Hardware Reverse Engineering:
Access, Analyze, & Defeat

Joe Grand, Grand Idea Studio, Inc.
joe@grandideastudio.com

Black Hat DC 2011 Workshop
Course Outline

(A small taste of my full-fledged HH training)

• Process Overview
• Opening Housings
• Hardware Reverse Engineering
• Memory and Programmable Logic
• External Interfaces
• Advanced Techniques
• Open Lab
We Are Controlled By Technology

- Electronics are embedded into nearly everything we use on a daily basis
- Often taken for granted and inherently trusted
 - H/W is not voodoo, but people treat it that way
- Hardware has largely been ignored in the security field
 - Many products susceptible to compromise via simple, practical classes of attack
 - Vendors mostly respond to security problems by blowing them off (like S/W in the 90s!)
 - ...or it is blown completely out of proportion
Why Hardware Hacking?

- Security competency
 - Test hardware security schemes for failures/weaknesses
- Consumer protection
 - I don't trust glossy marketing materials...do you?
- Military intelligence
 - What is that hardware? How was it designed? By whom?
- Education and curiosity
 - To simply see how things work
 - Do something new, novel, and/or unique
Goals of an Attack

- Theft of service
 - Obtaining a service for free that normally costs $$$
- Competition/cloning
 - Specific theft of information/data/IP to gain a marketplace advantage
- User authentication/spoofing
 - Forging a user's identity to gain access to a system
- Bypass security features/privilege escalation
 - Defeating protection measures or gaining increased control of a system
Common Themes

- Most product design engineers not familiar with security
- Many products based on publicly available reference designs provided by chip vendors
- Components easy to access, identify, and probe
- Engineers and manufacturers want easy access to product for testing and debugging
- Even the simplest attacks can have huge repercussions
Hardware Hacking Methodology

- Major subsystems:
 - Information gathering
 - Hardware teardown
 - Firmware reverse engineering
 - External interface analysis
 - Silicon die analysis
Hardware Hacking Methodology 2

- It's all about gathering clues
- Determination and persistence is the key
 - Keep trying alternative solutions
 - Failure is the most frustrating part of hardware hacking, but also the most educational
 - Don't give up!
Information Gathering

- Crawling the Internet for specific information
 - Product specifications, design documents, marketing materials
 - Check forums, blogs, Twitter, Facebook, etc.
- Acquire target hardware
 - Purchase, borrow, rent, steal, or ask the vendor
 - Ex.: eBay, surplus
- Dumpster diving
- Social engineering
Hardware Teardown

• Hardware and electronics disassembly and reverse engineering
• Get access to the circuitry
• Component and subsystem identification
• Gives clues about design techniques, potential attacks, and system functionality
• Typically there are similarities between older and newer designs
 - Even between competing products
Firmware Reversing

- Extract program code/data from on-board memory devices
 - Using off-the-shelf device programmer or product-specific tool
 - You'll end up with a binary or hex dump
 - Ex.: Flash, ROM, RAM, EEPROM, FPGA

- Now pure software hackers can get into the game
 - Using tools and techniques they are already familiar with
 - Electronic/embedded systems are typically nothing more than a general purpose computer programmed to perform a specific task
Firmware Reversing 2

- Quick run through with *strings* and hex editor to pick most interesting area to begin with
 - Find clues to possible entry/access points to administrative menus or ideas of further attacks
- Disassemble, modify, recompile, and reprogram device, if desired
Interface Analysis

- Communications monitoring
- Protocol decoding and/or emulation
- Ex.: Smartcard, Serial, USB, JTAG, I2C, SPI, Ethernet, CAN
- Any interface accessible to the outside world may be an avenue for attack
 - Especially program/debug connections: If a legitimate designer has access to the interface, so do we
- Using oscilloscope, logic analyzer, dedicated sniffers, software tools, etc.
Silicon Die Analysis

• Extremely useful depending on attack goals
 - Simple imaging to gather clues
 - Key/algorith extraction from ICs
 - Retrieve contents of Flash, ROM, FPGAs, other non-volatile devices
 - Cutting or repairing silicon structures (security fuses, traces, etc.)

