
The Apple Sandbox

Dionysus Blazakis
dion@securityevaluators.com

January 11, 2011∗

1 Introduction

Despite the never ending proclamations of the end of memory corruption vulnerabilities,
modern software continues to fall to exploits taking advantage of these bugs. Current
operating systems incorporate a battery of exploit mitigations [4][10][3] making life signifi-
cantly more complex for attackers turning these bugs into attacks. Additionally, developers
are becoming increasingly aware of the security implications of previously idiomatic code.
Leading software publishers are teaching defensive coding techniques and have adopted
an offensive mindset for product testing [9][1][8]. And yet, a single vulnerability can still
provide the attacker the leverage needed to gain entry. Security researchers have disclosed
multiple ways to render the mitigations ineffective [12][13][11]1 – imagine what techniques
are not public. Often times, one bug can still ”ruin your day” [14].

Given this problem, the inability to find all security relevant bugs in a system, what
can be done to increase the effort required by the attacker? Lately, the most popular
answer to this question has been the deployment of access control systems (sometimes
called sandboxes.) Well known applications making use of this technology include Google’s
Chrome browser [7], Microsoft’s Office 2010 Protected View [5], Apple’s iOS AppStore
sandboxing [6], and Adobe’s upcoming Reader X [2]. Each of these applications make use
of operating system specific access control systems. For Linux, a well known example is
SELinux, although, other systems are available. For FreeBSD and XNU, the TrustedBSD
system is used. On Windows, the access control enforcement is on the kernel object level
with inherited permissions — there is no monolithic system for access control like the other
operating systems.

The goal of these systems is to mitigate post-code-execution exploitation by breaking
the application into tightly restricted pieces (possibly processes.) For example, the HTML

∗The latest version of this paper is always available at http://www.semantiscope.com/research/

BHDC2011.
1Yeah, I cited myself.

1

http://www.semantiscope.com/research/BHDC2011
http://www.semantiscope.com/research/BHDC2011

parser or Javascript engine in a web browser does not need to spawn new processes or
read “/etc/password.” Ideally, the developer should have the option of restricting the legal
operations of a process. These valid operations are recorded in a policy as specified by
the access control system. The interface for restricting a process and the format for this
policy specification differs among the various access control systems. The differences in
these mechanisms impacts the ease of use and flexibility of the final sandbox.

In this paper, we describe the design, implementation and usage of the Apple XNU
Sandbox framework. The Sandbox framework, previously codenamed “Seatbelt”, provides
fine-grained access control via Scheme policy definitions. The Sandbox is implemented as
a policy module for the TrustedBSD mandatory access control (MAC) framework. The
Sandbox framework adds significant value by providing a user-space configurable, per-
process policy on top of the TrustedBSD system call hooking and policy management
engine.

The rest of the paper is organized as follows. Section 2 gives a brief overview of the
entire system. Section 3 describes the public interface and the utility function provided
by the OS. Next, Section 4 walks through the details of the userspace libraries used to
turn policies into sandbox syscall arguments for installing a sandbox. After the userspace
interface is fully explored, Section 5 begins by briefly describing the TrustedBSD interface
and how the sandbox implements this interface. Next, each kernel extension is examined.
Section 5.1, documents the Sandbox.kext extension. In this section, the sandbox system
calls are documented and the binary format of the profiles is specified. Section 5.2 examines
the regular expression engine kernel extension used by the sandbox. The functions used by
the sandbox are documented and the regular expression binary format is specified (since
it is a subformat used in the sandbox profile binary format).

2 Overview

As mentioned in the introduction, both OS X and iOS operating systems provide an access
control system current known as the Apple Sandbox. The Sandbox system is made up of:
a set of userspace library functions for initializing and configuring the sandbox for each
process, a Mach server for handling logging from the kernel, a kernel extension using the
TrustedBSD API for enforcing individual policies, and a kernel support extension provid-
ing regular expression matching for policy enforcement. Figure 1 shows the relationships
between these components on OS X. In this diagram, dark boxes denote closed source
components, while light boxes denote open source components.

Sandboxing an application begins with a call to the system function sandbox init.
This function uses the libsandbox.dylib library to turn a human readable policy defini-
tion (describing rules like “don’t allow access to files under /opt/sekret”) into a binary
format for the kernel. This binary format is passed to the mac syscall system call handled
by the TrustedBSD subsystem. TrustedBSD will pass the sandbox initialization request

2

user_process

sandboxd

sandbox_initTinyScheme

libSystemlibSandbox

system calls

Sandbox.kextAppleMatch.kext

mach_kernel

TrustedBSD MAC

mach messages

matchExec

matchUnpack

Logging

and Tracing

Logging

and

Tracing

Regular

Syscalls

Figure 1: Apple Sandbox Overview

to the Sandbox.kext kernel extension for processing. The kernel extension will install the
sandbox profile rules for the current process. Upon completion, a success return value will
be passed back out of the kernel.

Once the sandbox is initialized, function calls hooked by the TrustedBSD layer will pass
through Sandbox.kext for policy enforcement. Depending on the system call, the extension
will consult the list of rules for the current process. Some rules (such as the example given
above denying access to files under the /opt/sekret path) will require pattern matching
support. Sandbox.kext imports functions from AppleMatch.kext to perform regular ex-
pression matching on the system call argument and the policy rule that is being checked.
For example, does the file being read match the denied path /opt/sekret/.*? The other
small part of the system is the Mach messages used to carry tracing information (such as
which operations are being checked) back to userspace for logging.

3

The overall system is not large but has lacked any public documentation until now.
Before building a system using this technology, it is important to understand how the
system functions. The following sections explain in very low-level detail how the system
functions.

