
Adobe Reader's
Custom Memory Management:

a Heap of Trouble

--
Guillaume Lovet, Threat Response, Sr. Manager

Hafei Li, Sr. Security Researcher



Objectives

• Gain detailed knowledge on Adobe Reader's 
Custom Heap Management System

• Become aware of the security issues it raises

(the bad guys know, you must know too)

• Be given insights on how to leverage them, in the 
frame of an exploitation scenario

(useful for penetration testing, mitigation research,
threat response...)



Introduction

• 80% of exploits in the Wild in Q4 2009 were PDF ones
=> 1st choice exploitation vector

• Why?
o Ubiquity of Adobe Reader
o Widespread false beliefs about viruses
o Patching process not integrated in Win. Updates
o Complexity of the specifications...

• Late 2009: new "high-risk PDF 0-day vuln exploited in the 
Wild" (CVE-2009-3459)

• Analysis revealed interesting techniques -- we digged 
deeper



Custom Heap Management on Adobe Reader

• Traditional programs outsource memory storage to 
the OS (via system calls)

• For performance reasons, Adobe Reader 
implements its own, on top of the OS

• Resembles a Cache

• One top level structure: Acro Block

• Two underlying structures/systems:
o Acro Cache Block
o BIB Block



Agenda

Acro Blocks

Exploiting the Acro Cache

The Acro Cache

1

3

2

4 The BIB Cache

5 Exploiting the BIB Cache



Acro Blocks - in Memory



Acro Blocks - Data Structures



Acro Blocks - Organization



Agenda

Exploiting the Acro Cache3

4 The BIB Cache

5 Exploiting the BIB Cache

Acro Blocks1

The Acro Cache2



Acro Cache - in Memory



Acro Cache - Data Structures



Acro Cache - Organization



Acro Cache - Zoom on Free Blocks



Acro Cache - Allocation

• Acro Cache system = acro_allocate()

• Used by basic functions (eg: stream decoding, processing 
top objects in PDF such as "/Pages", "/Page", etc...)

• General logic:
o Requested Size > 128 bytes

 allocates a "direct" Acro Block (asking the OS for heap space)
 Returns pointer to its data block

o Requested Size <= 128 bytes
 Looks for an appropriate Free Cache Block
 Unlinks it rom the Free Cache Blocks list
 Returns a pointer to it



Acro Cache - Initialization



Acro Cache - Unallocation

General Logic of acro_free():

1. locates the header (with lpHeader or lpCacheHeader)

2. Identifies the type of block

3. If Cache Block
o adds it to the head of the Free Cache Block list of its 

kind

4. If Acro Block
o unlinks it from the Acro Block list
o Asks the OS to free it



Agenda

Exploiting the Acro Cache

The Acro Cache

3

2

4 The BIB Cache

5 Exploiting the BIB Cache

Acro Blocks1



Strategies

• Two main ways to exploit Heap corruption flaws:
 Overwrite some application-provided data in the 

Heap
 Corrupt the internal structures used by the Heap 

management (block headers, etc...)

• Today, limited efficiency with OS Heap management 
systems:

 "safe unlinking" since SP2
 Heap state hard to predict across executions

• In Acro Cache case, both strategies are relevant



Overwriting App Data

• Assuming a vulnerable Acro Cache Block, 2 essential 
questions:

 Is there data within a Cache Block in the same Acro Cache 
that pertains to the execution flow?

 Is the distance between this targeted Cache Block and our 
vulnerable Block predictable enough?

• The Key Pointer
 v-pointer => points to fixed address (the v-table)
 Frequent on the Heap

• Predictability
 Opening a basic document several times in a row => Cache 

for big blocks are the most stable
 Let's use biggest (128 bytes) for experiment



Overwriting App Data (II)

0:007> dd poi(poi(poi(0x014D71E8) + 0x0C + 31*4 ) + 
4 )

0200bc14 00000000 0200bb90 89037a1b 1b476493
0200bc24 00030007 00000000 00000000 00000000
0200bc34 00000000 00000000 00000000 00000000
0200bc44 00000000 00000000 00000000 00000000
0200bc54 00000000 00000000 00000000 00000000
0200bc64 00000000 00000000 00000000 00000000
0200bc74 00000000 00000000 00000000 00000000
0200bc84 00000000 00000000 00000000 00000000

