurity.com PUBLIC
© MWR InfoSecurity 4 of 15

3. Mercury framework

The inspiration for a framework such as Mercury originated from having to manually create custom applications
for each entry point identified during a security assessment of an Android application. This process is often
iterative and time consuming as each step may require the app to be amended, recompiled, uploaded and tested
again. After a number of these iterations, the need for Mercury quickly became clear. The search for a tool that
provides such dynamic analysis capability on Android did not yield any satisfactory results. After some further
investigation into a suitable structure, it was decided to create a modular framework with a familiar look and feel
that can be easily extended.

3.1 What is Mercury?

Mercury is a framework that provides a platform for effective vulnerability hunting and exploitation on Android. It
provides a collection of tools to do so from a single console with a familiar look and feel and allows for easy
expansion due to the modular architecture. Mercury includes a number of commands that automate discovery
and interaction with exposed Android application features, a process that often requires a selection of custom
scripts.

Even though some features of the framework allow for automated discovery of certain classes of vulnerabilities, it
is not a vulnerability scanner. In order to effectively use Mercury in an assessment, a user will still be required to
understand the Android security model. An additional aim of the Mercury framework is to provide simplified
interfaces between external tools and modules to enable future expansion.

Mercury will allow for the sharing of proof-of-concept exploits and new tools to better assess an Android
application or device.

3.2 How does Mercury work?

Mercury operates in two parts: the client component which is executed on the user’s computer and the server
which is installed on an Android device or emulator. Communications between the client and server take place
using a defined XML structure that works on requests and responses. A typical connection from client to server
takes place as follows:

 Client connects to the server on a TCP port and a single request is made
 The connection is kept open until a single response from the server is received
 Once a full response has been received by the client it closes the connection

The Mercury server component installed on the Android device only requires a single permission, the INTERNET
permission, to be granted. This ensures that the server require as little privileges as possible when performing its
tasks. The INTERNET permission is required so that the application can communicate with the client software
using socket connections.

One of the biggest aims of this project was to build a framework instead of a fixed tool so that it is extensible and
new plug-in modules can easily be created by someone other than the original developer. The way that the
Mercury server and client handle new modules was designed for ease of extension, which will be discussed in the
following sections.

 PUBLIC Mercury framework

mwrinfosecurity.com PUBLIC
© MWR InfoSecurity 5 of 15

3.2.1. Server modules

The server maintains a set of commands that perform a once-off function on the device and return a result to the
client. These commands make up the component that interacts with the target application or feature of Android
that the user is testing. They are well-defined in the Commands.java source file of the server application on the
Android device or emulator. A new server command that provides new functionality to the client can be created
on the server by adding a new CommandWrapper object to the list of already known server commands. The
implementation details of the CommandWrapper class will not be discussed as part of this paper, but a brief
overview of its structure will be presented below.

A command on the Mercury server contains the following attributes:

 Section: describes which logical section the command falls under. For example, if a command interacts
with content providers it should be placed under the provider section.

 Function: describes the name of the command. These names have been chosen to be as descriptive as
possible without being too long. Normally, if the predominant function of the command is an already
defined SDK function, then it will bear resemblance to that function’s name. For instance, a command
which was created to read from a content provider was named query. This is because the SDK’s
getContentResolver().query() method does the majority of the work in that function. This ensures
consistency between the naming conventions of the Android SDK and Mercury.

 Executor: is an interface that contains the code for the implementation of the new command.

By following the above structure, it was possible to keep the server commands separate from the implementation
details of the rest of the Mercury server.

3.2.2. Client modules

The Mercury client framework is written in Python and opens itself up for customisation and extension. Users are
able to write custom client modules that use any of the server commands defined on the server, as explained in
the previous section. Various server commands can be used to perform actions on the server or get relevant
information that can be used to achieve the intended goal of the module developer.

On the client, by adding a module that has some defined attributes, it can immediately be used by the Mercury
framework. These modules are placed in their relevant location in the client source folder. For example, when
writing a script that allows the user to display different pieces of information about the Android device, it could be
placed in modules/information/deviceinfo.py. This structure allows the grouping of different related modules into
the same folder.

