
Darknets and hidden servers:
Identifying the true IP/network identity of I2P service hosts

Adrian Crenshaw

Abstract:

This paper will present research into
services hosted internally on the I2P
anonymity network, focusing on I2P hosted
websites known as eepSites, and how the
true identity of the Internet host providing
the service may be identified via information
leaks on the application layer. By knowing
the identity of the Internet host providing the
service, the anonymity set of the person or
group that administrates the service can be
greatly reduced if not completely eliminated.
The core aim of this paper will be to test the
anonymity provided by I2P for hosting
eepSites, focusing primarily on the
application layer and mistakes
administrators and developers may make
that could expose a service provider’s
identity or reduce the anonymity set1 they
are part of. We will show attacks based on
the intersection of I2P users hosting
eepSites on public IPs with virtual hosting,
the use of common web application
vulnerabilities to reveal the Internet facing
IP of an eepSite, as well as general
information that can be collected concerning
the nodes participating in the I2P anonymity
network.

Introduction:

I2P2 is a distributed Darknet using
the mixnet model, in some ways similar to
Tor, but specializing in providing internal
services instead of out-proxying to the
general Internet. The name I2P was original

1 An anonymity set is the total number of
possible candidates for the identity of an
entity. Reducing the anonymity set means
that you can narrow down the suspects.
2 Full details of how I2P is implemented can
be found at:
http://www.i2p2.de

short for “Invisible Internet Project”,
although it is rarely referred to by this long
form anymore. It is meant to act as an
overlay network on top of the public Internet
to add anonymity and security.

The primary motivation for this
project is to help secure the identity of I2P
eepSite (web servers hidden in the I2P
network) hosts by finding weaknesses in the
implementation of these systems at higher
application layers that can lead to their real
IP or the identity of the administrator of a
service being revealed. We also wish to find
vulnerabilities that may lead to the
anonymity set being greatly reduced, and
compensate for them. Exposing these
weaknesses will allow the administrators of
I2P eepSite services to avoid these pitfalls
when they implement their I2P web
applications. A secondary objective would
be to allow the identification of certain
groups that law enforcement might be
interested in locating, specifically
pedophiles. These goals are somewhat at
odds, since law enforcement could use the
knowledge to harass groups for other
reasons, and pedophiles could use the
knowledge to help hide themselves, neither
of which are desired goals, but with privacy
matters you sometimes have to take the
bad with the good. I2P was chosen as the
platform since less research has gone into it
verses Tor, but many of the same ideas and
techniques should be applicable to both
systems as they offer similar functionality
when it comes to hidden services that are
HTTP based. Another feature that makes
this research somewhat different is that
more work has been done in the past trying
to detect users, not providers, of services in
a Darknet.

While there are many papers on
attacking anonymizing networks, most seem

http://www.i2p2.de/

to be pretty esoteric. A few previous papers
that could be of use to those researching
this topic are:

Locating Hidden Servers [1]

Low-resource routing attacks against
anonymous systems [2]

The “Locating Hidden Servers”
paper may not be directly applicable as it
seems I2P goes to some effort to
synchronize times and avoid clock skew
problems3. A more directly I2P related
analysis can be found on the I2P site’s
“I2P’s Threat Model4” and guides to making
services more anonymous can be found on
“Ugha’s I2P Wiki5”. The threat model page
points to many more resources and papers
on possible attack vectors. More
background information that will be of use
during testing is listed in the approach
section.

Background on I2P

Since the academic community
seems to be far more aware of Tor than I2P,
it may be helpful to compare the two
systems and cover some of the basics
concerning how I2P works. Both Tor and
I2P use layered cryptography so that
intermediates cannot decipher the contents
of connections beyond what they need to
know to forward the connection on to the
next hop in the chain. Rather than focusing
on anonymous access to the public Internet,
I2P’s core design goal is to allow the
anonymous hosting of services (similar in
concept to Tor Hidden Services). It does
provide proxied access to the public Internet
via what are referred to as “out proxies”, as
well as various internal services to proxy out

3 Clock skews are lightly covered here:
http://www.i2p2.de/techintro.html#op.netdb
4 I2P’s Threat Model:
http://www.i2p2.de/how_threatmodel
5 Ugha’s Wiki (note that you have to use an
I2P proxy to access the site):
http://ugha.i2p/HowTo

onto the Tor and Freenet systems, but that
is not its core design goal.

Every I2P node is also generally a
router (and you can use the terms
somewhat interchangeably when it comes
to I2P) so there is not a clear distinction
between a server and a mere client like
there is with the Tor network. Some I2P
nodes do take on more responsibility than
others, such as floodfill routers that
participate in NetDB to handle routing
information. Unlike Tor, I2P does not use
centralized directory servers to connect
nodes, but instead utilizes a DHT
(Distributed Hash Table), based on

Kademlia6, referred to as NetDB. This
distributed system helps to eliminate a
single point of failure, and stems off
blocking attempts similar to what happened
to Tor when China blocked access to the
core directory servers on September 25th
20097. I2P’s reliance on a peer to peer
system for distributing routing information
does open up more avenues for Sybil
attacks8 and rogue peers, but steps have
been taken to help mitigate this and are
covered in the documentation9.

 Instead of referring to other routers
and services by their IP, I2P uses
cryptographical identifiers to specify both
routers and end point services. For example
the identifier for “www.i2p2.i2p”, the
project’s main website internal to the I2P
network, is:

6 NetDB Documentation
http://www.i2p2.de/how_networkdatabase
7 More details on China’s blocking of the Tor
directory servers can be found at:
https://blog.torproject.org/blog/tor-partially-
blocked-china
8 I2P vs. Sybil Attacks
http://www.i2p2.de/how_threatmodel#sybil
9 More details on the inner workings of I2P,
and it’s mitigation techniques against Sybil
attacks and rogue peers can be found in the
“Technical Introduction”:
http://www.i2p2.de/techintro.html

http://www.i2p2.de/techintro.html#op.netdb
http://www.i2p2.de/how_threatmodel
http://ugha.i2p/HowTo
http://www.i2p2.de/how_networkdatabase
https://blog.torproject.org/blog/tor-partially-blocked-china
https://blog.torproject.org/blog/tor-partially-blocked-china
http://www.i2p2.de/how_threatmodel#sybil
http://www.i2p2.de/techintro.html

-KR6qyfPWXoN~F3UzzYSMIsaRy4udcRkHu2Dx9syXSz

UQXQdi2Af1TV2UMH3PpPuNu-GwrqihwmLSkPFg4fv4y

QQY3E10VeQVuI67dn5vlan3NGMsjqxoXTSHHt7C3nX3

szXK90JSoO~tRMDl1xyqtKm94-RpIyNcLXofd0H6b02

683CQIjb-7JiCpDD0zharm6SU54rhdisIUVXpi1xYgg

2pKVpssL~KCp7RAGzpt2rSgz~RHFsecqGBeFwJdiko-

6CYW~tcBcigM8ea57LK7JjCFVhOoYTqgk95AG04-hfe

hnmBtuAFHWklFyFh88x6mS9sbVPvi-am4La0G0jvUJw

9a3wQ67jMr6KWQ~w~bFe~FDqoZqVXl8t88qHPIvXelv

Ww2Y8EMSF5PJhWw~AZfoWOA5VQVYvcmGzZIEKtFGE7b

gQf3rFtJ2FAtig9XXBsoLisHbJgeVb29Ew5E7bkwxvE

e9NYkIqvrKvUAt1i55we0Nkt6xlEdhBqg6xXOyIAAAA

This is the base64 representation of
the destination. Obviously having a user
type in this 516 byte chunk of data as an
Identifier would be somewhat less than
user-friendly, and it would not be valid in
some protocols anyway (HTTP for
example). I2P provides some workarounds
for naming identifiers; one is called “Base
32 Names”, similar in many ways to Tor’s
.onion naming convention. Essential the 516
byte Identifier is decoded (with some
character replacements) into its raw value,
the value is hashed with SHA256, then this
hash is base 32 encoded and “.b32.i2p” is
concatenated onto the end10. The results
for the “www.i2p2.i2p” identifier shown
above would be:

rjxwbsw4zjhv4zsplma6jmf5nr24e4ymvvbycd
3swgiinbvg7oga.b32.i2p

This form is much easier to work
with. For most eepSite users the common
naming solution is to just use the local I2P
address book that maps a simple name like
“www.i2p2.i2p” to its much longer Base 64
identifier. There is no official DNS like
service to do this lookup as that would be a
single point of failure that the I2P project
wishes to avoid. Each I2P node has its own
series of text files that contain the name
mappings in much the same way that the
Internet used to use just HOSTS files to
translate names to IPs before DNS was
invented. There are however naming
subscription services inside of I2P that can

10 Some things are better explained in
source code, which you can find provided
here in the Python scripting language:
http://forum.i2p2.de/viewtopic.php?t=4367

be synced to if the user wishes, though this
means the user is putting some level of trust
in these services not to hijack the name
mappings.

