
Counterattack
Turning the tables on exploitation attempts from tools like Metasploit

Matthew “scriptjunkie” Weeks

Abstract

In hostile networks, most security is aimed at preventing compromise. However, it is often
possible for the intended victim to not only confuse and frustrate the attacker, but actually trade
places and exploit the attacker. Vulnerabilities have already been shown in security tools such as
Firesheep, Nessus, Cain and Abel, and Wireshark. This paper introduces vulnerabilities in
Metasploit discovered through code analysis that result from assumptions about threat vectors.
These include XSS and CSRF vulnerabilities in the msfweb interface that enable remote code
execution from a malicious URL. The meterpreter controller has had directory traversal
vulnerabilities, as well as the TFTP and FTP server modules and many scripts. Cross-platform
payloads can be written in Ruby, rely on the Metasploit libraries, and take advantage of cross-
platform code locations in Metasploit for persistence. Metasploit users can protect themselves
from these attacks by using securely coded scripts or virtualization and other defense in depth
techniques. Despite these releases, Metasploit still has one of the best track records from a
vulnerability perspective; it is coded in a memory-safe language and thus avoids a constant
stream of memory corruption vulnerabilities that other programs suffer from, and its source is
open to critique.

Introduction
Research on counterattacking, also known as aggressive self-defense, active defense or

strike-back, has taken place for many years. Ranging from passive approaches to full remote
exploitation, counterattacks have nevertheless often been considered ethically dubious or
technically impractical. Although this paper will not discuss the ethical or legal issues behind
counterattacks, it will show how launching attacks often exposes the attacker to intrusion. This
paper will first present previous work followed by a description of attacks against specific tools
and finally previously unreleased attacks against Metasploit.

Previous work

Popular tools to block, deceive, or merely gain information about attackers include the
ubiquitous intrusion detection and firewall systems. Other passive approaches led to the
development of honeypots and honeynets. Many antivirus firms and other researchers have run
large honeynets to collect malware and attack signatures. Active defenses to exploit
vulnerabilities of attack tools have also been demonstrated before. Weaknesses in the popular
Linux security distribution Backtrack have led to a number of attacks, such as the sequence
described by Rob DeGulielmo in his DefCon 17 presentation. Many security researchers have
used vulnerabilities in exploit packs to gain information on attacks, botnets, and even the
botmasters themselves. For example, work done by Paul Royal targeted operators of the exploit
kits LuckySploit and UniquePack through XSS vulnerabilities in those kits. Billy (BK) Rios has
demonstrated a counterattack against a Zeus botnet controller.

Generic counterattacks
Some techniques for counterattack are independent of the particular tool used. For

example, if a honeypot hosted a Windows network share, an attacker that connected to the share
would transmit information in the connection. An attacker using Windows would reveal in the
SMB request his system name, domain name, and username. A counterattacker can force or at
least prompt such a connection by embedding a link with a UNC path into a honeypot web page.
Especially effective when the attacker is using Windows, the counterattacker can run the
Metasploit smb_capture or smb_relay modules to get a password hash of the attacker to crack the
attacker's password or even take over the attacker's system.

In some situations, a counterattack can successfully mirror the initial attack. For example,
a network security administrator may want to stage a counterattack against a worm infected
system that is launching exploits to spread the worm. In a targeted attack, the attacker will
probably not allow his system to be vulnerable to the exploit he is using, however in a worm
outbreak, an infected system will probably be vulnerable, since it was infected by the worm in
the first place. In this situation, the counterattacker will need the ability to use the worm's
exploit. For example, against a worm spreading using the MS06-040 vulnerability, a
counterattacker could use Metasploit to exploit the same vulnerability the worm initially used to
gain control of the offending system and shut down the worm.

Security tools
Many of the most widely used security tools have had vulnerabilities opening them up to

attack. Examples can be found in Nmap, Firesheep, Nessus, Cain & Abel, Wireshark, and
Metasploit.

