Finding Needles in Haystacks (the Size of Countries)

By Michael Baker, David Turnbull, Gerald Kaszuba

Abstract

The lament of security analysts is often a limitation in the amount of data they
can process, and the ensuing loss of data fidelity as size increases. As data sets
grow they become unwieldy, making it difficult to add context through
correlating security event data with other relevant data sets.

Full packet capture provides a method for maintaining a forensic copy of all
network conversations. However the reality up until now is that full packet
capture and analysis has been bounded by the size of the data, the time to
process it and the ability of applications and tools to encode key attack,
deviations, misuse and anomaly data into visualisations.

When you can store all of your network data the issue then becomes how do you
analyse it. How do you find the single conversation you are looking for in trillions
of conversations?

Big Data has supplied both a method for parallel computation and at the same
time the cost of storing all network data (full packet capture) is within reach of
all organisations. At the same time threats are becoming more blended, complex
and difficult to find. Big Data tools such as Apache Hadoop, PIG and NoSQL
databases provide the ability to perform complex network traffic analysis at
petabyte scale. These tools can be leveraged using the Amazon Cloud (Elastic
Map Reduce) to process, query and persist packet capture data.

With these tools there is no time-cost trade off to analysing every single
conversation on a network, enriching the data, intersecting data sets and sharing
anonymized data sets.

Network Security Monitoring

Network Security Monitoring as a philosophy looks at the detection of threats as
being just as important as the prevention. Often when attackers breach strong
defenses there is little information to rely on to understand how they exploited
the network, how long they were inside and what they stole or accessed.

Network Security Monitoring advocates defensible and inventoried networks
and the use of network packet data (packet captures) to provide as much context
in relation to attacks. Full packet capture involves storing all network
communication for threat analysis, transaction analysis and to provide a
complete record of events taking place on the network.

Full packet capture is often referred to as the “network flight recorder” or
“network tivo”. It provides the ultimate context and the complete record of

events and many open source tools provide security analysts with the means to
analyze packet captures. These include Snort, Bro, Squil, Flowgrep and
Wireshark. These tools provide an atomic view of packet data and are generally
used when the attack window is known. However they have difficulty analyzing
days, weeks and months of network data that scales into the trillions of packets,
conversations and terabytes of data.

Last year, 2011 was a watershed year in terms of the number of publicized
attacks affecting major corporations and highly regarded security vendors
themselves. It left the impression in our minds that anyone can be subverted and
their intellectual property stolen, their internal communications publicized and
their brand and image tarnished.

It can be seen that a focus on prevention and the lack of a detection and incident
toolset led to breaches being undetected for long periods of time allowing deeper
inroads to be made and breaches to be more severe. The idea of strong defenses
keeping out the attackers is similar to most enterprise security postures. They
are defending the vault, trying to identify all that come in and out of each
location. The alternative is to look at security like a casino or the stock market
where everyone can play or transact and security is built through transaction
analysis, monitoring and surveillance.

Out of 2011 came the positive security story of Netwitness and the detection of
the breach. A technology exhibiting the strengths of Network Security
Monitoring was used to detect and understand the magnitude of the breach. This
became a positive story for RSA compared to others that had breaches of similar
severity.

When we look at how enterprises structure their defenses it’s easy to see how
they lose the fidelity of information. In our experience they analyze network
information using a copy of a copy. Device logs that have been stored on a central
or at best collected by a Security Information and Event Management system.

Lastly the security landscape is affected by scale. Terabytes of data, trillions of
conversations lead to an inherent security analysis compromise. At some stage
you must sacrifice fidelity and accuracy for aggregation to conserve resources on
systems that weren’t built to handle the explosion of information.

How do you provide the clues security analysts need to detect and investigate
breaches in the era of Big Data?

Parallel Analysis and Storage

This is a brief history of MapReduce, Hadoop and Pig. In 2004 Google published
their paper on MapReduce and in 2006 Bigtable - the Google File System. Hadoop
was formed as an open source project to implement a number of the ideas from
these papers. Hadoop provided the Hadoop File System (HDFS) and also an
implementation of MapReduce that could be accessed using Java or other
methods (like Hadoop Streaming).

Data could be stored across a number of commodity nodes and analysis could be
distributed across these nodes to reduce the time taken to process the data.

Pig was started as an Apache project to create a data flow language as an
alternative to the complexity of MapReduce. Pig’s language is PigLatin a high
level dataflow language that is much easier to use than programming MapRedice.