 A router’s ID is not the same as a
service’s ID, so even if the service happens
to be running on a particular router the two
identifiers cannot be easily tied together.
I2P also uses a few techniques to help
mitigate traffic correlation attacks. While the
Tor network uses a single changing path for
communications, I2P uses the concept of
“in” and “out” tunnels so requests and
responses are not necessarily using the
same paths for exchanging information. I2P
also uses an Onion routing variant referred
to as Garlic routing11, where more than one
message is bundled together into a “clove”.
This mixing of messages using Garlic
routing can lead to confusion for attackers
attempting to correlate transmission sizes
and timings, and if “cloves” are composed of
messages from both high latency tolerant
applications (e.g. email) and low latency
applications (e.g. web traffic) correlation
could become even harder. More
comparisons between I2P, Tor and other
anonymity networks can be found on I2P’s
“I2P Compared to Other Anonymous
Networks” page12.

Many services can be hosted inside
of the I2P overlay network (IRC, Bittorent,
eDonkey, Email, etc.), and the I2P team has
provided an API for creating new
applications that ride on top of the I2P
overlay network. As the developers note on
their page, many standard Internet
applications are not designed with
anonymity in mind, so caution should be
taken when adapting an existing application
to run on top of I2P. While many
applications exist and could be researched

11 Garlic Routing Explanation
http://www.i2p2.de/how_garlicrouting
12I2P Compared to Other Anonymous
Networks
http://www.i2p2.de/how_networkcomparison
s

http://forum.i2p2.de/viewtopic.php?t=4367
http://www.i2p2.de/how_garlicrouting
http://www.i2p2.de/how_networkcomparisons
http://www.i2p2.de/how_networkcomparisons

for application data leaks, this paper will be
concentrating on eepSites which are
websites internal to I2P. Some measures
are taken by the default I2P install to help
filter revealing information at the application
level, but service providers do make
mistakes that can lead to too much
information being revealed.

Overview of Approach

Our main approach will be looking at
the application layer and seeing what details
the hosts and eepSites are giving away
about themselves. This has already been
done in the past against cloaked clients with
much success:

Metasploit Decloaking Engine13

EFF project on web client identification14 [3]

Since we are targeting the identity of

servers instead of clients the exact vectors

for attack will differ, but there will be some

overlap. Many I2P services are hosted on

nodes/routers that also act as the owner’s

client node so client based attacks may also

be fruitful in revealing their identity. People

regularly make mistakes in how they

configure web servers and applications that

cause too much information to be leaked

out to an attacker, information that can

make finding a workable vulnerability much

easier. This sort of information leakage is

regularly mentioned in the OWASP (Open

Web App Security Project) Top 1015 in one

form or another. One of our mantras is

“Specific exploits are temporary, bad

13 Metasploit Decloaking Engine code and
details are available at:
http://www.decloak.net/
14 EFF Panopticlick
https://panopticlick.eff.org/
15 OWASP Top 10
http://www.owasp.org/index.php/Category:O
WASP_Top_Ten_Project

configuration mistakes are forever”. A few of

the techniques we researched to try to

reveal identifying information about the host

of an eepSite include:

1. Banner grabs of both eepSites inside of

I2P, and against know IPs participating

in the Darknet, to reduce the anonymity

set of the servers.

2. Reverse DNS and who is lookups to find

out more information concerning the IPs

of the I2P nodes.

3. TCP/IP stack OS finger printing.

4. Testing I2P virtual host names on the

public facing IP of I2P nodes.

5. Compare the clock of the remote I2P

site, and suspected IP hosts on the

public Internet, to our own system’s

clock. We did this via the HTTP

protocols “Date:” header.

6. Command injection attacks.

7. Web bugs to attempt to de-anonymize

eepSite administrators or users. (This

turned out more problematic than we

originally thought)

There were a few challenges

imposed because of the nature of the I2P
Darknet. These technical challenges caused
many standard security testing applications
to fail completely, or give ambiguous
results. Here are a few examples of the
challenges:

Point 1: Communications with the

eepSites is normally done via an HTTP

proxy. This is somewhat more limiting

connection wise than using a SOCKS proxy,

and way more limiting that having a direct

TCP/IP connection to the target. Also, the

default HTTP proxy that comes with I2P

does not support the “connect” command.

While this is stated in the documentation,

we first encountered this feature while trying

to run an Nmap scan using proxychains,

http://www.decloak.net/
https://panopticlick.eff.org/
http://www.owasp.org/index.php/Category:OWASP_Top_Ten_Project
http://www.owasp.org/index.php/Category:OWASP_Top_Ten_Project

and seeing the following message when we

used Wireshark to try to diagnose why our

attempts were failing:

<h3>Warning: Non-HTTP Protocol</h3>

The request uses a bad protocol.

The I2P HTTP Proxy supports http:// requests ONLY.

Other protocols such as https:// and ftp:// are not

allowed.

While this is challenging, we got around

the problem by writing some of our own

scripts in Python to do the required tasks.

ZZZ16 told us that SOCKS and Connect

should work if we set up the tunnels for

them, but at first we were unable to get

them to function. After much back and forth

with ZZZ (and the sending of sections from

our error logs) it seems that it’s a little tricky

to make a successfully connection to an

eepSite via a SOCKS proxy client tunnel.

We had to make sure DNS requests were

being forwarded through the SOCKS tunnel;

otherwise there would be an error when the

DNS system tried to look up a hostname

ending in .i2p, which is not a valid top level

domain name on the public Internet. This

setting can be made in Firefox by going into

“about:config” and setting:

network.proxy.socks_remote_dns = true

However this is only a solution for one

application, Firefox, so it may be of limited

utility in making other applications work with

the SOCKS client tunnel as a proxy.

Point 2: Perhaps because of point one,

many of the tools we have experimented

with so far have a tendency to give false

results or hang while working on spidering

16 ZZZ is the lead developer of I2P and as
the development is done pseudonymously
that is the only name we have for him.

an eepSite. We have created some custom

scripts that compensate for these eepSite

oddities, or we simply verify the results

ourselves in a more manual fashion. Many

of the pages hosted inside of I2P use forum,

image board, or blog software that passed

parameters via the file path section of the

URL. This may cause a non-404 error to

return, even for a non-existing file. When a

spidering tool says an obsolete or

vulnerable file is there, it must be verified by

hand.

Point 3: Filtering of client requests

makes it somewhat harder to attack the

administrator of an eepSite via web bugs, or

odd XSS attacks put into the logs17. If the

administrator is hit with an XSS, it is likely

they will be using I2P at the time, in which

case the returned information will be coming

through an outproxy and not directly from

their IP. I2P automatically changes the

browser agent string when an HTTP tunnel

is used to “User-Agent: Mozilla/5.0

(Windows; U; Windows NT 5.1; en-US;

rv:1.9.2.6)” for outproxy, and “MYOB/6.66

(AN/ON)” for internal I2P sites. This makes

putting an XSS attack in the logs of an

eepSite, and hoping to get information back

when the administrator checks them via an

HTML based report close to nil. Many HTTP

headers are filtered or normalized by I2P

such as: Accept, Accept-Charset, Accept-

Encoding, Accept-Language, Accept-

Ranges, Referer18, Via and From19. Also,

add on the fact that a security conscious

17 XSS, Command and SQL Injection
vectors: Beyond the Form
http://www.irongeek.com/i.php?page=securi
ty/xss-sql-and-command-inject-vectors
18 Though interestingly, a Referrer is still
visible with JavaScript unless other
precautions are taken.
19 I2P Tunnel Information
http://www.i2p2.de/i2ptunnel

http://www.irongeek.com/i.php?page=security/xss-sql-and-command-inject-vectors
http://www.irongeek.com/i.php?page=security/xss-sql-and-command-inject-vectors
http://www.i2p2.de/i2ptunnel

administrator may be using the NoScript,

TorButton (which does more anonymity

functions than just switching proxies) or

other privacy enhancing plugins, client side

attacks may become somewhat difficult.

While on the subject of client side

identification and uniqueness, we did a

quick test using Panopticlick. When we tried

using our normal install of Firefox,

Panopticlick reported that we were “unique

among the 1,258,250 tested so far”.

However, when we used the Tor Browser

Bundle20 and set it to use our local I2P

proxy, Panopticlick reported “one in 15,343

browsers have the same fingerprint as

yours” which is much better. As such, it is

recommended that I2P users may want to

not use their default browser for I2P use,

and use a dedicated browser instead.