Nmap

Nmap, possibly the most popular network exploration tool or port scanner, is a classic
tool of both network administrators and hackers alike. Hackers commonly run an Nmap scan
against a host to gain information about operating system and running services before they can
prepare an attack. The Nmap developers have a good track record with no vulnerabilities
reported in the NVD (National Vulnerability Database) or OSVDB (Open Source Vulnerability
Database) despite the fact that Nmap is a large, popular network program written in C++.

Counterattacks against Nmap without a 0-day will be limited to deception and denial of
service. One option is to use port knocking or similar mechanisms to hide a port so that Nmap
does not detect it. Another option is to run a tar pit to slow down Nmap scans once detected. A
tar pit is a firewall setting that will accept a connection, then advertise a zero-byte TCP receive
window. A tar pit will have little effect on the basic SYN scan other than making the port appear
open when it has nothing meaningful running on it. However, when Nmap or other scanners
open a connection to run version detection scripts, the connection will be frozen in an endless
series of keepalive packets. The attacker will only be wasting time and system resources until he
gives up or the connection times out. An aggressive scan that usually completes in seconds or a
few minutes may instead take hours to complete and will have almost no useful information.

A counterattacker can also make large numbers of ports appear to be open. If every port is
open or if most of them are tar pits, an Nmap scan will consume a large amount of time and
resources on an attacker's system, and it may crash Nmap. The current development tree of
Nmap has a patch for this crash, limiting the number of concurrently running scripts, but it had
not been incorporated into a stable release when this paper was written.

Firesheep

Firesheep is a recently developed specialized Firefox addon to perform session hijacking
by sniffing cookies of specific websites, such as Facebook. Many previous tools have been able
to do this, but Firesheep's complete ease of use and wide press coverage have pushed it to the
forefront. Other tools are completely passive, but when Firesheep sees a new cookie, which
generally represents a new logged-on user, it will test that cookie. Firesheep makes requests to
Facebook to see whether the token is a valid session ID and extract the picture and name of the
user it can hijack. It is therefore possible to detect a running Firesheep instance on the same open
or WEP encrypted wireless network by sending out a request with a bogus cookie and listening
for further requests with the same cookie. If another system sends out such a request, it can be
identified as attempting to hijack sessions, probably with Firesheep. The Blacksheep Firefox
addon performs this. Another program, Fireshepherd, sends out a request with a long string of
random data as the cookie, which will cause Firesheep to crash.

Nessus

Nessus is a commercial vulnerability scanner that is one of the most widely used security
tools. It can run thousands of tests to identify vulnerabilities from the network. Although it has a
good track record, it also has suffered a number of vulnerabilities, such as CVE-2010-2914, XSS
in the Nessus Web Server, or CVE-2007-4061, directory traversal.

Cain and Abel

Cain and Abel is a popular windows freeware tool that performs many attacks on
“security aspects/weakness present in protocol's standards, authentication methods and caching
mechanisms” that include many different password recovery techniques, ARP poison routing,
and service manipulation. It is a closed-source application and has suffered a number of
vulnerabilities, for example CVE-2005-0807: Multiple buffer overflows in Cain & Abel before
2.67 allow remote attackers to cause a denial of service (application crash) and possibly execute
arbitrary code via (1) an IKE packet with a large ID field that is not properly handled by the PSK
sniffer filter, (2) the HTTP sniffer filter, or the (3) POP3, (4) SMTP, (5) IMAP, (6) NNTP, or (7)
TDS sniffer filters; and more recently CVE-2008-5405: Stack-based buffer overflow in the RDP
protocol password decoder in Cain & Abel 4.9.23 and 4.9.24, and possibly earlier, allows remote
attackers to execute arbitrary code via an RDP file containing a long string. A counterattacker
could send exploits for these vulnerabilities at an attacker who had Cain & Abel's sniffer turned
on.