If a server command that is needed by a client module does not exist, it can be trivially added using the outline
discussed in the previous section. Once the command is added to the server, the server source can be recompiled
and the command becomes available to the client.

This structure allows users to write proof-of-concept exploits for vulnerabilities using a range of pre-defined
server commands, effectively removing the need for custom-purpose application writing, compilation, uploading
and testing, as well as multiple iterations of these steps. The amount of time taken creating small applications to
perform once-off tests could be better spent.

 PUBLIC Mercury framework

mwrinfosecurity.com PUBLIC
© MWR InfoSecurity 6 of 15

3.3 Why create a framework like Mercury?

Mercury was created to meet the need for a consolidated testing framework for Android. Many custom scripts
and tools are available on the internet to ease the process of performing static analysis and these efforts are often
being duplicated.

It is also important to note that any task that can be performed inside Mercury can also be performed from within
any application with the INTERNET permission. This means that if vulnerabilities are found and a proof-of-concept
can be successfully executed using Mercury, the vulnerability is potentially high-impact. This is because a
malicious application could exploit the same vulnerability from an unprivileged context and pose a security threat.

3.4 Dynamic analysis using Mercury

A testing methodology used for static analysis of Android applications or devices could be applied when using
Mercury as a testing toolkit. It also allows the auditor to go a step further and interact with the discovered
application entry points without any further preparation.

To get an idea of the general attack surface of an application, the packages->attacksurface command can be
used. This command examines the general security considerations of an application with regards to the exporting
of IPC endpoints and other atypical security concerns that Android introduces. It checks the following:

 Number of activities exported
 Number of services exported
 Number of broadcast receivers exported
 Number of content providers exported
 If the application uses a shared user-id
 If the application is marked as debuggable

According to the exported entry points found, the auditor can then use the appropriate section of Mercury and
issue info -f packageName to find further information about the exported application attribute at hand. It is
accepted that on occasion, the package would have to be downloaded and the source code examined in order to
fully understand and effectively interact with an exported IPC endpoint of an application. However, using the
dynamic method, it could provide a quick way to find relevant attack vectors.
Some features which are essential for auditing a target application or device using Mercury are detailed below.

 Activity: Find information about exported activities. Get the launch intent that can be used to launch
an application. Find applications that match the given intent. Start an application using the given
intent.

 Broadcast: Find information about exported broadcast receivers. Send a broadcast using the given
intent.

 Provider: Find information about exported content providers. Find the columns of a content provider.
Search for content URI’s in the given package. Perform SQL-like tasks such as querying, deleting,
inserting and updating contents of the given content provider.

 Service: Find information about exported services. Start and stop services using the given intent.
 Debuggable: Find information about debuggable applications on the device. Exploit debuggable

applications by using Mercury to execute selected code within the context of the debuggable
application.

 Packages: Find information about the installed packages on the device. Find the attack surface of a
given package. Check which applications share a user-id.

 Tools: Upload and download files to and from the Android device. Get information about a specified
file and search through different intents that can be sent to the IPC endpoints.

 Shell: Access two different classes of shells on the Android device. This allows access to the underlying
Linux system from within the context of Mercury.

 Modules: Allow the user to list currently available modules. Get information about these modules.
Execute user-created modules.

 PUBLIC Information pilfering techniques

mwrinfosecurity.com PUBLIC
© MWR InfoSecurity 7 of 15

4. Information pilfering techniques

The following section will discuss various techniques for getting information off a device from an installed
application that only has the INTERNET permission.

4.1 Finding leaky content providers

When looking for information leakage on a device, exported content providers are a good place to start. By finding
content providers that do not require any permissions to read them, the information stored in the content
provider can be exposed. Sometimes this will not yield anything sensitive, but often it will lead to the gaining of
information from the application that the developer did not intend.