Pig translates PigLatin into MapReduce jobs that operate across a Hadoop cluster
accessing data stored on an HDFS file system.

Packetpig

Over the last year we have been working to launch Packetloop, a Big Data
Security Analytics platform that provides unique insights into network packet
captures. This involved authoring numerous MapReduce jobs that operate across
packet captures and then store results in a column-oriented database. A lot of
what we learnt we wanted to give back the security community.

We created Packetpig an open source network security monitoring platform that
would allow anyone to analyze terabytes of network packet captures either on
their own commodity hardware or on Amazon’s Elastic Map Reduce (EMR) and
S3 storage.

Packetpig is made up of Pig Loaders, Pig User Defined Functions (UDF’s), existing
open source tools and libraries that allow anyone to analyze large data sets.

Packetpig also provides methods to visualize the data that is created by running
Pig queries across packet captures. We use the R statistical programming
language to provide statistical analysis and also to plot output. We also provided
a number of examples of how these visualizations could be transitioned to the
web using the D3 JavaScript library and the Google WebGL Globe.

The key to Packetpig is allowing people who aren’t subject matter experts in
MapReduce or distribute processing to create queries against a small amount of
packet capture data on their laptop and then transition that to a cluster to run
across a large number of commodity nodes. All jobs are capable of being run on a
laptop against packet captures and then pushed to a Hadoop cluster. This is how
we work at Packetloop for prototyping ideas and analyzing data sets that are
provided to us by customers.

It also allows anyone to contribute dataflow queries, visualizations (in R or D3 or
anything else), custom loaders or wrap existing open source tools using the work
we have done as an example.

The project is hosted at Github https://github.com/packetloop/packetpig we
encourage you to download it play with it, fork it and contribute to it. If you want
to contact us regarding the project please email us on
packetpig@packetloop.com or follow the project on Twitter @packetpig.

We would also like to credit the work of others that we leveraged to build
Packetpig.
* The Apache Projects Hadoop and Pig.
* Libpcap
* The Kraken PCAP project.
* Libnids and pynids which we use for conversation and file dissection.
* Libmagic for file type identification.
* Snort and pOf which we wrap to provide IDS and Passive OS detection.
* Maxming Geo Location.
* R, D3 and Google for the Google Globe.

What can Packetpig do?
Once data network packet data has been captured and stored it can be analyzed
using Packetpig using any of the core features of the project;

* Packets - access to any field located in the IP header including TCP/UDP
fields. This includes
[P Version
[P Header Length
[P TOS
IP Total Length
[P ID
IP Flags
I[P TTL
[P Proto
IP Checksum
[P Source
[P Destination
TCP Source Port
TCP Destination Port
TCP Sequence ID
TCP ACKID
TCP Offset
TCP NS, CWR, ECE, URG, ACK, PSH, RST, SYN, FIN
TCP Window
TCP Length.
UCP Source Port
UDP Destination Port
UDP Length
o UDP Checksum
* Protocol Analysis

o Using the Packetpig Packet Loader protocols can be grouped and
filtered based on source port or destination port information as
well as via the IP Protocol field.

o Packetpig also provides the ability to perform ngram analysis
across the data portion of the packet. This can be used to find
distributions of ASCII characters in the data payload.

o DNS and HTTP can be fully dissected with full access to all fields.

* Conversations and Flows

@)

O OO0 OO OO OO O0OO0OO0OOoOO0ODOoODO0LBOoOOoOoOOoo

o Conversation Loader provides the ability to identify flows.
Currently we use a generic source, source port, destination,
destination port every 60 seconds to identify flows.

o The conversation loader can be used to identify conversations and
then the inter-packet delay or time between packets.

o The conversation loader also allows Packetpig to track
conversations and extract mime types (see File Dissection).

* Threat Analysis

o The Snort Loader allows Snort to be run distributed across the
Hadoop Cluster. The loader provides access to the following Snort
Data;.

o Timestamp, Signature ID, Priority, Message, Protocol, Source IP,
Source Port, Destination IP Destination Port.

* Geo-Location

o Using the Maxmind java library Packetpig provides the ability to
return.

o Given an IP address return a Latitude and Longitude.

o Given an IP address return an Autonomous System Number /
Organization Name.

o Give an IP address return the Country of origin.