3 Usage

The simplest way to Sandbox a process is to use the utility program sandbox-exec.
sandbox-exec is wrapper that calls sandbox init before a fork and exec. Command
line options expose the full interface to sandbox init. The interface provides three dif-
ferent ways to specify the access control profile: by naming a built-in profile (such as
“no-internet” or “pure-computation”), by providing the path to a configuration file, or by
giving the configuration directly as a string. The manpage for sandbox-exec is not terri-
bly helpful (see Appendix B.1 for a copy). Within this manpage, the format of the profile
configuration is not discussed nor are the pre-defined profiles named. Clearly, we must be
looking in the wrong place. Let’s look at a small section of the sandbox init manpage
(the entirety of which is in Appendix B.1):

AVAILABLE PROFILES

The following are brief descriptions of each available profile. Keep in

mind that sandbox(7) restrictions are typically enforced at resource

acquisition time.

kSBXProfileNoInternet TCP/IP networking is prohibited.

kSBXProfileNoNetwork All sockets-based networking is pro-

hibited.

kSBXProfileNoWrite File system writes are prohibited.

kSBXProfileNoWriteExceptTemporary File system writes are restricted to

the temporary folder /var/tmp and the

folder specified by the confstr(3)

configuration variable _CS_DAR-

WIN_USER_TEMP_DIR.

kSBXProfilePureComputation All operating system services are pro-

hibited.

Ah! This one contains slightly more information — the available pre-defined profiles
are listed. Let’s try one of our newly found profile names:

4

fluffy:tmp dion$ sandbox-exec -n kSBXProfileNoInternet /bin/sh

sandbox-exec: profile not found

Rats! Unfortunately, if you know the Apple coding convention, the listed names are C
string variables. To get the actual names of the built-in profiles, we’ll need to write a small
C program to print it out and then try sandbox-exec again:

fluffy:tmp dion$ cat <<END > /tmp/dump.c && gcc -o /tmp/dump /tmp/dump.c &&

/tmp/dump

> #include <stdio.h>

> #include <sandbox.h>

> int main(){ printf("%s\n", kSBXProfileNoInternet); return 0; }

> END

no-internet

fluffy:tmp dion$ sandbox-exec -n no-internet /bin/sh

sh-3.2$ file /tmp/dump.c

/tmp/dump.c: ASCII c program text

sh-3.2$ ping www.eff.org

PING eff.org (64.147.188.3): 56 data bytes

ping: sendto: Operation not permitted

^C

--- eff.org ping statistics ---

1 packets transmitted, 0 packets received, 100.0% packet loss

sh-3.2$ exit

Success! Notice the sandbox allowed the file read of “/tmp/dump”, but the attempted
ping is denied due to the profile (“no-internet”) we chose. The method for using any of
the other four built-in profiles is clear. What about the other options to sandbox-exec that
don’t appear in the sandbox init manpage? While the usage for sandbox-exec clearly
expects a path to the profile, what is the format for this file? Unfortunately, this is where
the public documentation ends; the pieces of the interface in the header, other than the
configuration discussed in the manpage, are marked APPLE API PRIVATE and left mostly
undocumented. Despite the warning of an API in flux, we will soldier on and examine the
rest of the sandbox init API. The header at “/usr/include/sandbox.h” reveals that a
relative path passed to sandbox init will check “/usr/share/sandbox”. Let’s see if any
existing profiles are available to use as an example:

fluffy:tmp dion$ ls /usr/share/sandbox

bsd.sb ntpd.sb

cvmsCompAgent.sb portmap.sb

cvmsServer.sb quicklookd-job-creation.sb

fontmover.sb quicklookd.sb

5

kadmind.sb sshd.sb

krb5kdc.sb syslogd.sb

mDNSResponder.sb xgridagentd.sb

mds.sb xgridagentd_task_nobody.sb

mdworker.sb xgridagentd_task_somebody.sb

named.sb xgridcontrollerd.sb

It appears there are plenty of examples to choose from. Let’s look at named.sb:

;;

;; named - sandbox profile

;; Copyright (c) 2006-2007 Apple Inc. All Rights reserved.

;;

;; WARNING: The sandbox rules in this file currently constitute

;; Apple System Private Interface and are subject to change at any time and

;; without notice. The contents of this file are also auto-generated and not

;; user editable; it may be overwritten at any time.

;;

(version 1)

(debug deny)

(import "bsd.sb")

(deny default)

(allow process*)

(deny signal)

(allow sysctl-read)

(allow network*)

;; Allow named-specific files

(allow file-write* file-read-data file-read-metadata

(regex "^(/private)?/var/run/named\\.pid$"

"^/Library/Logs/named\\.log$"))

(allow file-read-data file-read-metadata

(regex "^(/private)?/etc/rndc\\.key$"

"^(/private)?/etc/resolv\\.conf$"

"^(/private)?/etc/named\\.conf$"

"^(/private)?/var/named/"))

Neat, this appears to be a Scheme program. After some comments warning that we
really should heed the advice of our elders and wait patiently for a real API specification,

6

the body of code is quite straightforward. Let’s try writing a simple configuration:

fluffy:tmp dion$ sandbox-exec -p ’

> (version 1)

> (allow default)

> (deny file-read-data

> (regex #"^/private/tmp/dump\.c$"))

> ’ /bin/sh

sh-3.2$ file dump

dump: Mach-O 64-bit executable x86_64

sh-3.2$ file dump.c

dump.c: cannot open: Operation not permitted

In this example, “(allow default)” sets up a blacklist style profile — unless specif-
ically denied, a given operation is permitted by default. To test the “file-read-data”
operation, we set up a deny filtering with literal regular expression. The transcript illus-
trates the filter functioning as expected, allowing the access to “dump” but not “dump.c”.
As the reader can probably guess, the Scheme embedded domain specific language (EDSL)
Apple has constructed for profile declaration is more expressive than the simple example
shown here. More details are discussed in the next section, where libsandbox converts
the Scheme profile to a format passed to the kernel.