The developer of an application has to explicitly set the android:readPermission or android:permission on the
content provider in the AndroidManifest.xml file if they do not want the information in their exported content
provider to be available to other applications on the device. A logical undertaking for an auditor or malicious
application looking to find information leakage is to find all the exported content providers on the device that do
not have the android:readPermission set.

From an application development point of view, it is possible to get a complete list of content providers using:

List<ProviderInfo> providers = getPackageManager().queryContentProviders(null, 0, 0);

The above code populates providers with a list of all the content providers on the device. Finding potentially
vulnerable content providers could be done by iterating through this list, looking for providers that have
readPermission == null.

To perform this search in Mercury is trivial, navigating to the provider section and issuing info -p null will show all
of the exposed content providers. At this point, these content providers can be queried in order to retrieve the
exposed information.

Sometimes, it is not possible to find valid content URI's to query for the target application. The general structure
of a valid content URI is as follows:

content://authority/table/extra

The/extra part of the content URI above is optional for the developer. Only directly querying valid content URI's
results in a successful read from the content provider and there is no API as part of the Android SDK to find valid
content URI's for an application. Mercury employs an innovative technique to find valid content URI's for a target
package. By using the finduri command in the provider section, it is possible to enumerate content URI's
referenced in the package executable, which will often lead to the finding of valid content URI's. The general
technique for enumerating content URI’s for a target application is as follows:

 Find the location of the package APK file.
 Unzip the classes.dex file from the package APK. If there is no classes.dex file in the APK, look for the

matching ODEX file for the package.
 Employ code that is similar in functionality to the UNIX strings tool in order to find all valid strings

within the binary (DEX or ODEX file). The strings tool works by iterating through a file and looking for
four or more printable characters in a sequence and displaying them on a new line.

 Running the output of such a function through a final filter which only passes a string value that starts
with content://will result in a list of content URI’s referenced in the file.

 PUBLIC Information pilfering techniques

mwrinfosecurity.com PUBLIC
© MWR InfoSecurity 8 of 15

An example of the finduri command being used in Mercury on an older vulnerable version of Dropbox [3] yields
the following:

After the content URI enumeration process has been completed, the discovered content URI's can be queried to
see if they yield sensitive information. The querying of content URI’s can be performed using the query command
in the provider section. Below is an example of Mercury reading from the APN settings using the query command
with a filter for the columns apn and nwkname:

After a valid content URI has been discovered, various injection techniques can be attempted on the content
provider if the contents are not blatantly readable. A query to a content provider uses a structure that is
comparable to constructing the following SQL query:

SELECT projection FROM table WHERE selection ORDER BY sortOrder

The table parameter in the above select statement is generally the section of text from the last “/” to the end of
the string in the content URI. By injecting into the different parameters of the query function and observing the
results, it is possible to find SQL injection vulnerabilities on the interface that handles the SQLite database in the
application. A common place to find injection that is easily exploitable is on the projection parameter.

The following is the result of a successful injection attempt on the carriers database:

If a vulnerable projection parameter on a content provider is successfully found, an obvious next step would be to
attempt to get the SQLITE_MASTER table from the SQLite database. This would reveal which tables are present in
the database, so that these tables can be dumped using the injection point. Performing this step on the above
content provider yields the following result:

 PUBLIC Information pilfering techniques

mwrinfosecurity.com PUBLIC
© MWR InfoSecurity 9 of 15

At this point, all the tables that are present on the SQLite database are enumerated and the user can dump any
specific table they wish. It should be noted that this content provider did not contain any sensitive information
and was merely used as an example to demonstrate the technique.

More automated methods of finding SQL injection vulnerabilities also exist using the Mercury framework. A
Mercury module was created for webcontentresolver [4] which provides a web service interface to Android
content providers in order to use web application testing capabilities and established tools to test content
providers.