Wireshark

Wireshark is a packet-sniffing protocol analyzer that is useful for debugging network
issues, but can also be used to sniff and view network traffic of others, listening to VoIP calls,
and viewing passwords or any other sensitive content that is not properly encrypted. Wireshark
has had a rough time with vulnerabilities. Dozens of security flaws have been documented. To be
fair, it has faced possibly the most difficult job of the listed programs, as the Wireshark Security
Wiki explains:

Recent automated code inspections showed a much lower defect rate compared to
other known open source programs (the defect rate of closed source programs is not
known but may be even higher). Unfortunately most bugs found in the Wireshark
code are security related so they are mentioned in the security bulletins.

In most programs, only small sections of code work directly with "outside" data (e.g.
from a file or network). By focusing on these small sections during code reviews,
developers can eliminate most security problems.

Wireshark is different. The vast majority of its code base deals directly with data
from the "outside", so a code review on the relevant parts would cover most if not all
of the complete Wireshark code. Running "wc -l epan/dissectors/*.[ch]" returns over
1,900,000 lines of code that's expected to handle fresh-off-the-wire data! Auditing all
of this would be a huge effort, and may not guarantee success.

Wireshark is implemented in ANSI C, which is vulnerable to security problems like

buffer overflows (compared to more securely designed languages like Java or C#).

The Wireshark team has taken security vulnerabilities very seriously, and responded by
implementing many improvements. One of the improvements is an automated build process that
includes fuzz testing after each checkin. However, the system can have negative effects, as it
broadcasts security issues before they are fixed. When a fuzz test causes a crash, a file containing
the packets that caused the crash are posted online, emailed to a public distribution list, and can
serve as a proof of concept for an attack. In contrast, other popular open source projects like
Firefox will mask files that can serve as the basis for an attack at least until a patch or a
workaround is ready.

Another issue with Wireshark in practice is the difficulty of keeping Wireshark updated.
Wireshark does not automatically update or check for updates, and installs generally become
outdated in a matter of weeks or months. Furthermore, on Linux, when Wireshark is installed via
a distribution software center, so that it can be automatically updated, the distribution often does
not have the latest version. For example, Ubuntu, the most popular Linux distribution, generally
lags behind on updates.

Wireshark download page behind Ubuntu's Synaptic package manager showing an old,
vulnerable version of Wireshark

The underlying problem, as admitted, is the use of a non-memory safe language like C
that makes these attacks possible. If Wireshark were programmed in a memory-safe language
such as, for example, Java, it would not suffer from these memory corruption vulnerabilities. The
real elephant in the room of application security is that a huge majority of the vulnerabilities of
not only Wireshark, but also more commonly exploited applications such as browsers and PDF
viewers, could have been eliminated with the use of a memory-safe language.

Metasploit
Metasploit was programmed in Ruby, which does not suffer from the memory corruption

issues of C. It exposes very little memory corruption attack surface, and almost none of it lies in
the actual Metasploit code, residing instead in libraries like OpenSSL. Vulnerability discovery is
therefore unlikely with standard fuzzers. Instead, finding vulnerabilities requires manual code

analysis, although a counterattacker is not completely on his own. For example, web
vulnerability scanners can be used. (although none were used in this research) The vulnerabilities
released in this paper are examples of common vulnerability classes found against many other
applications, especially webapps.

Msfweb vulnerabilities

The first two vulnerabilities released here are found in the msfweb interface. This
interface, the open-source web interface, has been included in some form in Metasploit since
about 2005. However, in late 2009 support for the interface was dropped.

The first vulnerability is a cross-site scripting vulnerability. Msfweb provides a payload
generating capability that will generate payloads based on options that a user provides.

The msfweb payload generation page

After the form is submitted, msfweb will generate, encode, and display the payload in the
format given inside a HTML textarea tag. Although the only options for format under the drop
box are C, Ruby, Perl, Javascript, and Java, the msfweb server also accepts raw as a format
parameter. A counterattacker can reflect any content into the output page from the CMD option
of the generic command execution payload combined with the generic/none encoder and raw
output format. Cross-site scripting can be obtained by sending a closing textarea tag followed by
a script tag; i.e. “</textarea><script>alert(1)</script>”. The parsing logic will not echo content
following a comma or equals sign or a semicolon. So to execute useful code, this exploit
concatenates String.fromCharCode calls to decode and execute a stager that downloads and
executes the main Javascript stage from the attacker's server.