• Like reversing circuitry, but at a microscopic level
Cracking the Case: Opening Product Housings
Opening Housings: The Basics

• Goal is to get access to internal circuitry
• Have "sacrificial lambs" for initial tests/attempt
• Common case fasteners
 - Screws
 - Plastic snaps molded into case
 - Glue (soften w/ heat gun)
 - Double-sided tape
• Screws are sometimes hidden from the end user
 - On the bottom of the product
 - Under labels
 - Under rubber "feet"
Opening Housings: Step-by-Step

- Prepare a well-lit, clean workbench or area
- Remove power from the device
 - Unplug it, remove batteries, etc.
- Remove any screws (if applicable)
 - Keep track of screw locations if screws are different sizes
 - Store screws in a magnetic bowl or safe place
- Look for seams and gently pull at them
 - Don't force it - the case may be held together by plastic clips
 - Use a small flathead screwdriver or various thickness guitar picks to pry along the seam (if applicable)
Opening Housings: Anti-Tamper Mechanisms

- Physical security for embedded systems
- Attempts to prevent unauthorized physical or electronic tampering against the product
- Most effectively used in layers
- Can almost always be bypassed with knowledge of method
 - Attackers may intentionally destroy a device to determine its security mechanisms
Resistance
- Specialized materials used to resist tampering

Evidence
- Ensure that there is visible evidence left behind by tampering
 - Only successful if process in place to check for deformity

Detection
- Enable the hardware device to be aware of tampering

Response
- Countermeasures taken upon the detection of tampering
Anti-Tamper Mechanisms: Do They Work?

- Not really.
- Most seals can be bypassed with ordinary tools
 - Schwettmann & Michaud's "How to Steal Nuclear Warheads Without Voiding Your Xbox Warranty" @ BH DC 2011
Anti-Tamper Mechanisms: Do They Work? 2

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Mean</th>
<th>Median</th>
</tr>
</thead>
<tbody>
<tr>
<td>defeat time for 1 person</td>
<td>1.4 mins</td>
<td>43 secs</td>
</tr>
<tr>
<td>cost of tools and supplies</td>
<td>$78</td>
<td>$5</td>
</tr>
<tr>
<td>marginal cost of attack</td>
<td>62¢</td>
<td>9¢</td>
</tr>
<tr>
<td>time to devise successful attack</td>
<td>2.3 hrs</td>
<td>12 mins</td>
</tr>
</tbody>
</table>

- Half of these seals are in use for "critical" opportunities.
- At least 15% are in use and under consideration for nuclear safeguards.
Opening Housings: Security Bits and One-Way Screws

• Used to prevent housings from being easily opened
• Could be considered an anti-tamper mechanism
• Why are they called "security bits" when you can buy them almost anywhere (or make them)?
 - Ex.: Electronics stores, flea markets, online
 - Only prevents the most simple-minded attackers
• To identify a particular bit type:
 - www.instructables.com/id/When_a_Phillips_is_not_a_Phillips/
Opening Housings: Security Bits and One-Way Screws

Picture: www.instructables.com/id/When_a_Phillips_is_not_a_Phillips/
Opening Housings: Epoxy Encapsulation Removal

- Encapsulation typically used to protect circuitry from moisture, dust, mold, corrosion, or arcing
- Epoxy or urethane coatings leave a hard, difficult to remove film
Opening Housings: Epoxy Encapsulation Removal 2

- The good news: Most coatings are not specifically designed for security...
 - ...though sometimes they're used that way!