 PUBLIC Information pilfering techniques

mwrinfosecurity.com PUBLIC
© MWR InfoSecurity 10 of 15

4.2 Useful binaries

Android devices ship with binaries that can be used to provide useful information. These binaries are stored in a
number of places on devices, including but not limited to /system/bin /system/xbin and /system/sbin. Some
binaries that have been found to be useful are:

 toolbox – an assortment of generally useful tools. The getprop tool included can be used to get
information about the device. The netstat tool can be used to find open socket connections, which is
useful for seeing what the device is connected to or checking for locally listening services.

 dumpsys – usually used in conjunction with the permission android.permission.DUMP. Even with no
permissions this tool still gives some useful information about registered accounts on the device.

Other binaries can also be packaged with an application as a raw resource and extracted to use at runtime of the
application. One such resourceful choice of binary to include for a variety of purposes is busybox. Some tools in
busybox [5] which are useful are:

 ifconfig – get network address information for all of the network interfaces.
 dmesg – print the kernel ring buffer which can include useful messages.
 wget – useful to download files from the internet. This could be used to download new binaries to

execute on the device, such as other information pilfering tools or even root exploits.
 nc – there are numerous uses for this, including sending and receiving data to and from the device to

some other service on the internet. It is even possible to use nc to provide a local Linux shell to a
remote listening computer on the internet.

4.3 Attacking file permissions

Developers do not always consider the fact that any application on an Android device has read access to the
internal and external SD card by default. This is because its contents are marked as globally readable according to
the UNIX permissions set. Many users mistakenly confuse the STORAGE permission with allowing an application
read access the SD card contents.

The exact permission string relating to this permission is android.permission.WRITE_EXTERNAL_STORAGE, which
places the application in the sdcard_rw UNIX group, allowing the application write access to the SD card.

This information might be obvious to some, but many users and application developers are not aware of the
implications of default read access. In theory, this means that an application with only the INTERNET permission
can upload the entire contents of the SD card to a server on the internet. While this does not constitute a direct
breach of the Android security model, it should always be in the back of the user's and developers’ minds. Also,
should data be stored on the SD card, the sensitivity of this data should be considered.

A malicious application looking to steal information from the device would also look for files in other areas of the
device that may be marked as globally readable. For instance, the following technique could be used to steal
information from other applications’ data directories:

 Get a list of applications installed on the device. This information is not secret and can be obtained by
a completely unprivileged application.

 Find all of the data directories for installed applications. These directories are named according to a
convention, which is /data/data/packageName.

 Iterate through a list of common filenames and extensions, looking for the existence of files and
directories in each of the installed packages’ data directories.

Viable targets for this attack would be application configuration files and SQLite databases which have been
written to the application’s data directory using the MODE_WORLD_READABLE flag [6].

 PUBLIC Malware that takes without asking

mwrinfosecurity.com PUBLIC
© MWR InfoSecurity 11 of 15

5. Malware that takes without asking

This section will not be discussing exact instances of malware found on the Android Market, but rather looking at
the general trend of malware that most Android users have come into contact with. The most popular technique
employed by malware developers is to simply ask for the required permission to perform the malicious task. Many
users are not aware of the implications of installing an application that asks for dangerous permissions, or users
may not even have considered what the definition of a dangerous permission would be. Besides the strains of
malware that have been found to gain root access to devices, the large majority of malware is not using
techniques that are overly clever or resourceful. This section will lay out some ideas that use more advanced
techniques to steal information with only the INTERNET permission requested by the malicious application.

5.1 Building a user profile

When considering the amount of OEM-specific issues released by the security community on a regular basis, one
would expect that malware developers would already be exploiting these vulnerabilities. This would make it
possible to build more sophisticated malware that is harder to detect than common malware.

Using the techniques discussed in the information pilfering section, it is likely that malware would be able to build
a respectable profile of the user of the device. Such malware employed by an attacker could perform the
following actions in order to build a user profile on a device:

 Upload the contents of the SD card to the attacker’s server
 Get all package information, including version numbers
 Find leaked information from exported content providers using the technique discussed in the

previous section
 Get device and platform information using the binaries explained in the previous section

These techniques are not device-specific and will work on all Android devices to date. This kind of code could be
incorporated into malware whose objective is to steal as much information as possible from a device without
blatantly asking for permission to do so.