This XSS vulnerability provides control over the msfweb instance. To turn this control
into remote code execution, an exploit can use a command injection technique or a console-
based technique that will execute Ruby code from within the msfweb process. The exploit
presented here uses the second. The main stage will first obtain a new console by making a
request to /console/. This request will create a new console, give it a number, and redirect to the
URL /console/index/N where N is the index of the new console; for example /console/index/3.
The script will then issue console commands to run a handler for a bind meterpreter, verifying
that these commands complete correctly. Once the meterpreter session is established, it will
download a file to a temporary directory and use the loadpath command to execute the Ruby
code in the file.

This code execution technique may seem overly roundabout, but it functions cross-

platform in Linux and Windows systems without relying on other system commands or
functions. It will also work even when the attacker is behind a firewall and when the attacker
does not have privileges to run a TFTP server.

The second vulnerability in msfweb is CSRF. Msfweb does not verify that requests
originated from itself via any kind of CSRF token or other check. If a counterattacker can
convince the attacker to view a page, he can force the attacker to make any request to the
msfweb instance. Even though the process of launching an exploit or other module from the
user's perspective is a multi-step approach of sending options to a series of forms, until the
Launch Exploit (or Launch Auxiliary) command is given, the server is stateless. Each form post
includes all options already specified. The final form post to launch the module holds all the
information needed to launch the module. Furthermore, msfweb accepts parameters in either the
POST body or the URL. Therefore a single CSRF request can launch a module, and it can do that
without a form, only using an image tag easily embedded in many different places, such as web
forums and emails.

A number of Metasploit modules call on external utilities to gain information or interact
with other tools and place options that the user provides into the command line. Examples
include the wifi fuzzers and the sqlmap auxiliary module. The sqlmap module simply creates a
command line to launch the sqlmap program and runs it through a shell. It allows the user to add
arbitrary arguments, which it simply appends to the command. This allows the module to run any
other commands by inserting a pipe (|) ampersand (&) or semicolon (;) before the other
command. In the exploit released here, a CSRF request launches the sqlmap module to create
and run an arbitrary command line following a semicolon. To be effective, a counterattacker
must use a command that will function on the attacker's OS.

Directory Traversal Vulnerabilities

Many scripts in the framework extract various items of information from the exploited
host and save it in a subdirectory of the user's home directory. To organize the data across
different hosts, the directory name often includes the computer name. Unfortunately, until
recently, these were not checked for directory traversal sequences. Therefore, if an attacker ran
one of these scripts, the counterattacker could control both the location and, depending on the
script, the contents of a file to be written to the attacker's machine by using a computer name
including sequences like "../../". Many scripts perform or can perform this type of logging, such
as arp_scanner, domain_list_gen, dumplinks, enum_chrome, enum_firefox, event_manager,
get_filezilla_creds, get_pidgin_creds, packetrecorder, persistence, search_dwld, and winenum.

Payloads

Many options exist for payloads on a Metasploit exploit, although care must be taken if
the OS and architecture of an attacker cannot be reliably determined. Metasploit runs on
everything from most Windows versions to Linux, OS X, and the iPhone. A counterattacker can
only assume the basic dependencies of Metasploit and Metasploit itself are present. Knowing
this, counterattackers can write cross-platform payloads in Ruby. Alternatively, after gaining
code execution, shellcode can extract native or Java payloads depending on the target OS and
architecture. Metasploit already generates Ruby bind and reverse shells for command injection
bugs, but these tend to be unreliable as they are optimized for a short command line. For cases

where an exploit can run larger Ruby shellcode, more reliable shells have been provided. In
addition to catching errors, and re-listening for connections in case a shell process dies, the
payloads will run in a new thread so that the exploited process does not freeze waiting for it to
complete.