Our experiences with testing web

applications inside of I2P really highlight the

need to understand how specific web apps

work, rather than just running tools against

them and “hoping for the best”. Nathan

Hamiel and Marcin Wielgoszewsk gave a

great talk at Defcon 18 on the subject of

writing your own tools for web application

security evaluation21, unfortunately we did

not find out about their work until we had

created most of our tools. For those

interested, they have published their code

snippets online22.

The next major problems were legal
as opposed to technical in nature. While

20 Tor Browser Bundle
http://www.torproject.org/projects/torbrowser
.html.en
21 Defcon 18: Constricting the Web -
Offensive Python for Web Hackers
http://vimeo.com/15554801
22 Constricting Code Snippets
http://hexsec.com/docs/ConstrictinSnippets.
zip/view

spidering we needed to be careful not to
download contraband onto my own system.
There is a fair amount of child pornography
out on I2P, and laws in the United States
are pretty unforgiving on the issue, even if
the files were obtained while doing
legitimate research. As such we mostly
spidered text, which is unfortunate as EXIF
data in images hosted on eepSites may be
of value in identifying individuals. Another
issue was that some of the techniques that
we were testing may not be appropriate to
do against resources we do not own, so we
set up our own eepSite to do many of the
tests. For common web vulnerabilities that
could lead to identity discloser we tested
against the Mutillidae23 training package
that implements the OWASP Top 10. While
not totally realistic from the stand point that
Mutillidae is MEANT to be exploited, it at
least acts as a proof of concept that if
similar vulnerabilities are found in an I2P
facing web application they could lead to
identifying information.

Evaluation

Collecting data on eepSites

The first thing we had to develop

was a way to check which I2P sites were

currently up and responding to requests.

I2P, like many peer-to-peer systems, has a

fair amount of churn. This churn makes it

hard to track what sites are up at any given

time.

One solution to gather active

eepSites would be to spider some of the

popular portal eepSites like forum.i2p or

ugha.i2p for URLs ending in .i2p, then

continue spidering from there recursively.

This recursive option can be slow however,

23 Mutillidae may be found at the following
URL:
http://www.irongeek.com/i.php?page=securi
ty/mutillidae-deliberately-vulnerable-php-
owasp-top-10

http://www.torproject.org/projects/torbrowser.html.en
http://www.torproject.org/projects/torbrowser.html.en
http://vimeo.com/15554801
http://hexsec.com/docs/ConstrictinSnippets.zip/view
http://hexsec.com/docs/ConstrictinSnippets.zip/view
http://www.irongeek.com/i.php?page=security/mutillidae-deliberately-vulnerable-php-owasp-top-10
http://www.irongeek.com/i.php?page=security/mutillidae-deliberately-vulnerable-php-owasp-top-10
http://www.irongeek.com/i.php?page=security/mutillidae-deliberately-vulnerable-php-owasp-top-10

many of the links are to dead sites (quite a

few people seem to put up a site just for fun,

then abandon it), and we may miss sites

that are active but just not linked too very

often.

Another option is to parse though

the host.txt file I2P uses for name to

cryptographic identifier mappings, and

check each i2p service for availability. I2P’s

SusiDNS allows the user to subscribe to

host mapping services. The address book

services we subscribed to were:

http://www.i2p2.i2p/hosts.txt

http://i2host.i2p/cgi-bin/i2hostetag

http://stats.i2p/cgi-bin/newhosts.txt

http://tino.i2p/hosts.txt

This gave us 1538 host names in

our address book on 10/27/2010 at

approximately 1pm EST.

The final solution was to use a

combination of both methods. A Python

script was created that simply checked the

status code returned by an eepSite when

it’s root document was requested, as well as

doing a banner grab for the server type the

eepSite’s web daemon reported. While the

reported server can be modified by the

system administrator to not contain extra

platform information, or even to return false

information, not all administrators bother.

This Python script could be used directly

with the local I2P access proxy, or could be

chained to another intercepting proxy for

extra functionality. In general, intercepting

proxies are meant to be run locally and

allow the user to modify requests before

they are sent out to the server, and many

offer extra functionality such as spidering

and scanning for common

misconfigurations. We chose ZAP (Zed

Attack Proxy24) as the intercepting proxy to

chain to, and used it to do the needed

spidering and site scraping. ZAP is a fork of

the Paros Proxy project, and seemed to

work well for the task at hand.

The Python script we created uses

multiple threads to iterate though the

hosts.txt file located at:

C:\Windows\SysWOW64\config\systemprofil

e\AppData\Roaming\I2P\hosts.txt

The choice of thread count is

somewhat arbitrary. We did not want to

overwhelm the local proxy servers with too

many I2P requests, however doing the

status checks and banner grabs one at a

time would have been prohibitively slow. We

obtained reasonable results with a thread

count anywhere between 10 and 25. While

testing, a scan with 100 concurrent threads

found 104 active eepSites in 798.585

seconds and another scan using 10 threads

found 112 in 5934.425 seconds. Keep in

mind that these results are not completely

predictable as outside events may have

caused differences in speed and the

number of eepSites reported, but it seems

the local I2P proxy can handle multiple

threads without dropping too many

connection attempts. As such, we opted for

faster scans by using more threads.

For the sake of space we will not

insert the source code of our probing scripts

into this paper, but our sample Python

scripts are available from the author’s

24 Zed Attack Proxy

http://www.owasp.org/index.php/OWASP_Z

ed_Attack_Proxy_Project

http://www.i2p2.i2p/hosts.txt
http://i2host.i2p/cgi-bin/i2hostetag
http://stats.i2p/cgi-bin/newhosts.txt
http://tino.i2p/hosts.txt
http://www.owasp.org/index.php/OWASP_Zed_Attack_Proxy_Project
http://www.owasp.org/index.php/OWASP_Zed_Attack_Proxy_Project

website or on request25. The following is a

quick synopsis concerning the function of

each script:

I2PMassGrabber-headers.py

Checks the status of each I2P host listed in

an I2P host.txt file to see if it's up, and then

generates CSV and HTML formatted output

with the hostname, status, and server

banner. Input file and proxies will have to be

changed based on user settings. This script

also collects page scrapes that can be

reviewed.

real-IP-banner.py

Grabs HTTP banners from an Internet

facing IP so we can compare, sort and filter

later.

dump-and-sort-i2p-router-ips.py

NetDB scraping code used to obtain a list of

IPs from our local NetDB cache. The

RegEX needs some work as some invalid

IPs work their way into the resulting output

text. Generates or adds to a file named all-

sorted-uniq.txt, so this script can be ran by a

scheduler to collect the IPs of I2P nodes

over time.

time-stamp-server.py

Compares times stamps found in the HTTP

headers of both Internet IPs and I2P sites to

the local clock, along with retrieval times,

generating a CSV file and a synopsis in

HTML.

virtual-server-test.py

I2P Virtual Host checking script. This script

uses a large CSV file to try specific I2P host

names on a given public IP to see if a

25 Current versions of the I2P probing

scripts can be found at the following URL

http://www.irongeek.com/host/i2p-probe-

scripts.zip

different page is returned. It saves scrapes

of these pages to a time stamped directory.

 All of the scripts above will need to

be tweaked by their users as the options are

set by variables in the code, as oppose to

command line flags. Also, the author is a

Python novice so it’s likely that the code

could be cleaner and better optimized.

By setting the I2P banner grabbing

Python script to use ZAP as its proxy, and

then chaining ZAP to the local I2P HTTP

proxy, we were able to do both banner

grabs with the script and load the URL

information into ZAP so that it could be used

to do more spidering and scanning later.

The output of the Python script went to two

time-stamp named files, one HTML

formatted for direct use in a browser, and

one CSV file used to feed other

applications. Here is an example of the CSV

files format:

"bitcoin4cash.i2p","200","Apache"

"shpargalko.i2p","200","Apache/2.2.15 (Win32)

PHP/5.3.2"

"darrob.i2p","200",""

"ufm.i2p","200","Apache/2.2.8 (Ubuntu) PHP/5.2.4-

2ubuntu5.12 with Suhosin-Patch"

CSV is a convenient format to work

with as it can be easily imported into other

tools, especial Microsoft Excel and Access.

The findings from the spidering and scans

done by ZAP will be covered lightly in future

sections. The intercepting proxy’s biggest

benefit to an attacker is in finding possible

web applications to exploit via ZAP’s

spidering, file/directory brute-forcing and

scanning features. I2P eepSite

administrators should be aware that just

because a file or folder on their site is not

advertised does not mean it can’t be found

by an attacker.

http://www.irongeek.com/host/i2p-probe-scripts.zip
http://www.irongeek.com/host/i2p-probe-scripts.zip

Concurrently with the scanning of

sites with ZAP and banner grabbing of

eepSites with the Python script we

attempted to run Wireshark26 and captured

the network traffic to disk. While the data

being sent on the network is encrypted, just

knowing who is communicating with us over

I2P may be revealing. We can filter the

traffic for nodes we know are peering with

us in the I2P network based on the known

port numbers we are using. These ports are

not fixed, but we can find the ones we are

using by going into the local console at:

 http://127.0.0.1:7657/config.jsp

and taking note of the ports that are

currently set. Since our I2P host was using

UDP and TCP ports 12668 at the time, we

set the capture filter to be “port 12668” to

help eliminate extraneous data. While

testing with the sniffer we ran into a bug that

caused the Wireshark application to crash.