5.2 Test case: Low-privileged malware vs. <vendor_name>

A number of <vendor_name> applications are pre-installed by default on <vendor_name> Android devices and
cannot be easily removed by the user without rooting the device or abusing some other vulnerability in order to
remove or disable packages. It has been found that some of these applications use content providers that are
exported by default and do not have any security permissions enforced on them. This results in these content
providers allowing other applications on the device to request sensitive information and successfully obtain it.
This is cause for concern as any 3rd party application that contains malicious code will not be required to have
been granted permissions in order to obtain sensitive information from these applications.

It should be noted that when these issues were disclosed to <vendor_name> in an Advisory on 13th December
2011, only applications disclosing sensitive information were included. As per the advisory, the following
applications allow the retrieval of sensitive information from their content providers without any granted
permissions:

 PUBLIC Malware that takes without asking

mwrinfosecurity.com PUBLIC
© MWR InfoSecurity 12 of 15

 Package Obtainable Information Version

com.seven.z7
(Social Hub)

Email address
Email password
Email contents
Instant messages

7.52.10101

com.sec.android.socialhub
(Social Hub)

Social networking messages 2.00.00001

com.sec.android.im
(IM)

Instant messages
IM contacts

1.00.10201

com.sec.android.provider.logsprovider
(LogsProvider)

SMS
Email contents
Instant messages
Social networking messages
Call logs

1.0

com.sec.android.widgetapp.weatherclock
(AccuWeather.com)

Current city of device owner 11.06.27.01

com.sec.android.app.minidiary
(MiniDiary)

Notes
Photo GPS coordinates

1.0

com.sec.android.app.memo
(Memo)

Notes 1.0

com.sec.android.widgetapp.postit
(Minipaper)

Notes 1.0

com.android.proivers.settings
(Settings Storage)

Portable Wi-Fi hotspot credentials 2.3.4

As can be seen above, the information that was leaked by the pre-installed applications range from mild
information disclosures to severe ones. If the reader is interested in the exact content URI’s for these disclosures,
they can use Mercury and run the finduri command against the packages specified.

Moving on to standard Android binaries, the getprop tool that is part of the toolbox binary located in /system/bin/
could be executed to provide the following interesting information about the device:

 PUBLIC Malware that takes without asking

mwrinfosecurity.com PUBLIC
© MWR InfoSecurity 13 of 15

[ril.IMEI]: [358************]

…

[ril.IMSI]: [655************]

…

[gsm.sim.msisdn]: [072********]

…

[gsm.operator.alpha]: [VodaCom-SA]

As can be seen, the following information was retrieved:

 Device’s IMEI number
 SIM card’s IMSI number
 SIM card’s MSISDN (phone number)
 SIM card operator

The exact numbers retrieved were changed to protect the identity of the device on which this tool was run. To
understand how this information could be used to track a user, see [7]. In addition to the above information,
the following was found which could be used for the accurate targeting of root exploits against the device:

[ro.build.display.id]: [GINGERBREAD.XWKI4]

…

[ro.build.date]: [Wed Sep 14 20:34:11 KST 2011]

…

[ro.product.model]: [<vendor_model>]

[ro.product.brand]: [<vendor_name>]

Further information about the kernel in use could be found by issuing the following commands:

cat /proc/version

The dumpsys binary located in /system/bin gave the following information about different accounts in use on the
device:

DUMP OF SERVICE account:

Accounts: 5

 Account {name=test.test@gmail.com, type=com.google}

 Account {name=test@yahoo.com, type=com.seven.Z7.yahoo}

 Account {name=test.test, type=com.skype.contacts.sync}

 Account {name=test.test@gmail.com, type=com.osp.app.signin}

 Account {name=test.test@gmail.com, type=com.facebook.auth.login}

5.3 Dirty tricks

Getting a shell

A very old technique for getting a remote shell on a computer can be used on Android as well. By using a version
of Netcat compiled for Android, or using BusyBox which has Netcat as one of its applets, an attacker could pipe an
Android shell to a server remotely on the internet. The following command can be used to do so:

busybox nc ip port –e sh -i

Crash the logreaders

The log files used by Android were found to be globally writeable. Writing malformed data into the logs causes
any log-reading component within an application to become unable to read from that point onward in the logs.