4 Implementation: Userspace

In this section, we will trace the path of a call to sandbox init from the user process
down to the syscall. Our first step is figuring out which library implements out call,
sandbox init. To do this, we create a simple program and use the dyldinfo utility:

fluffy:tmp dion$ cat i_call_sandbox_init.c

#include <sandbox.h>

int main(int argc, char *argv[]) {

sandbox_init("", 0, NULL);

return 0;

}

fluffy:tmp dion$ dyldinfo -lazy_bind i_call_sandbox_init

lazy binding information (from lazy_bind part of dyld info):

segment section address index dylib symbol

__DATA __la_symbol_ptr 0x100001038 0x0000 libSystem _exit

__DATA __la_symbol_ptr 0x100001040 0x000C libSystem _sandbox_init

7

From the output, we can see the function is implemented by libSystem. Given this
information, the next step is to take a look in IDA. For this paper, we will always be using
the 32-bit libraries. My version of libSystem.dylib2 has sandbox init at 0x000330D0.
This function is mostly straightfoward, but it does give us two further directions to follow
up. Under some flag values, libsandbox is dynamically loaded and a sequence of functions
are called from this library; the sequence is made up of a “compile” function (three different
“compile” functions are called from sandbox init), followed by sandbox apply, and end-
ing in sandbox free profile. For one of the flag values (2 or SANDBOX NAMED BUILTIN),
the function sandbox ms is called directly and libsandbox is never loaded. Following
this in IDA will reveal a stub for the mac syscall syscall. One thing to note, before the
libsandbox functions are examined is the undocumented flag not listed in the sandbox.h

header — when flags is set to 0, the profile argument is interpreted as the full profile
string, presumably this is how the -p switch is implemented in sandbox-exec.

Now, we can load libsandbox.dylib in IDA and examine the five entries we are aware
of from sandbox init. My version of libsandbox.dylib3 has sandbox compile string

at 0x000019CC. I chose to start with sandbox compile string because I expected it to
be the simplest of the “compile” functions. It is; a quick look shows it to be a proxy call
to the unexported function compile. The other “compile” functions also end with a call
to compile. In fact, sandbox compile named ends in a call to sandbox compile file

and sandbox compile file ends in a call to compile. Before digging into compile, we
will examine the other two functions called from sandbox init.

sandbox apply is convoluted by the Mach setup code for Sandbox tracing support.
By giving a trace directive in the sandbox profile, all kernel access control checks will
be preceded by a Mach message. These Mach messages will be sent from the kernel to
userspace where a helper process can log the check to disk. This is useful for bootstrapping
a sandbox profile. There is even a utility program to clean the logging output; for details,
see the sandbox-simplify manpage. We will touch briefly on the tracing support later
in the kernel section, but I haven’t focused much on this aspect in my analysis. Looking
past the tracing cruft, sandbox apply is a proxy for the syscall stub we mentioned above
(sandbox ms).

The last function, sandbox free profile, is straightforward; it is made up of a few
calls to free, releasing the memory allocated in the sandbox compile XXX functions.
With the last function out of the way, we have finished the first cut of functions coming
from sandbox init. It appears all the interesting bits are in compile, let’s look at that
now.

Before even looking at the disassembly, the IDA graph view shows a control flow graph
shaped like the continent of South America (or so my co-worker would say). Any function
with a flowgraph where this much branching logic occurs is interesting. This must be where

2MD5 (/usr/lib/libSystem.dylib) = 63c72b9767677e78105872763c888a8f
3MD5 (/usr/lib/libsandbox.dylib) = e6c6be5a6f3fa7bcde50126a93a2eb5d

8

all the magic happens. The first function call we witness is a call to scheme init new –
the Scheme profiles must be evaluated here. scheme load string is the next interesting
call. The first load is the “Initialization file for TinySCHEME 1.38”. Following the initial-
ization file, a Scheme stub defining the architecture for defining versions of the Sandbox
profile language is loaded. You can extract a full listing of the Sandbox Profile Language
(SBPL) Scheme files from “strings /usr/lib/libsandbox.dylib”. The stub mentions
each SBPL version will define two Scheme scripts: a prelude and a body. Immediately
following the stub in the library is the sbpl1 scm string – the body of SBPL version 1.
Before discussing the main SBPL library code, the comment at the top of the SBPL stub
describes the end result of a profile evaluation:

;;;;;; Sandbox Profile Language stub

;;; This stub is loaded before the sandbox profile is evaluated. When version

;;; is called, the SBPL prelude and the appropriate SBPL version library are

;;; loaded, which together implement the profile language. These modules build

;;; a *rules* table that maps operation codes to lists of rules of the form

;;; RULE -> TEST | JUMP

;;; TEST -> (filter action . modifiers)

;;; JUMP -> (#f . operation)

;;; The result of an operation is decided by the first test with a filter that

;;; matches. Filter can be #t, in which case the test always matches. A jump

;;; causes evaluation to continue with the rules for another operation. The

;;; last rule in the list must either be a test that always matches or a jump.

As explained in the comment, the end result is a vector(*rules*) of rules. On OS X
10.6.4, the first 59 entries correspond to operations (eg. file-read-data or sysctl-write).
To check, logically, if an operation is permitted, the *rules* table is consulted. The op-
eration code is used as an index into the table to find the rule entry for the candidate
operation. For example, on OS X 10.6.4, file-read-data is assigned operation code 5.
Suppose the 6th entry of *rules* is (#f . 0). This is a JUMP rule as listed in the above
comment — it equates file-read-data with the default entry (which has operation code
0). The entire SBPL is a Scheme embedded domain specific language to turn policy rules
into a binary decision diagram enforcing those rules. Since this decision tree is the policy
that is later passed to the kernel, a Scheme interpreter is not embedded in the kernel (much
to the chagrin of attackers4).