- Hot air gun to soften epoxy

- Chemicals
 - MG Chemicals' 8310 Conformal Coating Stripper
 (www.mgchemicals.com)

- Dremel tool and wooden skewer as a drill bit
 - Doesn't damage the components underneath coating
 - Might remove the soldermask, but not a big deal...
Hardware Reverse Engineering
Component Identification

- Access to component will aid reverse engineering
- Most vendors and part numbers printed directly onto component (larger components)
- Surface mount or small devices use an abbreviated code
 - Not enough space on the package to print full information
 - Abbreviation details available in manufacturer data sheets
 - Educated/lucky guesses to help narrow down part
Component Identification 2

• Basic identification tips:
 – Look for manufacturer's logo
 – Look for alphanumeric string on part (if multiple text strings available, usually a manufacturing date code or speed rating)
 – Find data sheets (coming up next...)

• To help identify IC vendor logos: http://web.archive.org/web/20040210014748/http://www.elektronikforum.de/ic-id

• To help identify SMD markings: http://tinyurl.com/muy4qa
Component Identification 3

18-LEAD PDIP (.300”)

- XXXXXXXXXXXX
- XXXXXXXXXXXX
- YYWWNNN

EXAMPLE

- PIC16F627A-I/P
- 0210017

18-LEAD SOIC (.300”)

- XXXXXXXXXXXX
- XXXXXXXXXXXX
- XXXXXXXXXXXX
- YYWWNNN

EXAMPLE

- PIC16F628A-E/SS
- 0210017

20-LEAD SSOP

- XXXXXXXXXXXX
- XXXXXXXXXXXX
- YYWWNNN

EXAMPLE

- PIC16F648A-I/SS
- 0210017

28-LEAD QFN

- XXXXXXXX
- XXXXXXXX
- YYWWNNN

EXAMPLE

- 16F628A-I/ML
- 0210017
Component Identification 4

- Sometimes, sensitive targeted components are made intentionally difficult to access.
- Some vendors remove identifiers and markings from ICs.
 - Ex.: Stainless steel brush, small sander, micro-bead blast, laser etcher, or third-party.
- May still be able to identify parts without the markings by probing or following important looking traces/signals.
Finding Data Sheets

• Data sheets contain extremely useful technical component information:
 - Product overview
 - Pinout and pin function
 - Electrical parameters and functional limits
 - Application data
 - Package drawings
Finding Data Sheets 2

24C01B/02B

1K/2K 5.0V I^2^C™ Serial EEPROM

FEATURES
- Single supply with 5.0V operation
- Low power CMOS technology
- 1 mA active current typical
- 10 μA standby current typical at 5.0V
- 5 μA standby current typical at 5.0V
- Organized as a single block of 128 bytes (128 x 8)
- or 256 bytes (256 x 8)
- 2-wire serial interface bus, IC compatible
- 100 kHz compatibility
- Self-timed write cycle (including auto-erase)
- Page-write buffer for up to 8 bytes
- 2 ms typical write cycle time for page-write
- Hardware write protect for entire memory
- Can be operated as a serial ROM
- ESD protection > 3,000V
- 1,000,000 ERASE/WRITE cycles guaranteed
- Data retention > 200 years
- 8 pin DIP or SOIC package
- Available for extended temperature ranges
 - Automotive (E): -40°C to +125°C

DESCRIPTION

The Microchip Technology Inc. 24C01B and 24C02B are 1K bit and 2K bit Electrically Erasable PROMs. The devices are organized as a single block of 128 x 8 bit or 256 x 8 bit memory with a 2-wire serial interface. The 24C01B and 24C02B also have page-write capability for up to 8 bytes of data. The 24C01B and 24C02B are available in the standard 8-pin DIP and an 8-pin surface mount SOIC package.