 PUBLIC Malware that takes without asking

mwrinfosecurity.com PUBLIC
© MWR InfoSecurity 14 of 15

By issuing the following commands, it causes logcat to display output error: Out of memory:

echo > /dev/log/system

echo > /dev/log/radio

echo > /dev/log/events

echo > /dev/log/main

This could stop anti-virus applications checking the logs for anomalies or signatures of malware.

Keeping the exploits fresh

With a comprehensive set of information about the target compromised device, malware could potentially take
exploitation to a new level by providing Trojan-like features. By having a complete and up-to-date set of
information about all the installed applications, the malware could download the latest exploit for a vulnerable
application and run it, successfully exploiting a vulnerability that has not been reported or fixed yet.

The same could be done with root exploits. Every application is able to get detailed platform information and this
could be used to download and execute a root exploit if one becomes available for the device. Knowing
information like the kernel version, Android version and build information is all that one needs to test root
exploits against a device. Sometimes, information like whether USB debugging is enabled or not would be needed,
but this could also easily be found by querying content://settings/secure:

These two ideas could take malware to the next level and allow devices to be compromised more than they have
been in the past.

 PUBLIC Conclusion

mwrinfosecurity.com PUBLIC
© MWR InfoSecurity 15 of 15

6. Conclusion

Mercury’s dynamic security analysis framework for Android provides a set of tools that have distinct
advantages over only using traditional methods and static analysis. The fact that the security auditor is able to
interact with the target applications and easily extend the framework with additional modules allows for the
ability to obtain better coverage and depth during a security assessment project.

Some of the techniques employed and described in this paper also illustrate what would be able to be achieved
from within a malicious application. More intelligent malware could abuse these techniques and target specific
devices or users with specific applications containing known vulnerabilities and do so from within the sandbox
assigned to the malware application.

Using automated methods of stealing information from devices, malicious applications could potentially gain
access to a user’s most sensitive data without requesting any suspicious permissions that would alarm the user
and could silently perform its tasks in the background.

With the introduction of the Mercury framework, security professionals are provided with a platform to assess
Android security.

7. Future Work

Given the current structure of Mercury and its ease of use, it is expected that a library of OEM application
vulnerabilities and Android root exploit modules for various devices could be added with little effort. Current
planning for enhancements to the framework includes further security analysis tools, fuzzing modules and
debugging tools to assist with the development of proof-of-concept exploits for any native vulnerabilities
identified on Android.

The Mercury project page can be found under Tools on http://labs.mwrinfosecurity.com

8. References

 [1] Nils, Building Android Sandcastles in Android’s Sandbox, MWR InfoSecurity,
 https://media.blackhat.com/bh-ad-10/Nils/Black-Hat-AD-2010-android-sandcastle-wp.pdf

 [2] Timothy Vidas, Daniel Votipka and Nicolas Christin, All Your Droid Are Belong To Us: A Survey of
CurrentAndroid Attacks, http://static.usenix.org/event/woot/tech/final_files/Vidas.pdf

 [3] Dropbox, http://www.dropbox.com/

 [4] Webcontentresolver, http://labs.mwrinfosecurity.com/tools/2011/12/02/android-

webcontentresolver/

 [5] Busybox, http://busybox.net/

 [6] Android Developer Guide, http://developer.android.com/index.html

 [7] Don Bailey and Nick DePetrillo, BlackHat USA 2010,The Carmen Sandiego Project,
https://media.blackhat.com/bh-us-10/whitepapers/Bailey_DePetrillo/BlackHat-USA-2010-Bailey-
DePetrillo-The-Carmen-Sandiego-Project-wp.pdf

http://labs.mwrinfosecurity.com/