As mentioned above, the initialization script is from TinyScheme 1.3.8 — does libsandbox
use TinyScheme as the interpreter or just the initialization script? Comparing with IDA
or BinDiff would work, but a simple comparison of symbols is enough. The Scheme in-
terpreter in libsandbox is based on TinyScheme5. Given this information, let’s test and

4Or just me. I really wanted to find a Scheme interpreter in the XNU kernel.
5http://tinyscheme.sourceforge.net/home.html

9

enhance our understanding of the *rules* format — we will use the display function to
display *rules* after evaluating a Sandbox profile.

Our first approach is using the stock TinyScheme 1.3.8 distribution. First, we build
the scheme executable and replacing the init.scm provided in the distribution with the
one extracted from libsandbox. The functions take and drop are newly defined in the
libsandbox initialization file. Next, we will try loading the SBPL Scheme scripts on load
order, adding one at a time to see what breaks. The first error we get is from loading
sbpl 1.scm:

fluffy:sbpl dion$./scheme sbpl_stub.scm sbpl_1_prelude.scm sbpl_1.scm

Error: undefined sharp expression

Errors encountered reading sbpl_1.scm

No line numbers ; ;. But, using gdb and the input we can track it down to the so-called
sharp expression parsing. It seems Apple has added the notion of a raw string to their
Scheme interpreter using a sharp expression to encode it. Just as a Python script could use
r"raw\n", an SBPL profile could use #"raw\n". This is not built into TinyScheme 1.3.8
or 1.3.9. Reversing the differences in the parsing and adding this logic to the TinyScheme
1.3.8 scheme.c source results in a 21 line patch (included in the Appendix). After this
change, the next error we get is:

fluffy:sbpl dion$./scheme sbpl_stub.scm sbpl_1_prelude.scm sbpl_1.scm ../sb/ntpd.sb

Error: eval: unbound variable: %version-1

Errors encountered reading ../sb/ntpd.sb

This is method is defined in libsandbox.dylib. The function loads the sbpl 1 prelude

and sbpl 1 scripts. For our purposes, we can just add a function returning #f to sbpl stub.scm.
Last error is:

fluffy:sbpl dion$./scheme sbpl_stub.scm sbpl_1_prelude.scm sbpl_1.scm ../sb/ntpd.sb

Error: eval: unbound variable: *params*

Errors encountered reading ../sb/ntpd.sb

We can define an empty parameter list in sbpl stub.scm. Finally, all scripts will load.
Let’s add a script at the end to dump *rules* and run our scripts:

fluffy:sbpl dion$ cat dump_rules.scm

(display *rules*)

(display "\n")

fluffy:sbpl dion$./scheme sbpl_stub.scm sbpl_1_prelude.scm sbpl_1.scm

../sb/ntpd.sb dump_rules.scm

#(((#t deny))

10

((#f . 0))

((#f . 1))

(((filter path 0 regex ^/dev/dtracehelper$) allow) (#f . 1))

((#f . 1))

(((filter path 0 regex

^/dev/null$

^(/private)?/var/run/syslog$

^/dev/u?random$

^/dev/autofs_nowait$

^/dev/dtracehelper$

/\.CFUserTextEncoding$

^(/private)?/etc/localtime$

^/usr/share/nls/

^/usr/share/zoneinfo/

^/usr/lib/.*\.dylib$

^/usr/lib/info/.*\.so$

^/System/

^/private/var/db/dyld/

^(/private)?/etc/hosts\.(allow|deny)$

^(/private)?/var/run/ntpd\.pid$

^(/private)?/var/db/ntp\.drift(\.TEMP)?$

^(/private)?/etc/ntp\.(conf|keys)$)

allow) (#f . 4))

...

(The output was manually ”pretty-printed” by the author — the real output was nice
and unformatted.) Hooray! It looks as described6. We now understand how a full Scheme
profile is turned into this compact representation. What happens next? How is this sent
to the kernel? One way to figure this out is to reverse compile. I didn’t take that route,
instead I followed the blob sent via the syscall into the kernel and started taking it apart
from that code. Because of this, I think we’re done with userspace.

As far as I know, the only piece of the Sandbox system we haven’t touched is sandboxd.
I don’t really want to get into all that. I believe it acts as a Mach server listening for the
Sandbox access check tracing messages I mentioned previously, but if I’m wrong, I’ll deny
I ever said that. For more information, get a copy of IDA and do it yourself.

Let’s go to the kernel.

6I became somewhat nervous after finding the sharp express error. While the patch I give seems to work,
I wasn’t sure what other modifications could have been done. I could have thrown it into BinDiff, but it
is easier to dlopen("libsandbox.dylib", ...) and call the embedded TinyScheme directly. It requires
some calculation to use the unexported symbols, but it’s worth the piece of mind. I used this version for
any other experiments I performed. Again, see the appendix for full source.

11

5 Implementation: Kernel

We will enter the kernel via the syscall we mentioned earlier. Let’s revisit that and follow
the syscall number to the kernel syscall table. The stub in libSystem is sandbox ms:

__text:00033C6C ; int __sandbox_ms(const char *policyname, int call, void *arg)

__text:00033C6C public ___sandbox_ms

__text:00033C6C ___sandbox_ms proc near

__text:00033C6C mov eax, 0C017Dh ; ___mac_syscall

__text:00033C71 call __sysenter_trap

__text:00033C76 jnb short locret_33C86

__text:00033C78 call $+5

__text:00033C7D pop edx

__text:00033C7E mov edx, ds:(off_1A88E0 - 33C7Dh)[edx]

__text:00033C84 jmp edx

__text:00033C86 ; ---

__text:00033C86

__text:00033C86 locret_33C86: ; CODE XREF: ___sandbox_ms+A j

__text:00033C86 retn

__text:00033C86 ___sandbox_ms endp

As IDA so helpfully commented, 0x000C017D specifies syscall number 381 a.k.a. mac syscall.
Here it is in syscall.master (found in xnu-1504.7.4/bsd/kern/7):