To alleviate this problem, we used a simpler

tool that comes with the Wireshark package

called dumpcap to only write the packets to

a file without displaying or parsing them.

The command we issued was:

26Wireshark

http://www.wireshark.org/

dumpcap -i

\Device\NPF_{E97777A0-5863-4741-

AA42-FD3E02B2BD4C} -s 0 -f "port

12668" -w g:\dumpcap.pcap -a

duration:3600

The command above uses the

following parameters:

-i to tell dumpcap which network interface to

use (if you are not sure which of your local

interfaces to use, see the local interfaces

options by using the –D flag)

-s to set the snap length so that we capture

the whole packet

-f specifies the capture filter to use, thus

emanating packets we may not care about

-w locates the pcap file to output

–a tells dumpcap to stop capturing under

certain circumstances (in this case after one

hour)

 We could then look at the created

pcap file later in Wireshark without fear of

our packet capture being interrupted

because of a problem in the GUI or protocol

parsing sections of Wireshark’s code base.

Upon looking at the I2P client closer,

we realized a more efficient way to find

know I2P nodes would be to scrape the

contents of our NetDB directory using a

regular expression to find IPs, then filter it

for unique entries and remove invalid IP

matches. The “dump-and-sort-i2p-router-

ips.py” script was created for this purpose.

On November 9th 2010 this netted us 1099

nodes, of which 172 seemed to be running

a webserver that returned status code 200.

We took the end points we found in

I2P via our network capture and NetDB

scraping and scanned them with a slightly

http://127.0.0.1:7657/config.jsp
http://www.wireshark.org/

modified version of our Python banner

grabbing script. The main things we had to

change were how the script partitioned the

data (comma instead of equal sign) and

removed the use of the local I2P proxy. We

originally wished to scan though the I2P

proxy so that we would not have to worry

about our ISP asking us why we were

attempting a scan for port 80 across

multiple IPs, but the outproxy seemed to

strip the server type header information so

we had to query the IPs directly over the

public internet. We logged the server

header strings for web services so we could

later compared those to the headers

returned by the eepSites we scanned.

Another source of useful information

was doing a reverse DNS of the IP

addresses. At first we did this by loading our

pcap file using the “Network name

resolution” option, sorting by hostname, and

looking at the available endpoints under the

statistics menu option. For example, one of

the hosts was named awxcnx.de, but there

is also an awxcnx.i2p. Both seem to belong

to the public German Privacy Foundation so

that example is not a big deal as it was

likely deliberate (telecomix.org/telecomix.i2p

and privacybox.de/privacybox.i2p are

similar examples), but internal to external

naming conventions is something to keep

an eye out for. For example, if we see a

name like “thor.schmelz.com” we might

want to scour I2P for people interested in

Norse mythology or Marvel Comics.

One thing we stumbled upon while

looking at names was an organization that

seemed to have quite a few I2P nodes.

Nimbios.org had 25 I2P members according

to our pcap file. Upon doing a reverse

lookup on the IPs we scraped from out local

NetDB, we were able to find forty-four

unique IPs belonging to NIMBIOS. We were

rather curious what the “National Institute

for Mathematical and Biological Synthesis”

was using I2P for, so we emailed them.

Seems I2P is part of the standard build for

that organization. Proxad.net, Wanadoo.fr

and Goaland.net also seem to have a fair

share of nodes. This sort of analysis might

be useful for those wanting to spot potential

Sybil attacks.

Overview analysis of the data

 In this section we will cover

interesting statistics based on some of the

data we collected. While not all of it will be

directly germane to anonymity, it does

reveal things that we find interesting about

the users of I2P and the IP networks they

connect from.

One advantage of using the

Wireshark suite to dump packet to file is that

it supports the libpcap file format, which is

also supported by pretty much all tools that

use the libpcap libraries. Once the pcap was

created we were able to load it into

NetworkMiner27 for further analysis. When it

comes to the TCP/IP protocol, some of the

RFCs are ambiguous, and some vendors

implements their TCP/IP stacks in peculiar

ways. Items like initial TTL, Windows size,

“don’t fragment” settings and other options

vary depending on who wrote the stack.

These minor differences can be used to

help finger print the type of host we are

communicating with. NetworkMiner does

passive OS fingerprinting, giving us a great

deal of information about the IP stacks of

the hosts we are in contact with, and based

on the IP stack fingerprint we can make

likely guesses as to what OS is running on

27 NetworkMiner

http://networkminer.sourceforge.net/

http://networkminer.sourceforge.net/

the remote hosts. NetworkMiner uses the

fingerprint databases from previous tools

such as p0f, Ettercap, FingerBank and

Satori. Below is a screenshot of

NetworkMiner’s output.

Since the current version of

NetworkMiner does not allow us to dump

the parsed data to a text file, we used

Nirsoft’s SysExporter28 to extract the text

from the treeview control, and a simple text

editor to format it as we wished for loading

into other applications. During our hour long

capture we found 558 unique IPs

communicating with us in the I2P network.

The following pie graph gives a breakdown

of the detected Operating Systems.

28SysExporter

http://www.nirsoft.net/utils/sysexp.html

While the IP fingerprint might

somewhat lessen the anonymity set, it’s not

as clear as a banner grab of the reported

server type.

Other information of interest is the

location and responsible organization of the

I2P node based on its IP and Whois record.

There are many ways to obtain this

information, but IPNetInfo29 seemed the

easiest to use because of the bulk of IPs we

had to look up. The dataset collected on

11/09/2010 by scraping our local NetDB

gave the following results.

29IPNetInfo

http://www.nirsoft.net/utils/ipnetinfo.html

(Unknown)
321
57% (FreeBSD)

3
1%

(Linux)
110
20%

(Windows
)

124
22%

NetworkMinor OS
Detection by IP Stack

132
78 59 44 26 23

728

0
100
200
300
400
500
600
700
800

I2P Nodes By Organization

340

227
186

121
39 28 26 17 15 13 12 7 7

55

0

100

200

300

400

Fr
an

ce

G
er

m
an

y

U
SA

R
u

ss
ia

n
…

Sw
ed

e
n

Ja
p

an

U
n

it
e

d
…

U
kr

ai
n

e

N
et

h
er

la
n

d
s

C
an

ad
a

C
h

in
a

A
u

st
ra

lia

A
u

st
ri

a

o
th

er

I2P Nodes By Country

http://www.nirsoft.net/utils/sysexp.html
http://www.nirsoft.net/utils/ipnetinfo.html

 Now that we have various methods

we can use to obtain data about the nodes

in I2P, what information can we ascertain

about their identity?

Correlating server banners grabbed from

inside of I2P and off of the public

Internet

 One of our reasons for banner

grabbing eepSites inside of the I2P network

and known nodes from the public Internet is

to see if we can correlate header

information. Not all of the server banners

were particularly unique, such as “Server:

Apache”. Also, not all servers returned a

server banner at all. Because of churn in the

network it’s best to speak of results based

on data collected at a given time. We will

use the data collected on 11/09/2010 to

illustrate some of our points. Of those

banners returned facing internally to the I2P

network we obtained the information that

can be found in Table 1 of the appendix.

Table 2 of the appendix contains the banner

counts for I2P nodes that had a public

Internet facing HTTP server and returned a

banner with code 200 as the HTTP status.

As can be seen from the collected

data from 11/09/2010, some of the banners

give detailed information about their hosts

regarding the platform and modules in use.

When we used better techniques to harvest

the IPs of participating I2P nodes we

obtained a larger data set, but the data from

11/09/2010 illustrates the point. The end

goal of the banner grabbing was to correlate

external IPs to internal eepSites. There are

of course false positives that are hard to

estimate. Also, most of the banners are not

in a one to one relationship, but even if they

are not it helps to cut down on suspects and

may help in obtaining a subpoena for

search in freer countries, or cause the

“Gestapo/Jack-booted-Thugs” to say “hey,

we only have to kick down 10 doors instead

of 500!” in more repressive regimes.