* OS Fingerprinting

o The fingerprint loader wraps pOf Version 3 (by Michal Zalewski).
Allowing operating system, link/mtu, application names and
uptime to be analyzed for and party in a conversation.

* File Dissection

o Outputs the file name, mime type, extension.

o A MD5, SHA1 and SHA256 hash is produced for each file.

o Files can be dumped to HDFS to be accessed or further analyzed.

Building Blocks

Pig Loaders are written in Java and provide access to specific information in
Packet Captures. The Loader can be written exclusively in Java or wrap Python
scripts (e.g. lib/tcp.py) or Binary files (e.g. pOf, Snort). Loaders can be extended
and new loaders created as part of Packetpig.

Packetpig is made up of the following loaders and User Defined Functions;

* PacketLoader() for low-level access to packet data and IP headers.

* ConversationLoader() access conversation information. The
Source/Destination IP, Source/Destination Ports, how the conversation
was ended, timestamps of each packet sent in the conversation and also
the delay between packets.

* FingerprintLoader() - the wrapper for pOf.

* PacketNGramLoader() - allows ASCII Ngrams to be generated from
packet data.

* SnortLoader() - the wrapper for Snort.

* DNSConversationLoader() - Deep packet inspection for DNS.

* HTTPConversationLoader() - Deep packet inspection for HTTP.

* Geoip
o Given an IP address returns Lat/Long, ASN and Country
information.

The Basics

The Packetpig project contains a detailed README.md for explanation of how to
use the different Loaders, UDF’s and example PigLatin queries. This whitepaper
is likely to be out of data relatively quickly so refer to the Packetpig project on
Github for the latest information.

The first step to analyzing packet captures is choosing a Loader or multiple
Loaders to get the data that you want to analyze. A loader populates a variable in
Pig with data according to a schema.

For example if you want full access to I[P and TCP/UDP header information use
the PacketLoader().

packets = load '$pcap' using
com.blackfoundry.pig.loaders.pcap.packet.PacketLoader() AS (
ts,

ip version:int,

ip header_ length:int,
ip tos:int,

ip total length:int,
ip id:int,

ip flags:int,

ip frag offset:int,
ip ttl:int,

ip proto:int,

ip checksum:int,

ip src:chararray,

ip dst:chararray,

tcp _sport:int,
tcp _dport:int,
tcp_seq_id:long,
tcp_ack_id:long,
tcp offset:int,
tcp _ns:int,

tcp _cwr:int,

tcp _ece:int,

tcp _urg:int,
tcp_ack:int,

tcp _psh:int,

tcp rst:int,
tcp_syn:int,

tcp _fin:int,

tcp _window:int,
tcp _len:int,

udp_sport:int,
udp_dport:int,
udp_ len:int,
udp_checksum:chararray
)i
Figure 1 - Extract of pig/examples/basic_packets.pig

After executing this statement in Pig the variable ‘packets’ is populated with
integer, long and chararray’s based on the schema defined. If you DUMP the
packets variable you are presented with the packet data;

(1322645014,4,20,0,1500,42804,2,0,64,6,43874,192.168.0.19,97.90.192.1
11,50977,32982,1231665539, -
2129045419,8,0,0,0,0,1,0,0,0,0,10797,1448,0,0,0,0)
(1322645014,4,20,0,284,42805,2,0,64,6,45089,192.168.0.19,97.90.192.11
1,50977,32982,1231666987, -
2129045419,8,0,0,0,0,1,1,0,0,0,10797,232,0,0,0,0)
(1322645014,4,20,0,48,17448,0,0,117,17,4348,124.149.179.72,192.168.0.
19,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,30710,51413,28,59379)

Figure 2 - Dump of pig/examples/basic_packets.pig

Please note ‘-‘ in the table above are new lines, they won’t appear in the console
output.

Once you have access to the data that you want to analyze you can group it into
keys, iterate over it using FOREACH statements, count, average, sum and find
distinct values in it. These operators are the building blocks of the complex jobs
you will want to run across all packet captures.

As a quick example let’s group on destination port and find the number of
packets that are related to this port.

Firstly group all packets from the PacketLoader() using the TCP destination port
(tcp_dport)

packets = group packets by tcp dport;
DUMP packets;
Figure 3 - Extract from pig/examples/basic_grouping.pig

This grouping reorders the entire data set with tcp_dport as the key and the
packet data as the records.