381 AUE_MAC_SYSCALL ALL { int __mac_syscall(char *policy, int call,

user_addr_t arg); }

mac syscall is implemented on line 2119 of xnu-1504.7.4/security/mac base.c.
The top of this source file is a copyright talking about the TrustedBSD project. Some
quick work on Google explains this to be a mandatory access control (MAC) framework
originally written by Robert Watson for FreeBSD. It was ported to OS X and provides
the underlying syscall hooking and kernel object tagging necessary for many access control
policies. A policy kernel module sets up a table of system calls and kernel structure life cycle
management functions to hook and then calls the TrustedBSD API (mac policy register)
to install itself. More information and multiple papers on the design of TrustedBSD can
be found on the website: http://www.trustedbsd.org/.

mac syscall is straightforward; it looks up the policy based on a passed in string and
then call then proxies the syscall to that policy module. The arguments are listed in the
comment: a string for the name of the policy, an integer for the policy module to multiplex

7Throughout this section, I will be refering to the xnu-1504.7.4 source as downloaded from
http://www.opensource.apple.com/tarballs/xnu/xnu-1504.7.4.tar.gz

12

on, and an argument pointer. The string is used to select the policy module to proxy to
— we can inspect this value from userspace and use it to find the extension implementing
the sandbox. Grabbing the MAC policy name used in the sandbox init call is easy with
gdb:

fluffy:tmp dion$ cat <<END > /tmp/pname.c && \

> gcc -m32 -o /tmp/policy_name_for_200_trebeck \

> /tmp/pname.c && gdb /tmp/policy_name_for_200_trebeck

> #include <sandbox.h>

> main() { sandbox_init(kSBXProfileNoInternet, SANDBOX_NAMED, NULL); }

> END

GNU gdb 6.3.50-20050815 (Apple version gdb-1472) (Wed Jul 21 10:53:12 UTC 2010)

Copyright 2004 Free Software Foundation, Inc.

GDB is free software, covered by the GNU General Public License, and you are

welcome to change it and/or distribute copies of it under certain conditions.

Type "show copying" to see the conditions.

There is absolutely no warranty for GDB. Type "show warranty" for details.

This GDB was configured as "x86_64-apple-darwin"...

Reading symbols for shared libraries .. done

(gdb) break __mac_syscall

Breakpoint 1 at 0x8c9c6c

(gdb) run

Starting program: /private/tmp/policy_name_for_200_trebeck

Reading symbols for shared libraries +. done

Reading symbols for shared libraries ... done

Breakpoint 1, 0x907b9c6c in __sandbox_ms ()

(gdb) x/s *(int *)($esp + 4)

0x25363: "Sandbox"

Oh. Ok. We also could have looked at 0x000332CB of libsandbox to see the parameter.
Let’s look for a loaded kernel extension that uses sandbox in the name:

fluffy:tmp dion$ kextstat | grep -i sandbox

23 0 0x1a97000 0x8000 0x7000 com.apple.security.sandbox (0) <21 7 6 5 4 2 1>

Now, to find the kernel extension:

fluffy:tmp dion$ find /System/Library/Extensions -name ’*.plist’ \

> -exec grep -l ’sandbox’ ’{}’ ’;’

/System/Library/Extensions/Sandbox.kext/Contents/Info.plist

13

Finally, we have the kernel extension that implements the TrustedBSD policy for the
Sandbox.

5.1 Sandbox.kext

This is the heart of the Apple Sandbox framework. As mentioned above, any kernel exten-
sion that implements a policy must register with TrustedBSD by calling mac policy register.
Sandbox.kext does this when the kernel extension is loaded:

__text:0000000A _kmod_start proc near ; DATA XREF: __data:__realmain o

__text:0000000A push ebp

__text:0000000B mov ebp, esp

__text:0000000D sub esp, 18h

__text:00000010 mov dword ptr [esp+8], offset _kmod_stop ; xd

__text:00000018 mov dword ptr [esp+4], offset _policy_handle ; handlep

__text:00000020 mov dword ptr [esp], offset _policy_conf ; mpc

__text:00000027 call near ptr _mac_policy_register

__text:0000002C add esp, 18h

__text:0000002F pop ebp

__text:00000030 retn

__text:00000030 _kmod_start endp

The first argument to mac policy register is a structure giving more details about
the policy (including a pointer to the table of function pointers handling the syscall hooks):

__data:000054C0 ; struct mac_policy_conf policy_conf

__data:000054C0 _policy_conf dd offset aSandbox ; mpc_name

__data:000054C0 ; DATA XREF: _kmod_start+16 o

__data:000054C0 dd offset aSeatbeltSandbo; mpc_fullname ; "Sandbox"

__data:000054C0 dd offset _labelnames ; mpc_labelnames

__data:000054C0 dd 1 ; mpc_labelname_count

__data:000054C0 dd offset _policy_ops ; mpc_ops

__data:000054C0 dd 0 ; mpc_loadtime_flags

__data:000054C0 dd offset _label_slot ; mpc_field_off

__data:000054C0 dd 0 ; mpc_runtime_flags

__data:000054C0 dd 0 ; mpc_list

__data:000054C0 dd 0 ; mpc_data

Here, we can verify the policy name is ”Sandbox” as expected (given our gdb experiment
above). This structure is defined on line 6136 of xnu-1504.7.4/security/mac policy.h:

6136 struct mac_policy_conf {

14

6137 const char *mpc_name; /** policy name */

6138 const char *mpc_fullname; /** full name */

6139 const char **mpc_labelnames; /** managed label namespaces */

6140 unsigned int mpc_labelname_count; /** number of [above] ... */

6141 struct mac_policy_ops *mpc_ops; /** operation vector */

6142 int mpc_loadtime_flags; /** load time flags */

6143 int *mpc_field_off; /** label slot */

6144 int mpc_runtime_flags; /** run time flags */

6145 mpc_t mpc_list; /** List reference */

6146 void *mpc_data; /** module data */

6147 };