For our test of using banner grabs to
correlate external IPs to internal eepSites
we first focused on the relations that were
one to one. We used a combination of
Access and Excel to find these correlations
and statistics by importing the CSV files we
created earlier and doing a few simple SQL
queries. Here is a table of the one to one
relationships from an earlier dataset we
created:

1 to 1 IP to I2P Banners

I2P hostname IP Banner

medosbor.i2p 89.31.112.91
(host-89-31-112-
91.academ.org)

Apache/2.2.1
3
(Linux/SUSE)

ipredia.i2p 97.74.196.206
(ip-97-74-196-
206.ip.secureserver.
net)

Apache/2.2.3
(CentOS)

xorbot.i2p 178.77.75.23
(www.gernot-
schulz.com)

Apache/2.2.9
(Debian)
PHP/5.2.6-
1+lenny9 with
Suhosin-
Patch

trac.i2p2.i2p 46.4.248.202
(bilbo.srv.welterde.d
e)

nginx/0.6.32

lurker.i2p 178.63.47.16
(fleshless.org)

nginx/0.7.65

I2P Host Banners
(Group 2)

Public IP
Host

Banners
(Group 1)

People who happen
to be running an I2P
router and a public
web server that has
a banner match on
I2P, but is not using
it for an I2P eepSite

Other
accidental

banner
relationships

People running their
eepSites as VHosts on a
public facing webserver

While this is not conclusive, it does

reduce the anonymity set and allows us to
take further steps to verify the suspicion that
they are the same host.

From hitting the IP 178.63.47.16 and
receiving back a page that only said “It
works!” (a default page on some web server
installs) we suspected the server was using
virtual hosting to host more than one site on
the same IP. Using the Firefox plugin
TamperData30 we modified our request
header to have the suspected eepSite’s
hostname (lurker.i2p):

This gave us the results we were looking

for.

30TamperData

https://addons.mozilla.org/en-

US/firefox/addon/966/

Since the pages are the same it

seems at least in this case we found the

Internet facing IP of an eepSite. Based on

the text of the page, lurker.i2p’s owner Frost

is not really trying to hide his connection to

the site, but still this is a promising proof of

concept for correlating eepSites to IP hosts

via server banners.

As for the other pages we tested by

hand, 46.4.248.202 (bilbo.srv.welterde.de)

already returns the I2P project page without

any manipulation of the host header, so it’s

pretty clear it is connected to trac.i2p2.i2p.

178.77.75.23 (www.gernot-schulz.com) was

a little harder. Tamper Data was used to

insert “xorbot.i2p“ as the host to request, but

something was going wrong, possibly the

use of cache control headers from the

server caused issues. We switched to using

ZAP’s intercepting proxy features to have

more control, and then set the requested

host header, but without success. The next

idea was to just do it the old fashion way

and add entries to map the IPs to host

names in our Windows host.txt file.

https://addons.mozilla.org/en-US/firefox/addon/966/
https://addons.mozilla.org/en-US/firefox/addon/966/
http://www.gernot-schulz.com/

Alas, this also failed. As the public

page on the site makes it obvious that Mr.

Schulz is into crypto, and we know he is

using I2P, he may still a likely suspect. The

I2P facing side of ipredia.i2p was having

communications issues at the time we were

performing our checks, so we could not test

it. 97.74.196.206 would only show the “LXA

Server Administration Tool” as the root

document no matter the host name used

(although we later found ipredia.i2p on a

different IP once we had collected more

Internet facing hosts to test against).

Medosbor.i2p and 89.31.112.91 (host-89-

31-112-91.academ.org) host the same site,

so that is a fairly obvious connection.

89.31.112.91 returned a blank page by

default, so we used the Windows host.txt

file to set the name mapping, allowing us to

easily pass the medosbor.i2p host name in

the HTTP request that went over the public

Internet. Medosbor, like some other sites,

does not really seem to want to hide as they

own “Medosbor.com” as well.

 For one off checks, using the cURL31

tool is a good option. For example, we could

use the following two command lines:

31cURL

http://curl.haxx.se/

curl 178.63.47.16

curl -H "Host: lurker.i2p" 178.63.47.16

and then observe returned results to see if

they match.

All of this is fine for one to one

checks, but if multiple I2P host banners

match multiple Internet host banners,

something more automated is required. We

wrote several iterations of a script to try the

entire set of Internet host to I2P host

correlations, and test each IP for each

suspected I2P hostname. To be more

through, we could check every IP for every

virtual host, but this greatly increases the

number of checks that would have to be

done and does not seem to be likely to net

better results (and when we tested, this was

the case). Using our data set from

11/09/2010 it would take 583 checks if we

matched our tests by banner, but 19092 if

we checked all possible IPs for all possible

I2P hostnames regardless of the banner.

At first we looked at all of the

returned pages manually instead of just

having the script say if the returned page

was different than the default root

document, this however was a chore.

Earlier version of the virtual host matching

script (virtual-server-test.py) used a simple

string compare to see if the sites were

different when using host headers, but this

led to a lot of false positives. If the page

returned a date stamp, or the name of the

host requested, the page would look

different to a simple matching if statement,

but really the site was the same functionally.

Luckily we were able to use Python’s difflib

to compare two sites, and only flag them as

different if they varied by 25%.

http://curl.haxx.se/

Using these methods we believe we

have de-anonymised the following sites

using I2P/Internet facing web servers:

I2P Hostname Likely Real IP

lurker.i2p 178.63.47.16

bzr.welterde.i2p 188.40.181.33

docs.i2p2.i2p 188.40.181.33

openmusic.i2p 188.40.181.33

paste.i2p2.i2p 188.40.181.33

syndie.welterde.i2p 188.40.181.33

www.i2p2.i2p 188.40.181.33

matterhorn.i2p 188.165.45.229

awxcnx.i2p 62.75.219.7

directedition.i2p 68.33.184.167

forum.i2p 82.103.134.192

ugha.i2p 82.103.134.192

bolobomb.i2p 83.222.124.19

ipredia.i2p 84.55.73.228

teknogods.i2p 84.234.26.123

jonatan.walck.i2p 85.229.85.244

medosbor.i2p 89.31.112.91

colombo-bt.i2p 93.174.93.93

www.i2p2.i2p (mirror?)
94.23.12.210
94.23.46.106
46.4.248.202

mathiasdm.i2p 94.23.52.151

privacybox.i2p 94.75.228.29

Granted, this is not a huge

percentage of the 111 I2P hosts we were

working with, but it does show that this is a

legitimate attack vector worthy of

consideration. Improvements could be

made by sampling for longer times, and

more frequently to help compensate for

churn in the network.

Mitigating this attack

The first mitigation for eepSite

owners would be either to configure their

server not to return a server banner or to

just return a very non-distinctive banner

such as the aforementioned “Server:

Apache” (this is likely the result of using the

ServerTokens directive set to ProductOnly).

Documentation on how to do this should be

available from the makers of the webserver

software. This is not a complete solution to

attackers checking for virtual hosts, an

attacker can still choose to do the slower

check from a larger pool of candidates.

Keep in mind, even if the server does not

return the requested virtual host to someone

that requested it, an error prone banner

match may still be enough depending on the

laws of the country for someone to

physically visit and search the server. If an

attacker wished to reduce the anonymity set

further, they could launch a Denial of

Service attack against the IP of a suspected

I2P host, as pointed out by a poster on

ZZZ’s forums32. However, if no identifying

information was returned that helped to

reduce the anonymity set in the first place,

an attacker would have to try to DoS many

more hosts, and test many more for

response times. This could lead to more

ambiguous information for the attacker and

more anonymity for the eepSite host. As

such, we recommended that future versions

of I2P may want to look into filtering

identifying server headers by default when

an “HTTP Server” type tunnel is created.

Much the same was already done for

identifying browsers user agent strings on

the client side. After reading an early draft of

this paper Mathiasdm submitted a

modification to the HTTP server tunnel code

to automatically replace the HTTP server

header with “Server: I2PServer”. When

version 0.8.2 was released on 12/22/2010 it

implemented a change to automatically

remove the HTTP Server header entirely,

making mitigating verbose HTTP Server

32 I2P vs. DoS of IP address
http://zzz.i2p/topics/761

http://zzz.i2p/topics/761

headers yourself somewhat moot. While this

means that the HTTP Server header can no

longer be used to reduce the number of IPs

that need to be checked for Virtual Hosts,

information about the server type may still

be gleaned from X-Powered-By headers

and verbose error messages. Also, with the

currently small size of the I2P network,

probing every I2P node without filtering by

Server header is still feasible. As the I2P

network grows, this may no longer be the

case.

The Server string may not be the

only item in the headers that allows for

fingerprinting the system. Some HTTP

daemon extensions may append other

headers that can be revealing. For example,

ASP.NET and PHP may add an “X-

Powered-By” header that will reveal

information about the server that will reduce

its anonymity set. A case in point is

forum.i2p:

Date: Wed, 01 Dec 2010 21:02:21 GMT

Server: Apache

X-Powered-By: PHP/5.2.13-pl0-gentoo

 Notice that while the server string is

fairly generic, the X-Powered-By is pretty

specific. This can be used to help eliminate

other candidates that have the string

“Server: Apache” in their headers.