These devices are for extended temperature applications only. It is recommended that all other applications use Microchip’s 24LC01B/02B.
Finding Data Sheets 3

- Many free and pay-for-search data sheet locator services online
 - Google, duh.
 - Octopart, www.octopart.com
 - Find Chips, www.findchips.com
 - Data Sheet Locator, www.datasheetlocator.com
 - IC Master, www.icmaster.com
 - PartMiner, www.partminer.com
 - ChipDB, www.msarnoff.org/chipdb/
Design-for-Manufacturability

• Generally, manufacturers desire:
 – Full visibility into the system/circuit state
 – Unhindered access to key signals
 – Visual inspection capabilities

• Helps to keep rework/repair costs low, yield high, and failure analysis simple
 – It also helps hackers!
Design-for-Test

- Design in test structures that enable quick diagnostics of a system or circuit
 - Easy-to-access test/probe points
 - Industry-standard test interfaces
 - Proprietary test/debug ports (Ex.: Microchip PIC ICD2, Freescale BDM, Texas Instruments Spy-by-Wire)
Design-for-Test: Probe Points

- Small circles are probe/test points
 - Indication of "interesting" signals - what's good for the engineer is good for the hacker
 - Sometimes easily identifiable by silkscreen outline or easy-to-access locations
Probing Boards and Tracing Signals

- Look for test points and exposed traces/bus lines
- "Follow the copper"

- For traces that are not exposed, use a continuity meter and "sweep" the board to find the connection
Probing Boards: Things to Look For

- Data being transferred across exposed and/or accessible address, data, and control buses
- Confusing trace paths to prevent easy reverse engineering
 - Hidden critical traces on inner board layers
- Use of buried vias
 - Connects between two or more inner layers but no outer layer
 - Cannot be seen from either side of the board
 - Increased manufacturing cost
Probing Boards: Layout Motifs

- Determining traces is a time consuming process
- Rely on heuristics to identify trace function:
 - Power traces are thick, usually short
 - Impedance controlled signals usually thick and long
 - Often clock, high-speed data, or other critical line
Probing Boards: Layout Motifs 2

- Pairs of traces indicate differential signaling
- "Zig-zag" traces indicate length-matched busses (typically high-speed)
- Traces of similar function are grouped together
Memory and Programmable Logic
Memory and Programmable Logic

- Most memory is notoriously insecure
 - Not designed with security in mind
 - Can read most memory with an off-the-shelf, general purpose device programmer
 - Serial EEPROMs can usually be read in-circuit

- SRAM-based FPGAs vulnerable to attack
 - Must load configuration from external memory
 - Bit stream can be monitored to retrieve entire configuration
 - Bit stream may be encrypted
Memory and Programmable Logic 2

- Remnants may exist and be retrievable from devices long after power is removed
 - Could be useful to obtain program code, temporary data, crypto keys, etc.
 - Ex.: "An Integrated Approach to Recovering Deleted Files from NAND Flash Data," www.ssddfj.org/papers/SSDDFJ_V2_1_Luck_Stokes.pdf
Memory and Programmable Logic 3

- Ex.: Cold Boot attacks, http://citp.princeton.edu/memory/
Memory and Programmable Logic 4

- Security fuses and boot-block protection
 - Enabled for "write-once" access to a memory area or to prevent full read back
 - May be bypassed with die analysis attacks or electrical faults
 - "Design Principles for Tamper-Resistant Smartcard Processors,"
 www.cl.cam.ac.uk/~mgk25/sc99-tamper.pdf
 - "Copy Protection in Modern Microcontrollers,"
 www.cl.cam.ac.uk/~sps32/mcu_lock.html
Memory and Programmable Logic 5

- Once firmware/data is retrieved, can reverse engineer using standard software techniques
- Disassemble, modify, recompile, and reprogram device, if desired
- Ex.: IDA Pro, www.hex-rays.com
- Ex.: PICDisasm, http://hagi-online.org/picmicro/picdisasm_en.html
External Interfaces
External Interfaces

• Usually a product's lifeline to the outside world
 – Manufacturing tests, field programming/upgrading/debugging, peripheral connections
 – Ex.: RS232, USB, Firewire, Ethernet
 – Proprietary test/debug ports (Ex.: Microchip PIC ICD2, Freescale BDM, Texas Instruments Spy-by-Wire, Nokia F-Bus/M-Bus)