A full explanation of the TrustedBSD MAC Framework is outside the scope of this
paper. For our purposes, it suffices to know that the mpc ops structure member contains
a table of function pointers to hook sysem calls and kernel object (descriptors, mostly)
lifecycle operations. I won’t reproduce the large structure defining the operations here
— it can be found on line 5787 of xnu-1504.7.4/security/mac policy.h. Back to the
original goal, we are trying to find the function handling the syscall. The function call used
in mac syscall is named mpo policy syscall in the policy ops structure. We follow
the cross reference to the policy ops structure to find the mac syscall handler function
(hook policy syscall at 0x000003E0):

__data:00004FD0 dd offset _hook_policy_syscall; mpo_policy_syscall

Navigating to hook policy syscall reveals some actual processing. The first bit of
the function switches on three values for the call argument (0 to 2). Let’s write wrappers
of mac syscall to document the arguments and operation of the sub-syscalls:

#include <sys/types.h>

#include <stddef.h>

int __sandbox_ms(const char *policyname, int call, void *arg);

int sandbox_init_bytecode(void *buff, size_t len, void *unk)

{

struct {

user_addr_t bytecode;

user_size_t bytecode_len;

user_addr_t unknown;

} args;

args.bytecode = CAST_USER_ADDR_T(buff);

15

args.bytecode_len = (user_size_t) len;

args.unknown = CAST_USER_ADDR_T(unk);

return __sandbox_ms("Sandbox", 0 /*call*/, &args);

}

int sandbox_init_builtin(char *policy)

{

struct {

user_addr_t policy;

} args;

args.policy = CAST_USER_ADDR_T(policy);

return __sandbox_ms("Sandbox", 1 /*call*/, &args);

}

int sandbox_check_raw(/*out*/ int *rv, pid_t pid, char *operation,

int filter_type, char *path)

{

int msrv;

struct {

int rv;

int success;

} results;

struct {

user_addr_t result;

pid_t pid;

user_addr_t operation;

user_long_t filter_type;

user_addr_t path;

} args;

args.result = CAST_USER_ADDR_T(&results);

args.pid = pid;

args.operation = CAST_USER_ADDR_T(operation);

args.filter_type = (user_long_t) filter_type;

args.path = CAST_USER_ADDR_T(path);

16

msrv = __sandbox_ms("Sandbox", 2 /*call*/, &args);

if (msrv != 0)

return msrv;

if (rv != NULL)

*rv = results.rv;

return msrv;

}

(Yes, this is more userspace, but the details of this interface was easier to under-
stand – for me – from the kernel side.) The first two functions correspond to the un-
documented SANDBOX RAW and SANDBOX NAMED BUILTIN respectively. The first function
is the one we are most concerned with. This function takes a raw “compiled” profile
and applies it to the current process. The second function takes a name for a built-in
and applies it to the current process. Don’t be confused by the two layers of named
“built-in” profiles: SANDBOX NAMED uses precompiled profiles stored in the userspace li-
brary (libsandbox.dylib), while SANDBOX NAMED BUILTIN uses precompiled profiles from
the kernel extension (Sandbox.kext). The last sub-syscall is not for setting up a profile,
but for asking if a given operation will be denied by the current profile.

Now that we undertand how to call mac syscall (and exercise all paths of hook policy syscall),
we can start to reverse the meat of the function. For call values of 0 and 1, the same
operations occur after the bytecode is copied in (in the 0 case) or the built-in bytecode is
found (in the 1 case). Let’s follow the action starting at 0x00000417 of Sandbox.kext.
The first basic block copies the argument structure from userspace. The next three check
that the bytecode length is sane and then malloc and fill a buffer for the bytecode in the
kernel. Next, at 0x000004BB, a structure is allocated and passed to re cache init along
with a pointer to the bytecode buffer. I’ll spare you the play-by-play; this function fills a
cache with unpacked regular expressions from the compiled sandbox profile. This function
is the first clue to the structure of the bytecode passed to the kernel. Given the information
from re cache init, we can deduce the following structure for the profile:

header:

u16_le re_offset_table_offset (in 8-byte words)

u8 re_offset_table_count

@ re_offset_table_offset:

u16_le re_offset[re_offset_table_count]

@ re_offset[n]

u32_le re_size

u8 re_bytes[re_size]

17

re cache init iterates over all compiled regexes in the profile initializing (matchInit)
and unpacking (matchUnpack) each. These two functions are defined in AppleMatch.kext.
In the next section, we’ll take a look at the format of these compiled regular expressions
and the exported functions of AppleMatch.kext. For now, let’s get back to the rest of the
sandbox profile initialization.

Back in hook policy syscall after the call to re cache init completes, the next
block performs a call to sandbox create. This function allocates a structure and stores a
lock and a pointer to the structure passed to re cache init (it contains the original byte-
code and the regex cache). Following the initialization of this structure, proc apply sandbox

stores this in the policy label slot. These label slots are managed by TrustedBSD and a slot
is optionally allocated when the policy is registered. This structure holds the persistent
state needed for evaluating access control checks. When proc apply sandbox returns,
this is effectively the end of the sandbox initialization.

One function I skipped above, called twice in proc apply sandbox, was sb evaluate.
This function (finally!) does most of the interesting work for the enforcement of the profile
rules. To support this claim, look at the body of the hooked syscall functions in the
policy ops table. Most of these functions check access by calling sb evaluate with

an operation code and a filter context. One example is hook mount check fsctl; this
function calls cred check (which proxies a call to our function of interest – sb evaluate).
Notice cred check takes an argument in edx specifying which operation to check (in this
case 0x30, representing the “system-fsctl” operation when looked up in operation names

table).
Reversing sb evaluate will yield a full understanding of the compiled profile format.