Fortunately these headers can be disabled

in PHP 33 and ASP.NET34. The ordering of

headers may also be useful in some cases,

though server types (Apache, IIS, etc.)

generally seem to keep a standard order.

33 Disable PHP X-Powered-By header:
http://phpsec.org/projects/phpsecinfo/tests/e
xpose_php.html
34 Disable ASP.NET X-Powered-By header:
http://www.asp101.com/articles/wayne/pryin
geyes/default.asp

 If a site does not currently return

useful headers it may be revealing to check

out historical records of its previous headers

from before mitigations were put in place. If

an attacker goes to:

http://i2p.to/frame.php?page=info&host=so

mesite.i2p

and replaces somesite.i2p with the site they

are interested in they may find useful

information in the past headers the site

returned. For those interested in more

information about how HTTP headers may

be used by attackers it is recommended that

they visit the Shodan project’s35 website.

The second and stronger mitigation

is to either not run the eepSite on a web

server with a public facing IP, or to make

sure that the virtual host for the I2P site is

only set to respond to requests from the

localhost (where the I2P router is running)

or trusted IPs. An example section in an

Apache httpd.conf file might look something

like the following:

#Don't show Apache version in errors

ServerSignature Off

Say only "apache" in server banner

ServerTokens Prod

Make a default virtual host

NameVirtualHost 0.0.0.0

<VirtualHost *>

 DocumentRoot "/somepath/htdocs"

</VirtualHost>

Host two eepSites that only listen

on the loopback address

NameVirtualHost 127.0.0.1

<VirtualHost 127.0.0.1>

 ServerName myeepsite1.i2p

 DocumentRoot "/somepath/eep1"

</VirtualHost>

35 Shodan HQ
http://www.shodanhq.com/

http://phpsec.org/projects/phpsecinfo/tests/expose_php.html
http://phpsec.org/projects/phpsecinfo/tests/expose_php.html
http://www.asp101.com/articles/wayne/pryingeyes/default.asp
http://www.asp101.com/articles/wayne/pryingeyes/default.asp
http://i2p.to/frame.php?page=info&host=somesite.i2p
http://i2p.to/frame.php?page=info&host=somesite.i2p
http://www.shodanhq.com/

NameVirtualHost 127.0.0.1

<VirtualHost 127.0.0.1>

 ServerName myeepsite2.i2p

 DocumentRoot "/somepath/eep2"

</VirtualHost>

 If a web server does not respond to

probes from the Internet confirmation of it

hosting an I2P service becomes much

harder. Also note that the httpd.conf

example above uses the “serversignature

off” and “servertokens prod” directives to

help reduce the amount of information

returned by error messages and HTTP

headers.

Clock Differences

 While clock skew has been covered

in the literature before [4], it seems rather

difficult to implement its use for de-

anonymizing hidden services. Previous

efforts have had to implement their own test

networks because real world/deployed

anonymizing networks (Tor in this case)

were so variable in their response times that

the clock skew measurement methods

could not obtain dependable results. I2P

eepSites seem more dependable than Tor

hidden services when it comes to response

times, so perhaps these techniques should

be revisited.

Rather than look at clock skew, and

have to apply complicated statistical

analysis to compensate for the latency

caused by I2P, we looked at total clock

differences as measure by reading the time

stamps of the HTTP headers returned by

eepSites. If the time difference is

significantly beyond the total time it takes to

retrieve the page this may be useful for

spotting likely suspect IPs hosting I2P sites.

It should be noted that I2P does do some

synchronization of clocks and timing, but

this is for the I2P package itself and not the

host’s clock nor other services running on

the host.

To test the idea we took sites like

ipredia.i2p (84.55.73.228) which we had

already de-anonymized using the virtual

host method and checked their clocks as

reported by their HTTP headers against our

own system’s clock. When we checked the

HTTP timestamp of 84.55.73.228 the time

difference was -4325.582 seconds with a

retrieval time of 0.353 seconds. When we

checked ipredia.i2p the time difference was

-4321.663 seconds with a retrieval time of

8.946 seconds. Since the clock difference

was significantly greater than the retrieval

time, this would be a pretty clear example of

a badly set clock giving away an IP to I2P

relationship. After the initial tests, we tried to

correlate the clocks of other IP and I2P

hosts. One standout worth mentioning is the

pair error.i2p and 130.241.45.216. Both

shared the same server header

“Apache/2.2.9 (Debian) PHP/5.2.6-1+lenny8

with Suhosin-Patch”, but doing the virtual

host check against 130.241.45.216 for

error.i2p did not return definitive results. The

clocks tell a different story however. When

we checked the HTTP timestamp of

130.241.45.216 the time difference was

4488.434 seconds with a retrieval time of

0.702 seconds. When we checked the

HTTP timestamp of error.i2p the time

difference was 4490.365 seconds with a

retrieval time of 4.894 seconds. This makes

a connection between these two hosts

seem very likely. With clock differences on

the order of an hour it’s pretty easy to spot

suspected hosts, but with proper analysis

the needed time difference could be greatly

reduced.

Mitigating this attack

As mentioned before, not running an

eepSite on a public IP would be a good first

step. Also, making sure that the time is

properly synchronized with a reliable and

widely used NTP server and the time zone

is set correctly would help. The reason we

specify a widely used and reliable NTP

server is that synchronizing against an NTP

system that is significantly off may also

reduce the anonymity set.

Command Injection attack

A Command Injection Vulnerability
occurs when improperly sanitized input, be
it from a web form, get request, cookie or
header, is fed into an application that then
uses the input as part of a command that is
to be issued at a shell. A similar flavor of
vulnerability is the Code Injection attack,
where the attacker attempts to get their
code inserted as part of the application. A
slightly less related attack is the SQL
Injection attack, where the attacker uses
input to try to change the nature of an SQL
query. All of these attack vectors are of
interest because it is possible to use them
to force an [5] eepSite’s host to make a
connection to an attacker controlled host
from outside of the I2P network, thus
revealing their identity.

Since mounting this particular attack

on someone else’s system might be
ethically or legal questionable we put up our
own eepSite to test against. For common
web vulnerabilities that could lead to identity
discloser we installed the Mutillidae training
package that implements the OWASP Top
1036 as a test bed. While this is not a
realistic test in the sense that the Mutillidae
web application is deliberately designed to
be compromised, it still works as a proof of
concept for how these common web

36 OWASP Top 10
http://www.owasp.org/index.php/Category:O
WASP_Top_Ten_Project

vulnerabilities could be used to identify a
system.

Mutillidae has multiple vulnerabilities

we could choose from, but for our testing we
chose to use the Command Injection
vulnerability located in the DNS Lookup
application. The way this application is
designed to work is as follows: The user
enters a host name or IP to lookup, then the
application uses the system’s nslookup
command to find the requested information
and return it to the user. However, since
the DNS Lookup application is issuing this
nslookup command with a simple PHP
“shell_exec” function, extra commands can
be tacked onto the end of the input (using a
; in Linux or a && in Windows) which will
also be executed. Since in this case the
output of the command is reflected in the
resulting HTML of the returned page, all the
attacker has to do is read the results
directly.

 For this test we used the simple

string “&& tracert irongeek.com” as our

injection. As can be seen in the output, this

trace route command totally bypasses the

I2P proxy, and the results show the true IP

of the host running the eepSite (which we

blurred in the screenshot).

http://www.owasp.org/index.php/Category:OWASP_Top_Ten_Project
http://www.owasp.org/index.php/Category:OWASP_Top_Ten_Project

 This particular Command Injection

vulnerability reflects the output back to the

web browser, but this sort of verboseness is

not necessary. An attacker could also use a

blind Command Injection that utilizes a

network related command (like ping on

netcat for example) to make a connection

back to a host the attacker controls, then

sniff for incoming connections to find the

true IP for that eepSite’s host.

Similar attacks could also be carried

out via a Code Injection that inserts

networking functionality into the application

to communicates back with the attacker, or

conceivably via an SQL Injection that uses a

stored procedure (xp_cmdShell in MSSQL

comes to mind).

Mitigating this attack

 Short of a full out code review,

watching for security news related to the

web applications used and keeping the

applications on the eepSite patched and up-

to-date is the best course of action. For

home grown web applications it would be a

good idea to review OWASP’s material on

the subject of avoiding various types of

injection attacks37. Another solution may be

to massively lock down the eepSite’s

firewall rules not to allow any sort of egress

to the outside Internet. While some may

disregard this section of the paper since we

only tested against our own deliberately

vulnerable application, these sorts of flaws

do exist in real web applications and pop up

fairly regularly (though usually not as

obvious or simple to exploit as in the sample

DNS Lookup application). A simple search

for “injection” under the web section of

Exploit-DB38 should be quite revealing as to

how common these sorts of problems are.