• Wireless interfaces also at risk
 – Ex.: 802.11, Bluetooth, ZigBee, ANT+

• Any interface that connects to a third-party may contain information that is useful for an attack
 – Could possibly obtain data, secrets, etc.
External Interfaces 2

• Look for obfuscated interfaces
 - Ex.: Proprietary or out-of-the-ordinary connector types, hidden access doors or holes, underneath battery holders
 - Many times, test points just hidden by a sticker
External Interfaces 3

- Use multimeter or oscilloscope to probe and determine functionality
 - Logic state of pins can help with an educated guess
 - Ex.: Pull pins high or low, observe results, repeat
- Monitor communications using H/W or S/W-based protocol analyzer
 - Ex.: Bus Pirate, www.buspirate.com
 - RS232 and parallel port: PortMon
 - USB: SnoopyPro, SourceUSB
- Send intentionally malformed/bad packets to cause a fault
 - If firmware doesn't handle this right, device could trigger unintended operation useful for an attack
JTAG

• JTAG (IEEE 1149.1, Joint Test Action Group) interface is often the Achilles' heel

• Industry-standard interface for testing and debugging
 - Ex.: System-level testing, serial boundary-scanning, low-level testing of dies and components, firmware debugging (single stepping and setting breakpoints)

• Can provide a direct interface to hardware
 - Ex.: Flash memory reprogramming
JTAG 2

- Five connections (4 required, 1 optional):
 - \leftarrow TDO = Data Out (from target device)
 - \rightarrow TDI = Data In (to target device)
 - \rightarrow TMS = Test Mode Select
 - \rightarrow TCK = Test Clock
 - \rightarrow /TRST = Test Reset (optional)

- Typical JTAG header pinouts:
 www.jtagtest.com/pinouts/
JTAG 3

- Many low-cost JTAG interfaces available (usually device/tool-specific)

- Old school parallel port interfaces can be built for only a few dollars
JTAG 4

- Many development environments provide support for JTAG interfaces
 - Low-level functionality is abstracted from the user
- Some open-source S/W tools exist
 - Ex.: Open On-Chip Debugger (OpenOCD), http://openocd.berlios.de/web/
 - Ex.: UrJTAG (Universal JTAG Library), www.urjtag.org
JTAG 5

• Removing JTAG functionality from a device is difficult
 - Designers usually obfuscate traces, cut traces, or blow fuses, all of which can be repaired by an attacker
 - Inconvenient, because it would remove programming/debug/testing capabilities for the legitimate users!
 - May be password protected

• Ex.: Barnaby Jack's Vector Rewrite Attack,
 www.securityfocus.com/columnists/446 and
 www.juniper.net/solutions/literature/white_papers/Vector-Rewrite-Attack.pdf
Advanced Techniques
Side-Channel Attacks

- All devices leak information
 - Time
 - Power consumption
 - EMI (electromagnetic interference)
 - Light and Sound
 - "Optical Time-Domain Eavesdropping Risks of CRT Displays," www.cl.cam.ac.uk/~mgk25/ieee02-optical.pdf
Side-Channel Attacks 2

- Can be used to retrieve secrets (keys, PIN) or reverse engineer firmware (program flow, crypto)
Side-Channel Attacks 3
Side-Channel Attacks: Power Analysis

- Unintended physical leakage of information based on power consumption
- Simple Power Analysis (SPA)
 - Attacker directly observes power consumption
 - Varies based on microprocessor operation
 - Easy to identify intensive functions (cryptographic)
- Differential Power Analysis (DPA)
 - Statistical methods to determine secret information on a device
 - Pioneered by Cryptography Research, Inc.
Side-Channel Attacks: Power Analysis 2

- "Power Analysis Attacks - Revealing the Secrets of Smartcards," www.dpabook.org
Side-Channel Attacks: Clock and Timing

- Attacks rely on changing or measuring timing characteristics of the system
- Active (Invasive) timing attacks
 - Vary clock (speed up or slow down) to induce failure or unintended operation
- Passive timing attacks
 - Non-invasive measurements of computation time
 - Different tasks take different amounts of time
Silicon Die Analysis

- Extremely useful depending on attack goals
 - Simple imaging to gather clues
 - Key/algorithm extraction from ICs
 - Retrieve contents of Flash, ROM, FPGAs, other non-volatile devices
 - Cutting or repairing silicon structures (security fuses, traces, etc.)