I’ve summarized the file format below:

header:

u2 re_table_offset (8-byte words from start of sb)

u1 re_table_count (really just the low byte)

u1 padding

u2[] op_table (8-byte word offset)

ophandlers:

u1 opcode

01: terminal

00: non-terminal

terminal:

u1: padding

u1: result

00: allow

01: deny

18

non-terminal:

u1 filter

01: path

02: xattr

03: file-mode

04: mach-global

05: mach-local

06: socket-local

07: socket-remote

08: signal

u2 filter_arg

u2 transition_matched

u2 transition_unmatched

5.2 AppleMatch.kext

Besides walking the filter decision tree, Sandbox.kext doesn’t do much beyond look-
ing up data structures and checking an integer here (ports) or a bit there (file permis-
sions). The one exception is the regular expression matching. When parsing the profile
in hook policy syscall, a major chunk of the profile is usually devoted to the regular
expression cache. As we noted above, the compiled regular expressions are first passed to
matchUnpack. Following the cross reference in Sandbox.kext reveals matchUnpack is an
import. IDA doesn’t know which extension was linked to provide this symbol, so which
kernel extension is linked for these calls? AppleMatch.kext exports the symbols we’re
looking for:

fluffy:Extensions dion$ kextlibs -all-symbols Sandbox.kext 2>&1| grep matchUnpack

_matchUnpack in /System/Library/Extensions/AppleMatch.kext (1.0.0d1)

_matchUnpack in /System/Library/Extensions/AppleMatch.kext (1.0.0d1)

fluffy:Extensions dion$ nm -arch i386 \

> AppleMatch.kext/Contents/MacOS/AppleMatch | \

> grep matchUnpack

000006e4 T _matchUnpack

Looking at AppleMatch.kext in IDA, it is clear this is a real regular expression engine.
The functions imported from this extension by Sandbox.kext are matchInit, matchUnpack,
matchExec, and matchFree. Let’s walk through each in turn.

matchInit creates a structure to store state between the unpacking and execution of a
regular expression. The C prototype would look something like:

typedef void *(*m_alloc_func)(unsigned int size, const char *note);

19

typedef void (*m_free_func)(void *addr, const char *note);

struct matchExpr;

typedef struct matchExpr matchExpr_t;

int matchInit(matchExpr_t **m, m_alloc_func a, m_free_func f);

matchInit requires two function parameters (in addition to the address of a pointer to
hold the allocated structure.) — an allocation and free function to be used by any match
functions taking a matchExpr t. This is convenient and adds to ease of running this code
in userspace (which can be done directly – see the Appendix A for details on where to find
a harness utility program).

After creating and initializing the state storage struct, a regular expression is unpacked
and the internal structures needed to execute (aka regex match) the regular expression are
derived. matchUnpack provides this functionality. The C prototype would look something
like:

int matchUnpack(unsigned char *buffer, unsigned int length, matchExpr_t *m)

If you weren’t paying attention, you might guess the buffer parameter took a nice
ASCII string like "(a|b)+(c*)" (a regular expression!). Since everyone reading this is
much more insightful and can extract meaning from the slightest of context clues, I don’t
need to explain that the regular expression is actually in a compiled form. While compiling
the sandbox profile in libsandbox, the regular expressions are compiled from their ASCII
representations into a binary format using a userspace version of the AppleMatch library
named libMatch.dylib. We have a lot of tools to reversing this format — we have the
original regex, the compiled form embedded in the sandbox profile, and the code respon-
sible for compiling and then unpacking this format. Using all of this (and some distant
memories of that theory of computation course), it becomes clear the regular expressions
are converted to nondeterministic finite automata (NFA).

../sb/container-2.1_4_0_8A293.sb.000.re

S (0

E1

^

0)$

|

.
/ved/

Figure 2: NFA for “^/dev/.*$”

See Figure 2 for an example of a regular expression turned into an NFA. This diagram
was generated8 by the matchDiagram function in libMatch. See Appendix A for details on
where to find a small program that generates the GraphViz dot file for a compiled regular

8I only found this function after writing my own crappier version in Python > . <

20

expression. An NFA is executed from the start state and transitioning based on the input
string. An NFA may split into multiple ”current” states. If the end state is reached (by any
of the ”current” states), the NFA accepts the input. Try a few examples; it’s pretty simple.
This NFA traversal is done in kernel during the matchExec function of AppleMatch.kext.

The matchExec function uses the state structure set up by the previous matchUnpack

function to attempt a regular expression match (really, an NFA acceptance test). The C
prototype looks something like:

struct matchInput {

unsigned char *start;

unsigned char *end;

};

typedef struct matchInput matchInput_t;

int matchExec(matchExpr_t *m,

matchInput_t *inputs,

unsigned int *input_count,

unsigned int *result);

First, this function takes a pointer to the previously initialized and loaded state struc-
ture. The next two arguments specify an array of strings to attempt matches with. The
last argument is an output parameter to denote if a match was found — the return value
denotes a error condition, while result denotes success or failure of the regular expression
match.

We have discussed all relevant function calls from AppleMatch.kext. The next step is
to describe the packed format at the byte level. In other words, how is the NFA structure
encoded in the regular expression entries of the sandbox profile?

re:

u4 version? (must be 1 or unpack fails)

u4 node_count

u4 start_node

u4 end_node

u4 cclass_count

u4 submatch_count

node nodes[]

cclass cclasses[]

node:

u4 type

u4 arg

21

u4 transition

cclass:

u4 count

u4 spans[]

6 Acknowledgements

I want to thank the guys at ISE for asking me all the hard questions when I was presenting
early versions of this research. Andrew Case of Digital Forensics Solutions, LLC read an
early version and helped polish. Dan told me my CFG looked like the continent of Africa
(he was wrong). JHU Security and Privacy Group let me do a dry run and only charged
me for pizza. #formal contains a bunch of people smarter than me that keep me up to
date on real science.