Summary of results

 Exact statistics on the reliability of

attacks are not easy given the amount of

churn in the I2P network. This churn can be

somewhat compensated for by collecting

data over a longer period of time, but the

figures are not exact and there is not

complete visibility into the network. An

eepSite may be found, and then disappear,

before an associated IP can be probed (and

vice versa). Of the 119 I2P hostnames we

have in our set we found 21 IPs via either

querying for the I2P host name in the host

header, or because the IP returned the

same page as the I2P eepSite. One of

these was an outdated version of

jonatan.walck.i2p that had been moved to a

new location, which we found out about by

emailing the administrator. We have four

candidates for www.i2p.i2p because of

mirroring. Clock difference attacks only

gave us one new “likely” de-anonymized

37 OWASP Command Injection
http://www.owasp.org/index.php/Command_
Injection
38 Exploit Database
http://www.exploit-db.com

http://www.owasp.org/index.php/Command_Injection
http://www.owasp.org/index.php/Command_Injection
http://www.exploit-db.com/

eepSite, though some of the eepSites found

via other methods could also be found with

this attack. This clock difference method

shows promise for further testing and

refinement. The command injection attack

was only carried out against a test system,

real world results would of course vary

based on the site that was being attacked

and what web applications they had

installed.

Conclusions and Discussion

 As can be seen from the sections

above, even if an anonymity network is well

designed on its lower levels, applications

that are run on top of it can still compromise

the identity of the users if certain data is not

properly sanitized. This may especially be

the case when applications designed on

and for the public Internet are shoehorned

into working on an anonymity network

without certain mitigations being put in

place. It should also be noted that the

attacks above may prove more useful if the

collected data is accumulated over a longer

period of time to help compensate for the

natural churn of the network, and the lack of

a central location to query to find all nodes

in the network.

Besides the techniques we have

outlined above, there are many more

avenues that could be explored in future

research. We concentrated our work on

eepSites inside of I2P, but IRC, eMule and

BitTorrent usage could also be interesting to

research for identity leaks. We have already

done some work in revealing information

about IRC users in I2P based on the

“Request: USER" information their IRC

client provides (see the /whois command).

This paper concentrated on looking

for the Internet hosts of services directly, but

targeting the administrators via whatever

contact information they provide and

enticing them to visit a site the attacker

controls could also be fruitful. This may not

reveal the IP of the eepSite host if the

administrator is not using it as an I2P client

as well, but in many cases the IP of one of

the administrator’s workstations is good

enough. There are numerous ways to find

the IP a client is coming from that could

bypass the browser’s proxy settings. For

example, when we visited the

aforementioned Decloak.net while using I2P

it was able to discern our true IP via the

Flash plugin we had installed. For this

reason, it is recommended that people who

really wish to stay anonymous may want to

forgo the use of plugins like Flash. We

wished to look into various JavaScript XSS

vectors as well, but certain technical and

time limitations held us back. Also of

interest might be metadata in documents

posted on eepSites or in Deepsites39. Quite

a few people have been doing research into

the metadata located inside of JPEGs, MS

Office docs, PDFs and other data files [6].

Using tools like FOCA40 this data can be

extracted to reveal real names, user names,

IPs and other related data [7].

 While these application level attacks

do not break the I2P anonymity system

directly, they can lead to compromising

identities. Certain architecture changes

could be made to make these attacks more

difficult, but there is no way to completely

protect users and administrators from

39 Deepsites are akin to FreeNETs
distributed storage system. More details are
available at:
http://duck.i2p/
40 FOCA may be downloaded from:
http://www.informatica64.com/DownloadFO
CA/

http://duck.i2p/
http://www.informatica64.com/DownloadFOCA/
http://www.informatica64.com/DownloadFOCA/

making mistakes without also limiting their

freedom to choose what to do with the

anonymity platform. Administrators should

be cautious when providing services inside

of I2P, make sure there are not unintended

leaks, and understand the nature of the

application or service they are trying to

deploy. From an attacker’s perspective, why

bother to pick a lock when you can crawl

through an open window?

Thanks to the following individuals who

reviewed this paper: ZZZ, Mathiasdm,

Echelon, Tuna, Bart Hopper, Gene

Bransfield, David Comings, Rick Hayes,

Keith Pachulski and Dr. Apu Kapadia.

Works Cited/Related Work [8]

[1] L., and Syverson, P. Øverlier, "Locating

hidden servers," in Symposium on Security

and Privacy, May 2006.

[2] Damon McCoy, Dirk Grunwald, Tadayoshi

Kohno, Douglas Sicker Kevin Bauer, "Low-

resource routing attacks against tor," in

WPES '07 Proceedings of the 2007 ACM

workshop on Privacy in electronic society,

2007.

[3] Peter Eckersley, "How Unique Is Your Web

Browser?," Electronic Frontier Foundation,

2010.

[4] Steven J. Murdoch Sebastian Zander, "An

Improved Clock-skew Measurement

Technique," in In 17th USENIX Security

Symposium, San Jose, 2008.

[5] Brian Neil Levine, Clay Shields Marc

Liberatore, "Strengthening Forensic

Investigationsof Child Pornography on P2P

Networks," in CoNEXT , Philadelphia, 2010.

[6] Larry Pesce, "Document Metadata, the

Silent Killer…," SANS Institute, 2008.

[7] Enrique Rando, Francisco Oca and Antonio

Guzmán Chema Alonso, "Disclosing Private

Information from Metadata, hidden info

and lost data," in BlackHat Europe, 2009.

[8] Aaron Johnson, Paul Syverson Joan

Feigenbaum1, "Preventing Active Timing

Attacks in Low-Latency Anonymous

Communication," in Privacy Enhancing

Technologies Symposium (PETS 2010) ,

Berlin, 2010.

[9] Eugene Y. Vasserman, Eric Chan-Tin

Nicholas Hopper, "How Much Anonymity

does Network Latency Leak?," University of

Minnesota, Minneapolis, MN 55455 USA,

2007.

[10] Steven J. Murdoch and George Danezis,

"Low-Cost Traffic Analysis of Tor,"

University of Cambridge, Computer

Laboratory, Cambridge, 2005.

[11] Steven J. Murdoch, "Hot or Not: Revealing

Hidden Services by their Clock Skew,"

University of Cambridge, Cambridge, 2006.

[12] Werner Sandmann, Christian Wilms, Guido

Wirtz Karsten Loesing, "Performance

Measurements and Statistics of Tor Hidden

Services," in SAINT '08 Proceedings of the

2008 International Symposium on

Applications and the Internet , 2008.

[13] Saumil Shah, "An Introduction to HTTP

fingerprinting," in Black Hat Asia, 2003.

[14] "OWASP Top 10," OWASP, 2010.

[15] Steven J. Murdoch, "Covert channel

vulnerabilities in anonymity systems,"

Univesity of Cambridge, 2007.

[16] Michael K. Reiter, Chenxi Wang, and

Matthew K. Wright Brian N. Levine, "Timing

attacks in low-latency mix-based systems,"

in Financial Cryptography, 8th International

Conference, 2004.

[17] Nikita Borisov Prateek Mittal, "Information

leaks in structured peer-to-peer

anonymous communication systems," in

Proceedings of the 15th ACM Conference

on Computer and Communications Security,

2008, pp. 267-278.

[18] Jean-François Raymond, "Traffic analysis:

Protocols, attacks, design issues, and," in

Designing Privacy Enhancing Technologies:

Workshop on Design Issues in Anonymity

and Unobservability, 2000, pp. 10-29.