0:007> dd poi(poi(poi(0x014D71E8) + 0x0C + 31*4) + 4) 
+ 132 + 132

0200bd1c 01248830 01f1e8e8 0124c028 00000614



Overwriting App Data (III)

0:007> dd poi(poi(poi(0x014D71E8) + 0x0C + 31*4) + 4 )

0200bc14 44444444 44444444 44444444 44444444
0200bc24 44444444 44444444 44444444 44444444
...
0200bd1c 44444444 44444444 55555555

- Then resume execution -

(380.298): Access violation - code c0000005 (first chance)

009d993f 833858 cmp dword ptr 
[eax],58h ds:0023:55555555=????????

0:000> u eip



Corrupting the structures

When an Acro Block is unlinked:

lpAcroHeader->Flink->Blink = lpAcroHeader->Blink;
lpAcroHeader->Blink->Flink = lpAcroHeader->Flink;

Translates to:

[[lpAcroHeader + 0x10] + 0x0C] = [lpAcroHeader + 0x0C]
[[lpAcroHeader + 0x0C] + 0x10] = [lpAcroHeader + 0x10]



Corrupting the structures (II)

• In an exploitation scenario: overwrite lpAcroHeader (or lpCacheHeader) 
=> points to a forged header:

When Unlinked:

[EEEEEEEE + 0x0C] = DDDDDDDD
[DDDDDDDD + 0x10] = EEEEEEEE
This is equivalent to:

[X] = Y
[Y + 0x10] = X - 0x0C



Agenda

The BIB Cache

Exploiting the Acro Cache

The Acro Cache

4

3

2

1 Acro Blocks

5 Exploiting the BIB Cache



BIB Cache - In Memory



BIB Cache - Free BIB Blocks



BIB Cache - Organization



BIB Cache - Allocation

high-level logic of bib_allocate:

• If requested size > than 65024 (0xFE00) bytes, a classical Acro 
Block allocated and returned

• Pulls the smallest node whose size is bigger than the requested 
size (if more than one, the first same-size)

• If that node is bigger than the requested size by an amount of 28 
bytes (0x1C), the node is divided in two:

 first part (of requested size) returned to the requester
 second part inserted in the cache at the appropriate place 

(unique)

• Otherwise, the whole node is returned to the requester for 
memory storage.



Agenda

Exploiting the BIB Cache

Exploiting the Acro Cache

The Acro Cache

5

3

2

4 The BIB Cache

1 Acro Blocks



Corrupting the Structures

• Overwriting lpAcroHeader
Works in Underflow Cases
 Branches to the case described earlier (unlink 

attack)
Useless in overflow, use-after-free, etc...

• Overwriting lp_next_same_size
 Points to a forged Free BIB Block
 But what to do with it??
 Let's have a closer look at the insertion procedure 

(for new free BIB blocks)



Insertion procedure

DWORD block_size = (DWORD)*(USHORT *)(lpBibBlock - 2);

//if the bib block size is 0xFE01, handle it as an acro block
if ((block_size == 0xFE01) && (lpBibBlock != NULL))
{
//locate the acro block pointer
unsigned char *lpAcroBlock = lpBibBlock - 8;
//obtain the value of "reserve"
v_reserve = *(DWORD *)(lpBibBlock - 8);
if (v_reserve >= 0x00020000)
{
//free the acro block
acro_free(lpAcroBlock);

}
}



Corrupting the Structures (II)

• If the free block to insert has a size of 0xFE01 bytes => 
occupies a full Acro Block, which is thus freed!

• Upon allocation, a large enough Free BIB Block is 
divided in 2...

• ... And the reminder new BIB Block is inserted in the 
Cache

• Thus, we craft our forged BIB Block so that the 
reminder is 0xFE01 bytes => the insertion procedure 
will attempt to free its container Acro Block

• This means unlinking it... Game Over



Demo



Conclusion

• Custom Heap Management may be faster, but lacks all 
the security mechanisms OS has

• Empowers attackers with the capacity to exploit Heap 
Corruption vulnerabilities (once were hard to leverage)

• In a context where PDFs are a prime infection vector 
(eg: Ghostnet) for targeted attacks, must be addressed

• Good news: has already been, at the OS level (safe 
unlinking, heap metadata cookies, etc...)



Thank You