- Like reversing circuitry, but at a microscopic level
Silicon Die Analysis: IC Decapsulation

- Decapsulation tools used to "delid" or "decap" the top of the IC housing
- Uses chemical or mechanical means (or both)
- Will keep the silicon die intact while removing the outer material
 - Depending on the decapping method used, the product will still function!
Silicon Die Analysis:
IC Decapsulation 2

- Tools: Nippon Scientific (www.nscnet.co.jp/e), Nisene Technology Group (www.nisene.com), ULTRA TEC Manufacturing (www.ultratecusa.com), approx. $30k new, $15k used

- Services:
 - Flylogic, www.flylogic.net
 - MEFAS, Inc. (Micro Electronics Failure Analysis Services), www.mefas.com, approx. $50 and 2-day wait for a single device
Silicon Die Analysis: Scanning Electron Microscope

- Used to perform chip-/gate-level inspection of the physical die
- Images can be used to:
 - Determine manufacturer/chip type for hacking or competitive analysis
 - Determine attack vectors
 - Reverse engineer chip functionality
Silicon Die Analysis:
Scanning Electron Microscope 2

- Will usually need to remove metal or other layers before getting access to gate structures
- Depending on ROM size and properties, can visually recreate contents
Silicon Die Analysis: FIB (Focused Ion Beam)

- Send a focused stream of ions onto surface of the chip
 - Beam current/velocity and optional use of gas/vapor changes the function
- Imaging
- Cutting
 - Ex.: Cut a bond pad or trace from the die
- Deposition
 - Ions react with a chemical vapor to precipitate a metal film
 - Ex.: Add a jumper/reconnect a trace on the die
Silicon Die Analysis: FIB (Focused Ion Beam) 2

- Ex.: www.fei.com/products/focused-ion-beams/
- Ex.: Fibics Incorporated, www.fibics.com

Picture: Fibics Incorporated
"Real" equipment still fairly expensive, but can find in academic environment, get from surplus, or go low-tech:
- Fuming Nitric Acid (HNO₃)
- Acetone
- Microscope
- Micropositioner w/ sewing needle
Silicon Die Analysis 3

- Required reading/viewing:
 - Chris Tarnovsky/Flylogic Engineering's Analytical Blog, www.flylogic.net/blog
 - "Hack a Sat-TV Smart Card," www.wired.com/video/hack-a-sattv-smart-card/1813637610
Example
(There are many to choose from...)
Smart Parking Meters

- Parking industry generates $28 billion annually worldwide
- Where there's money, there's risk for fraud and abuse
- Attacks/breaches can have serious fiscal, legal, and social implications
- Collaboration w/ Jake Appelbaum and Chris Tarnovsky
- Released @ BH USA 2009
- Full details at www.grandideastudio.com/portfolio/smart-parking-meters/
San Francisco MTA

• Part of a $35 million pilot program to replace 23,000 mechanical meters with "smart" parking meters in 2003

• Infrastructure currently comprised of MacKay Guardian XLE meters

• Stored value smart card
 - $20 or $50 quantities
 - Can purchase online w/ credit card or in cash from selected locations
 - Dispose when value runs out
San Francisco MTA 2

- Easy to replay transaction w/ modified data to obtain unlimited parking
 - Determined solely by looking at oscilloscope captures of smartcard communications
 - Succeeded in three days
Information Gathering

• A chance encounter w/ Department of Parking & Transportation technician on the streets of SF
 - Ask smart, but technically awkward questions to elicit corrections

• Crawling the Internet for specific information
 - Product specifications, design documents, etc.