Appendix

Table 1

I2P Facing Banner Counts
(11/09/2010 dataset)

Server Banner Count

blank 39

Server: Apache 14

Server: lighttpd/1.4.22 6

Server: Apache/2.2.15 (Win32) PHP/5.3.2 4

Server: Apache/2.2.9 (Debian) PHP/5.2.6-1+lenny8 with
Suhosin-Patch

4

Server: Apache/2.2.14 (Unix) mod_ssl/2.2.14
OpenSSL/0.9.8l DAV/2 PHP/5.2.12

3

Server: Apache/2.2.15 (Debian) 3

Server: WSGIServer/0.1 Python/2.5.2 3

Server: Microsoft-IIS/6.0 3

Server: nginx/0.8.53 2

Server: Apache/1.3.27 (Linux/SuSE) mod_ssl/2.8.12
OpenSSL/0.9.6i PHP/4.3.1 mod_perl/1.27

2

Table 1

I2P Facing Banner Counts
(11/09/2010 dataset)

Server Banner Count

Server: Apache/2.2.11 2

Server: Apache/2.2.11 (Win32) PHP/5.2.8 2

Server: Apache/2.2.14 (Ubuntu) 2

Server: lighttpd/1.4.23 2

Server: nginx 2

Server: Apache/2.2.13 (Linux/SUSE) 1

Server: AnomicHTTPD (www.anomic.de) 1

Server: thttpd/2.25b 29dec2003 1

Server: lighttpd/1.4.19 1

Server: Apache/1.3.34 (Debian) mod_python/2.7.11
Python/2.4.4c0 PHP/5.2.0-8+etch16

1

Server: Apache/2.0.55 (Linux/SUSE) 1

Server: Fred 0.5 (build 5107) HTTP Servlets 1

Server: Apache/2.2.11 (Win32) DAV/2 mod_ssl/2.2.11
OpenSSL/0.9.8i PHP/5.2.9

1

Server: Apache/2.2.14 1

Server: Apache/2.2.12 (Ubuntu) 1

Server: Apache/2.2.8 (Ubuntu) PHP/5.2.4-2ubuntu5.12
with Suhosin-Patch

1

Server: Apache/2.2.16 (Ubuntu) 1

Server: Apache/2.2.9 (Debian) PHP/5.2.6-1+lenny9 with
Suhosin-Patch

1

Server: Apache/2.2.14 (Win32) DAV/2
mod_autoindex_color PHP/5.3.1 mod_apreq2-
20090110/2.7.1 mod_perl/2.0.4 Perl/v5.10.1

1

Server: nginx/0.7.67 1

Server: nginx/0.7.65 1

Server: nginx/0.6.32 1

Server: CherryPy/3.1.2 1

Table 2
Public IP Banner Counts

(11/09/2010 dataset)

Server Banner Count

Server: Apache 21

Server: Apache/2.2.3 (CentOS) 18

Server: Apache/2.2.14 (Ubuntu) 11

Server: Apache/2.2.12 (Ubuntu) 8

Server: Apache/2.2.16 (Debian) 7

Server: lighttpd/1.4.19 6

Server: Microsoft-IIS/6.0 6

blank 5

Server: Apache/2.2.16 (Ubuntu) 4

Server: Apache/2.2.9 (Debian) PHP/5.2.6-1+lenny9 with
Suhosin-Patch

4

Server: Apache/2.2.9 (Debian) 3

Server: Microsoft-IIS/5.1 2

Table 2
Public IP Banner Counts

(11/09/2010 dataset)

Server Banner Count

Server: lighttpd/1.4.28 2

Server: Apache/2.2.9 (Debian) mod_ssl/2.2.9
OpenSSL/0.9.8g

2

Server: lighttpd/1.4.26 2

Server: Apache/2.2.9 (Debian) PHP/5.2.6-1+lenny9 with
Suhosin-Patch mod_ssl/2.2.9 OpenSSL/0.9.8g

2

Server: Apache/2.2.9 (Debian) PHP/5.2.6-1+lenny8 with
Suhosin-Patch

2

Server: httpd 2

Server: nginx/0.7.62 2

Server: Apache/2.0.52 (CentOS) 2

Server: nginx 2

Server: Apache/2.0.52 (Red Hat) 2

Server: nginx/0.7.65 2

Server: WSGIServer/0.1 Python/2.5.2 2

Server: Apache/2.2.11 (Ubuntu) PHP/5.2.6-3ubuntu4 with
Suhosin-Patch mod_ssl/2.2.11 OpenSSL/0.9.8g

2

Server: nginx/0.6.35 2

Server: Apache/2.2.6 (FreeBSD) mod_ssl/2.2.6
OpenSSL/0.9.8e DAV/2

1

Server: Apache/2.2.15 (Mandriva Linux/PREFORK-
3.1mdv2010.1)

1

Server: Apache/1.13.9 (Red Hat) 1

Server: Apache/2.2.16 (Unix) PHP/5.3.2 1

Server: Abyss/2.5.0.0-X2-Win32 AbyssLib/2.5.0.0 1

Server: Apache/2.0.52 (BlueQuartz) 1

Server: Apache/2.2.8 (ASPLinux) 1

Server: Apache/2.2.16 (Win32) 1

Server: Apache/2.2.10 (Linux/SUSE) 1

Server: Apache/2.2.13 (Unix) mod_ssl/2.2.13
OpenSSL/0.9.8k PHP/5.2.12

1

Server: Apache/2.2.11 (Debian) mod_gnutls/0.5.1
PHP/5.2.9-2 with Suhosin-Patch mod_ssl/2.2.11
OpenSSL/0.9.8g

1

Server: Apache/2.2.14 (Win32) SVN/1.6.3
mod_ssl/2.2.14 OpenSSL/0.9.8k PHP/5.3.0
mod_ftp/0.9.6 DAV/2

1

Server: Apache/2.2.14 (Win32) PHP/5.3.1 1

Server: Apache/2.2.14 (Unix) mod_ssl/2.2.14
OpenSSL/0.9.8l DAV/2

1

Server: Apache/2.2.14 (FreeBSD) mod_ssl/2.2.14
OpenSSL/1.0.0 DAV/2 SVN/1.6.9

1

Server: Apache/2.2.8 (Ubuntu) DAV/2 SVN/1.5.1
PHP/5.2.4-2ubuntu5.12 with Suhosin-Patch
mod_ssl/2.2.8 OpenSSL/0.9.8g mod_wsgi/2.0
Python/2.5.2 mod_perl/2.0.3 Perl/v5.8.8

1

Server: Apache/2.2.11 (Ubuntu) PHP/5.2.6-3ubuntu4.6
with Suhosin-Patch

1

Server: Apache/2.2.13 (Linux/SUSE) 1

Server: Apache/2.2.16 (EL) 1

Server: Ilonia/1.0.28 (Unix) mod_bash/1.10 FBI/0.0.1
oae/KG10.01

1

Server: Zope/(Zope 2.10.6-final, python 2.4.4, darwin)
ZServer/1.1 Plone/3.1.1

1

Table 2
Public IP Banner Counts

(11/09/2010 dataset)

Server Banner Count

Server: thttpd/2.25b 29dec2003 1

Server: Some random file server 1

Server: Roxen/5.0.403-release2 1

Server: RomPager/4.51 UPnP/1.0 1

Server: OmniSecure/3.0a5 1

Server: nginx/0.8.53 1

Server: nginx/0.7.67 1

Server: nginx/0.6.39 1

Server: nginx/0.6.32 1

Server: Microsoft-IIS/7.5 1

Server: lighttpd/1.5.0 1

Server: Apache/2.2.9 (Debian) PHP/5.2.6-1+lenny3 with
Suhosin-Patch

1

Server: Jetty(6.1.x) 1

Server: Apache/2.2.8 (Ubuntu) mod_python/3.3.1
Python/2.5.2 PHP/5.2.4-2ubuntu5.10 with Suhosin-Patch
mod_ssl/2.2.8 OpenSSL/0.9.8g mod_perl/2.0.3
Perl/v5.8.8

1

Server: gateway 1

SERVER: EPSON_Linux UPnP/1.0 Epson UPnP
SDK/1.0

1

Server: dhttpd/1.02a 1

Server: Cherokee/1.0.8 (Ubuntu) 1

Server: Apache/2.2.9 (Fedora) 1

Server: Apache/2.2.9 (Debian) PHP/5.2.6-1+lenny9 with
Suhosin-Patch mod_ssl/2.2.9 OpenSSL/0.9.8g
mod_perl/2.0.4 Perl/v5.10.0

1

Server: Zope/(Zope 2.9.7-final, python 2.4.6, linux2)
ZServer/1.1

1

Server: Apache/2.2.9 (Debian) PHP/5.2.6-1+lenny4 with
Suhosin-Patch

1

Server: Apache/2.2.9 (Debian) mod_fastcgi/2.4.6
mod_gnutls/0.5.1

1

Server: Apache/2.2.9 (Debian) DAV/2 SVN/1.5.1
PHP/5.2.6-1+lenny9 with Suhosin-Patch mod_ssl/2.2.9
OpenSSL/0.9.8g

1

Server: Apache/2.2.9 (Debian) DAV/2 mod_fastcgi/2.4.6
Phusion_Passenger/2.2.15 PHP/5.2.6-1+lenny9 with
Suhosin-Patch mod_python/3.3.1 Python/2.5.2
mod_ssl/2.2.9 OpenSSL/0.9.8g mod_perl/2.0.4
Perl/v5.10.0

1

Server: Apache/2.2.8 (Ubuntu) PHP/5.2.4-2ubuntu5.12
with Suhosin-Patch mod_ssl/2.2.8 OpenSSL/0.9.8g

1

Server: Apache/2.2.8 (Ubuntu) mod_python/3.3.1
Python/2.5.2 PHP/5.2.4-2ubuntu5.12 with Suhosin-Patch
mod_ssl/2.2.8 OpenSSL/0.9.8g mod_perl/2.0.3
Perl/v5.8.8

1

Server: lighttpd/1.4.22 1

