
The heavy metal that poisoned the droid

Tyrone Erasmus

• Introduction

• Android Security Model

• Static vs. Dynamic analysis

• Mercury: New framework on the block

• Finding OEM problems

• Techniques for malware

• How do we fix this?

• Conclusion

/usr/bin/whoami

• Consultant @ MWR InfoSecurity

• My 25% time == Android research

• Interested in many areas of exploitation

Introduction

• Why android?

Security Model

• User-based permissions model

• Each app runs as separate UID

• Differs from conventional computing

• Except when shared UIDs are used

• App resource isolation

Security Model

Security Model

UNIX permissions!

Application 1

shared_prefs
files

cache
databases

Application 2

shared_prefs
files

cache
databases

Security Model

• App manifest = all configuration + security
parameters

Security Model

Memory corruption vulnerabilities:

• Native elements that can be overflowed

• Code execution:

• In context of exploited app

• With permissions of app

• Want more privileges? YOU vs. KERNEL

IPC

Apps use Inter-Process Communication

• Defined communication over sandbox

• Exported IPC endpoints are defined in
AndroidManifest.xml

IPC - Activities

• Visual element of an application

IPC – Services

• Background workers

• Provides no user interface

• Can perform long-running tasks

IPC – Broadcast Receivers

• Get notified of system and application events

• According to what has been registered

• android.permission.RECEIVE_SMS

IPC – Content Providers

• Data storehouse

• Often uses SQLite

• Methods that are based on SQL queries

IPC Summary

• All can be exported

• Explicitly by exported=true

• Implicitly by <intent-filter>

• Content Provider exported by default

• Often overlooked by developers

IPC Summary

Rich Application

Content provider

Service

Broadcast receiver

Activity

Simple Application

Activity

What they all say

• Permissions and developer name

Hmmm...

Scary Contradictions

• Apps containing root exploits

• Browser vulnerabilities

• Cross-application exploitation

Cross-application exploitation

• What can 1 app do to another?

• Completely unprivileged

• Malware implications

• Android-specific attack surface

Download
apps

Decompile
Extract

manifests

Examine
attack
vectors

Understand
entry points

Write
custom
POCs

Static analysis

Static analysis

• Iterative

• Time consuming Create/
Amend
Code

Compile

UploadTest

Analyse

Why Dynamic analysis ?

VS.

• Time-efficient

• Better coverage

• Re-usable modules

New tool - Mercury

• “The heavy metal that poisoned the droid”

• Developed by me 

Mercury...What is it?

• Platform for effective vulnerability hunting

• Collection of tools from single console

• Modular == easy expansion

• Automation

• Simplified interfacing with external tools

Mercury...Why does it exist!?

• Testing framework vs. custom scripts

• INTERNET permission – malware can do it too!

• Share POCs – community additions

Mercury...How does it work?

Client/Server model

• Low privileges on server app

• Intuitive client on pc

Server
(On Device)

Client
(On PC)

Mercury...Show me your skills

• Find package info

• Attack surface

• IPC info

• Interacting with IPC endpoints

• Shell

Interesting fact #1

ANY app can see verbose system info

• Installed apps

• Platform/device specifics

• Phone identity

Impact

Profile your device

• Get exploits for vulnerable apps

• Better targeting for root exploits

• Use this info track you

• Only Required permission: INTERNET

Interesting fact #2

• Any app with no permissions can read your
SD card

• It is the law of the UNIXverse

Impact

• A malicious app can upload the contents of
your SD card to the internet

• Photos

• Videos

• Documents

• Anything else interesting?

• Only Required permission: INTERNET

Debuggable apps

• More than 5% of Market apps

• Allow malicious apps to escalate privileges

• debuggable=true

Open @jdwp-control socket 

Mercury...So I can extend it?

• Remove custom-apps == Quick tests

• Create new tools

• Share exploit POCs on GitHub

• Some cool modules included already:

• Device information

• Netcat shell

• Information pilfering OEM apps

Mercury...Dropbox example

• Custom exploit app

• No structure for debugging

OEM apps

• Pre-installed apps often == vulnerabilities

• Many security researchers target these apps

OEM apps

Lets find some leaky content providers!

• Promise of:

• Information pilfering glory

• Rampant SQLi

• No custom app development

Research findings

Leaks instant messages from:

• Google Talk

• Windows Live Messenger

• Yahoo! Messenger

Research findings

Leaks:

• Facebook

• MySpace

• Twitter

• LinkedIn

OEM apps

HTCloggers.apk allows any app with INTERNET
• ACCESS_COARSE_LOCATION

• ACCESS_FINE_LOCATION

• ACCESS_LOCATION_EXTRA_COMMANDS

• ACCESS_WIFI_STATE

• BATTERY_STATS

• DUMP

• GET_ACCOUNTS

• GET_PACKAGE_SIZE

• GET_TASKS

• READ_LOGS

• READ_SYNC_SETTINGS

• READ_SYNC_STATS

Research findings

Leaks:

• Email address and password

• Email content

• IM & IM contacts

Research findings

Leaks:

• SMS using SQLi

• Credits to Mike Auty – MWR Labs

• Feels so 2000’s

OEM apps

Steps to win:

• Webkit vulnerability

• Browser has INSTALL_PACKAGES

• Exported recording service

• Bugging device 

Research findings

Leaks:

• SMS

• Emails

• IMs

• Social Networking messages

Research findings

Leaks:

• Portable Wi-Fi hotspot

• SSID

• WPA2 password

Research findings

• Have found more than 10 similar type
vulnerabilities

• Across many OEM apps

Research findings - Impact

An app with 0 granted permissions can get:

• Email address and password

• Email contents

• SMS

• IM & IM contacts

• Social networking messages

• Call logs

• Notes

• Current city

• Portable Wi-Fi hotspot credentials

Why is this happening?

Manufacturers bypass OS features

• Lack of knowledge?

• Tight deadlines?

Malware deluxe

Building a user profile

• Installed package info

• Upload entire SD card

• Pilfer from leaky content providers

• Get device/platform info

Malware deluxe

Useful binaries for device/platform info

• toolbox

• dumpsys

• busybox

Promise of:

• Useful info

Malware deluxe

Dirty tricks

• Pipe a shell using nc

• Crash the logreaders

Promise of:

• Shells - everybody loves ‘em

• Someone actually doing this 

Malware deluxe

Fresh exploits

• Installed apps + versions

• Download latest available exploits

• Exploit vulnerable apps for fun/profit

• Same goes for root exploits

Android the blabbermouth

Permissions required:

android.permission.INTERNET

Which would you install?

How do developers fix this?

• Can’t help Android vulnerabilities

• Can make secure apps

• Stop information being stolen from your app

• Check exposure with Mercury

Mercury – Future plans

• Testing ground for exploits of all kind

• Full exploitation suite?

return 0;

• Feedback forms

• Questions?