• How It's Made, Season 5, Episode 7: www.youtube.com/watch?v=1jzEcblRLEI
I am learning how to use CVS and as part of this process I set up a test repository to 'play' with.

D:\src\working\epurse\cvstest>cygcheck -s -v -r -h

Cygnus Win95/NT Configuration Diagnostics

Win9X Ver 4.10 build 67766446 A
Path: /cygdrive/c/NOVELL/CLIENT32
 /cygdrive/c/WINDOWS
 /cygdrive/c/WINDOWS/COMMAND
 /usr/bin
 /cygdrive/c/JJMACKAY/MET_TALK
 /cygdrive/c/JJMACKAY/UTILITY

GEMPLUS_LIB_PATH = `C:\WINDOWS\GEMPLUS'

Found: C:\cygwin\bin\gcc.exe
Found: C:\cygwin\bin\gdb.exe

xxx, Sr. Software Designer
Meter Disassembly: MacKay Guardian
Meter Disassembly: MacKay Guardian 2
Smartcard Communications Monitoring

- Used "shim" between smartcard and meter
 - Unpopulated Season 2 Interface
- Monitored I/O transaction w/ digital oscilloscope
- Asynchronous serial data @ 9600, 8E1 captured and decoded
 - Correct baud rate determined by measuring bit width on scope
Smartcard Communications Monitoring 2

Data to/from smartcard/meter

Bit width

ATR (Answer-to-Reset)
Smartcard Protocol Decoding

- Captured multiple transactions to gather clues on operation
 - Different valued cards
 - Different serial numbers
- Based on what values changed per transaction & per card, could narrow down what data meant what
- Decoded transaction functionality by hand, no computer needed!
Deduction of a Single Unit ($0.25)

- By updating the Balance 1 Value (8 bytes), CTC1 automatically increments.
- CTC1 is the only value that changes on the card during the entire transaction!
Computation of Card Value

- Maximum card value = (Balance 2 - 95d)
 - Ex.: 0x0AF (175d) - 95d = 80 units
 - 80 * $0.25 = $20
 - Ex.: 0x127 (295d) - 95d = 200 units
 - 200 * $0.25 = $50
Smartcard Die Analysis

- Purchased and decapsulated multiple cards to look for clues of manufacturer and functionality
- Visually identified that two different smartcard types exist
 - Gemplus GemClub-Memo (ASIC)
 - 8051 microcontroller *emulating* GemClub-Memo
- Dependent on card serial number
 - Older cards are ASIC, newer cards are MCU
- Microcontroller has potential for hidden/undocumented commands
 - One could retrieve the code from the card and reverse engineer (we didn't)
Smartcard Die Analysis 2
Protocol Emulation

- First attempt to replay exact transaction captured w/ scope
 - Microchip PIC16F648A
 - Written in C using MPLAB + CCS PIC-C
 - Challenge for code to be fast enough and incorporate required short delays while still be readable/useful C
Protocol Emulation 2

• Then, modified code to change various values until success
 - Knowing how "remaining value" is computed, what happens if we change Balance 2 to 0xFFF?
As icing on the cake, ported code to Silver Card (PIC16F877-based smartcard)
- PIC-based smartcards have been popular for satellite TV hackers for years, so required tools are readily available
- Ex.: http://interesting-devices.com
Hardware Evolution

1) Custom PCB + shim

2) MM2 card w/ external PIC

3) Silver Card: PIC16F877 smartcard
San Francisco MTA Results
Final Thoughts

- Hardware is now more accessible to hackers than ever before
- The line is now blurred between HW & SW
- New skills and techniques continually being developed and shared
- Learn from history and other people's mistakes to...
 - Make your products better
 - Break someone else's products
Open Lab!