Now let’s count the number of packets we have seen to each destination TCP
Port.

packets = FOREACH packets GENERATE group, COUNT (packets);

[have kept the variable as ‘packets’ because I am still manipulating the same
dataflow. What this line states is that for each line in the dataset grouped by
tcp_port regenerate the group (key is tcp_port) and count the number of packets
referenced by the key. The output is shown below;

(0,331)
(80,116)

(32982,48)
(33104,1)
(33105,1)
(33106,5)
(33301, 15)
(33483,1)
(33522,1)
(33523,1)

(34268,1)
(34299,43)
(39283,1)
(39284,1)
(39285,1)
(41789,13)
(41790,2)
(41791,3)
(41819,2)
(42513,1)
(42514,22)
(42582,3)
(42583,1)
(44746,1)
(50977,24)
(54222,6)
(54223,1)
(55944,1)
(56524,1)
(56543,8)
(58121,1)
(59113,1)
(59214,4)
(60640,1)
(60641,1)
(63964,1)
Figure 4 - Output of pig/examples/basic_grouping.pig

In the output above the first value is the key which is the destination TCP port
and the second value is the number of packets found with the destination port
set to key value. Values are automatically separated by a comma.

Often you will have a lot of data so you will want to order and limit. You can
order the output above easily using the following statement;

ordered = ORDER packets by $1 desc;
Figure 5 - Output of pig/examples/basic_grouping.pig

The $1 is a little troubling at first but look at output in Figure 4 - Output of
pig/examples/basic_grouping.pig. The group is the key and can be referenced as
$0 and the value is the count of the packets and can be referenced in subsequent
statements as $1. To avoid this confusion you can create a variable to reference
the count by. As in the example below using ‘count_packets’;

packets = FOREACH packets GENERATE group, COUNT (packets) as
count_packets;

ordered = ORDER packets by count packets desc;
Figure 6 - Referencing COUNT (packets) as a the variable ‘count_packets’

A limit can then be applied to the ordered list;

packets = FOREACH packets GENERATE group, COUNT (packets) as
count_packets;

ordered = ORDER packets by count packets desc;

limit packets = LIMIT ordered 10;

DUMP limit packets;

The output of dumping the limit statement is shown below;

(0,331)
(80,116)
(32982,48)
(34299,43)
(50977,24)
(42514,22)
(33301,15)
(41789,13)
(56543,8)
(54222,6)

Joining data from different datasets is performed frequently in Packetpig. Source
and Destination IP addresses are often used as keys to perform joins between
datasets. For example you may have a directory for yesterdays packet captures
and a directory for todays packet captures. What you are trying to work out is
how many source IP addresses were accessing your network yesterday and also
today.

You can use the PacketLoader() to load yesterday’s traffic (passing the directory
as a parameter) and load today’s traffic (passing the directory as a parameter).
You can then group by ip_src and Join the two datasets together.

A full example is provided in pig/examples/basic_joining.pig.

Binning Time

Timestamps are output by all Loaders in Packetpig. The timestamp can be used
to sort events into time bins. This is important for plotting time series data in
applications that have difficulty handling lots of data points.

Data from Loaders can be binned in user defined periods (default is 60 seconds).
An example of binning is pig/examples/binning.pig. The output is shown below;

(1312696740,773,690,2831)
(1312696800,107447,6140,124087)
(1312696860,7519,690,12057)
(1312696920,72544,5505,87069)
(1312696980,79735,950,87161)
(1312697040,161784,10319,189979)
(1312697100,3065,854,5931)
(1312697160,172780,5302,187080)
(1312697220,917747,2068,945607)
(1312697280,58431,5148,70295)
(1312697340,77068,969,84777)
(1312697400,102706,6203,121893)
(1312697460,1025,1008,3911)
(1312697520,111122,4984,127438)
Figure 7 - Output from pig/examples/binning.pig

The binning.pig script outputs a binned timestamp, the SUM of TCP packets
lengths for that period, the SUM of UDP packets for that period and the total IP
lengths for that binned period.

Threat Analysis
The SnortLoader() uses the pcap functionality of Snort (snort -r) to inspect
packet captures across Hadoop nodes using Pig.

The SnortLoader() reads security events related to the packet capture and
returns them using the following schema;

* Timestamp

e Signature ID

* Priority

* Message

* Protocol

e SrclIP

* Destination IP

* Source Port

* Destination Port

An example of the SnortLoader() is provided in pig/examples/basic_snort.pig.