Counterattackers can obtain persistent access to an attacker in any OS by placing code in
a subfolder of the .msf3/modules/ subdirectory of the user's home directory that will be
automatically loaded when the framework starts. Metasploit will load all Ruby code inside the
subfolders named exploits, auxiliary, encoders, nops, and payloads to support personally
developed modules without affecting the main module tree. Another place persistence can be
achieved is by placing commands or Ruby code in the file ~/.msf3/msfconsole.rc which
Metasploit runs as a resource file when the framework is started. If the exploited process has
privileges to change the main Metasploit code, it can add a back door, or even relocate the
subversion root if the counterattacker wants to maintain access by subverting the update process.
And of course, counterattackers can use any platform-specific mechanism to maintain access.

Payloads for use against Wireshark encounter some of the same difficulties as payloads
for use against Metasploit. Wireshark compiles and runs on many different operating sytems and
architectures. Cross-platform exploits are extremely difficult to create due to differences in
system calls, and even across different versions of the same OS, structures like heap structures
differ widely as well as general memory layout.

Defenses
The preferred method of defending against any of the exploits discussed in this paper is to

patch the vulnerabilities discussed. Of course 0-day vulnerabilities may still remain. Using a
dedicated laptop or VM for penetration testing tasks provides a degree of defense in depth,
however some tools such as wifi injection modules may not function from a VM. Likewise,
limiting privileges can also be effective although running client-side exploits may require more
privileges. For example, Metasploit can run HTTP, DNS, DHCP, FTP, TFTP, SMB, and RPC
servers, but most of these modules require root privileges on Linux or UNIX systems to open
privileged ports. Running most Nmap scans also requires root privileges. A counterattacker
should isolate vulnerable code used in counterattacks and attackers' sessions in dedicated
honeypot VMs, but the preferred method is using bogus services and emulated meterpreter
sessions in honeypots to avoid giving a real shell to an attacker.

Conclusion
Counterattacks to deceive, crash, exploit, or just get information on attackers have been

created for use against many different attacks and tools, such as exploit packs, Nmap, Firesheep,
Nessus, and now Metasploit. Tools that are coded in a memory-safe language have some of the
best track records from a vulnerability perspective, avoiding a the memory corruption
vulnerabilities that other programs suffer from. Tools like Metasploit also benefit from being
open-source. Although, as the example of Wireshark shows, open-source does not imply error-
free, it provides an atmosphere more conducive to external aid in finding and fixing
vulnerabilities. Metasploit's large library set allows a counterattacker to create reliable, cross-
platform payloads and maintain persistent access on the disk.

Works Consulted

Aggressive Network Self-Defense. Neil Wyler, Bruce Potter, Chris Hurley. 26 February 2005.

A very large malware honeynet. Panda Research Blog. 19 December 2006. Accessed 10
December 2010. http://research.pandasecurity.com/a-very-large-malware-honeynet/

Con Kung-Fu – Defending Yourself @ DefCon. Rob DeGulielmo . 30 July 2009.

National Vulnerability Database. NIST. Accessed 8 December 2010.
http://web.nvd.nist.gov/view/vuln/search

Nmap Changelog. David Fifield. Accessed 11 December 2010. http://nmap.org/changelog.html

One-in-four hackers runs Opera to ward off other criminals - Security firm bamboozles hacker
toolkit operators into divulging info. Gregg Keizer. 20 August 2009.
http://www.computerworld.com/s/article/9136920/One_in_four_hackers_runs_Opera_to_
ward_off_other_criminals

Oxid.it – Cain & Abel. Massimiliano Montoro. Accessed 15 December 2010.
http://www.oxid.it/cain.html

Security – The Wireshark Wiki. Accessed 8 December 2010. http://wiki.wireshark.org/Security

Turning the Tables. Billy (BK) Rios. Accessed 2 January 2011. http://xs-
sniper.com/blog/2010/09/27/turning-the-tables/

Open Source Vulnerability Database. Accessed December 2010. http://osvdb.org/

	Introduction
	Previous work

	Generic counterattacks
	Security tools
	Nmap
	Firesheep
	Nessus
	Cain and Abel
	Wireshark

	Metasploit
	Msfweb vulnerabilities
	Directory Traversal Vulnerabilities
	Payloads

	Defenses
	Conclusion