Traffic Analysis
Traffic analysis involves being able to identify sessions or flows between source
and destination IP addresses and then extracting features out of those flows.

Some common features for analyzing traffic and protocols include;
* Packet size.
* Inter-packet delay.
* Ngram analysis of packet payloads.

Features of conversations such as these are often used to different one type of
traffic from another (e.g. DNS and HTTP) but furthermore to infer or guess at
what data is being conveyed in encrypted traffic or whether encrypted traffic is
being tunneled across a network. In this way Network Security Monitoring is
able to make assumptions based upon traffic analysis.

To support this analysis Packetpig is able to join conversations it finds with the
raw packets that make up the conversation. Currently we use an approximation
(which works well) of the source, source port destination, destination port 4-
tuple every 60 seconds.

An example of tracking packets in conversations is
pig/examples/conversations.pig which tracks all conversations and then outputs
the total bytes transferred in the conversation.

An example of tracking inter-packet delay for each conversation is provided in
pig/examples/conversation_packet_intervals.pig. It outputs every conversation,
the number of packets and the delay between each packet.

For DNS and HTTP traffic Packetpig is capable of performing deep packet
inspection and access all fields within the packet data.

Passive Operating System Detection
The FingerprintLoader() wraps Michal Zalewski’s pOf utility to perform
distributed passive operating system detection across a Hadoop cluster. It
returns identical data to that of pOf using the following schema;

* Timestamp

* Source IP

* Source Port

* Destination [P

* Destination Port

* Operating System

* Application

* Distribution

* Language

* Params

* Raw_freq

* Raw_mtu

* Raw_sig

e Uptime
The FingerPrintLoader() can be used in conjunction with other Loaders such as
the HttpConversationLoader() to provide some interesting information about
the source IP addresses. For example you could get all fingerprints and all the
user-agents from web requests and compare them for every source IP address. It
is then possible to output the Source IP address, Operating System (from pO0f)
and the user-agent (from HTTPConversationLoader() to see whether the source
user agent does not match their operating system and whether their user-agent
is changing from request to request.

An example of this exact query can be found in pig/examples/p0f_http.pig

File Extraction and Hashing
PacketPig provides the ability to extract files and output the following
information regarding files via the FileConversationLoader();

* Timestamp

* Source IP Address

* Source Port

* Destination IP Address

* Destination Port

* File type - information from libmagic, same as file command in Linux.

* Mime Type

¢ File Extension
e MD5 Hash

e SHA1 Hash

e SHA256 Hash

(1322689152,10.1.0.90,54837,199.181.254.21,80,GIF image data version
89a 182 x

130,image/gif, .gif,48f2294cbalécf7eaa5cc51201b91689,70d91d6£7£20a1755
ccladb6eedb248e24dblcldd,28ce7d3bb11d87eb2461d06bb237cffald221bldc6c08
d46e0545c0e216a03af)

Figure 8 - Example output from pig/examples/extracted_files.pig

The FileConversationLoader() takes a number of parameters.
* Path - e.g. ‘tmp’ the directory in HDFS to dump all files to.
* Mime e.g. image/gif to only dump or report on GIF images.
* Hashe.g. MD5/SHA1/SHA256 to only report on specific hashes.

If the FileConversationLoader() is not passed the ‘path’ parameter then it will
not dump the files. This is beneficial if you only want to perform a search and not
actually dump the files.

The FileConversationLoader() can easily be used to track all files transferred to
or from a particular IP address or transferred on a particular source or
destination port. If combined with the Geoip UDF it is possible to search for files
that are transferred to or from specific Countries or ISP (ASN’s).

Future

* Sentiment analysis across files and also SMTP messages to find positive or
negative terms and information.

* Build search indexes using Lucene that could be queried with something
like Solr.

* Probability loader to determine whether a specific traffic flow is x%
similar to all other flows of it’s type.

* Expose features to Machine Learning algorithms.

* Extraction/hashing of files with zip/gzip files.

Works Cited

Bejtlich, Robert (2004, July 22). The Tao of Network Security Monitoring
(Beyond Intrusion Detection).

Google Inc, Dean Jeffrey, Ghemawat Sanjay (2004, December) MapReduce:
Simplified Data Processing on Large Clusters from
http://research.google.com/archive/mapreduce.html

Zalewski, Michael (2012) pOf from http://lcamtuf.coredump.cx/p0f3/