A Software

All scripts mentioned in this paper are available at: http://github.com/dionthegod/

XNUSandbox

B Manpages

B.1 sandbox-exec

SANDBOX-EXEC(1) BSD General Commands Manual SANDBOX-EXEC(1)

NAME

sandbox-exec -- execute within a sandbox

SYNOPSIS

sandbox-exec [-f profile-file] [-n profile-name] [-p profile-string]

[-D key=value ...] command [arguments ...]

DESCRIPTION

The sandbox-exec command enters a sandbox using a profile specified by

the -f, -n, or -p option and executes command with arguments.

The options are as follows:

-f profile-file

22

http://github.com/dionthegod/XNUSandbox
http://github.com/dionthegod/XNUSandbox

Read the profile from the file named profile-file.

-n profile-name

Use the pre-defined profile profile-name.

-p profile-string

Specify the profile to be used on the command line.

-D key=value

Set the profile parameter key to value.

SEE ALSO

sandbox_init(3), sandbox(7), sandboxd(8)

Mac OS X July 29, 2008 Mac OS X

23

B.2 sandbox init

SANDBOX_INIT(3) BSD Library Functions Manual SANDBOX_INIT(3)

NAME

sandbox_init, sandbox_free_error -- set process sandbox

SYNOPSIS

#include <sandbox.h>

int

sandbox_init(const char *profile, uint64_t flags, char **errorbuf);

void

sandbox_free_error(char *errorbuf);

DESCRIPTION

sandbox_init() places the current process into a sandbox(7). The

NUL-terminated string profile specifies the profile to be used to config-

ure the sandbox. The flags specified are formed by or’ing the following

values:

SANDBOX_NAMED The profile argument specifies a sandbox profile

named by one of the constants given in the

AVAILABLE PROFILES section below.

The out parameter *errorbuf will be set according to the error status.

RETURN VALUES

Upon successful completion of sandbox_init(), a value of 0 is returned

and *errorbuf is set to NULL. In the event of an error, a value of -1 is

returned and *errorbuf is set to a pointer to a NUL-terminated string

describing the error. This string may contain embedded newlines. This

error information is suitable for developers and is not intended for end

users. This pointer should be passed to sandbox_free_error(3) to release

the allocated storage when it is no longer needed.

AVAILABLE PROFILES

The following are brief descriptions of each available profile. Keep in

mind that sandbox(7) restrictions are typically enforced at resource

acquisition time.

24

kSBXProfileNoInternet TCP/IP networking is prohibited.

kSBXProfileNoNetwork All sockets-based networking is pro-

hibited.

kSBXProfileNoWrite File system writes are prohibited.

kSBXProfileNoWriteExceptTemporary File system writes are restricted to

the temporary folder /var/tmp and the

folder specified by the confstr(3)

configuration variable _CS_DAR-

WIN_USER_TEMP_DIR.

kSBXProfilePureComputation All operating system services are pro-

hibited.

SEE ALSO

sandbox-exec(1), sandbox(7), sandboxd(8)

Mac OS X July 7, 2007 Mac OS X

25

References

[1] Adobe Reader and Acrobat Security Initiative. http://blogs.adobe.com/asset/

2009/05/adobe_reader_and_acrobat_secur.html.

[2] Adobe Reader Protected Mode. http://blogs.adobe.com/asset/2010/07/

%20introducing-adobe-reader-protected-mode.html.

[3] OS X Security. http://www.apple.com/macosx/security/.

[4] PaX. http://www.grsecurity.net/.

[5] Protected View in Office 2010. http://blogs.technet.com/b/office2010/

archive/2009/08/13/protected-view-in-office-2010.aspx.

[6] Security Overview: Sandboxing and the Mandatory Acccess Control Frame-
work. http://developer.apple.com/library/ios/documentation/Security/

Conceptual/Security_Overview/Concepts/Concepts.html#//apple_ref/doc/

uid/TP30000976-CH203-SW1.

[7] The Chromium Projects: Sandbox Design. http://www.chromium.org/developers/
design-documents/sandbox.

[8] The Cisco Secure Development Lifecycle: An Overview. http://blogs.cisco.com/

security/the_cisco_secure_development_lifecycle_an_overview/.

[9] The Trustworthy Computing Security Development Lifecycle. http://msdn.

microsoft.com/en-us/library/ms995349.aspx.

[10] Windows ISV Software Security Defenses. http://msdn.microsoft.com/en-us/

library/bb430720.aspx.

[11] Dionysus Blazakis. Interpreter Exploitation: Pointer Inference and JIT Spraying.
Blackhat DC, 2010.

[12] Tyler Durden. Bypassing PaX ASLR protection. Phrack, 0x0b(0x3b):0x09, 2002.

[13] Alex Sotirov and Mark Dowd. Bypassing browser memory protections in Windows
Vista. In Blackhat USA, 2008.

[14] Dino Dai Zovi. One Exploit Should Not Ruin Your Day. http://trailofbits.com/
2010/01/24/one-exploit-should-not-ruin-your-day/.

26

http://blogs.adobe.com/asset/2009/05/adobe_reader_and_acrobat_secur.html
http://blogs.adobe.com/asset/2009/05/adobe_reader_and_acrobat_secur.html
http://blogs.adobe.com/asset/2010/07/%20introducing-adobe-reader-protected-mode.html
http://blogs.adobe.com/asset/2010/07/%20introducing-adobe-reader-protected-mode.html
http://www.apple.com/macosx/security/
http://www.grsecurity.net/
http://blogs.technet.com/b/office2010/archive/2009/08/13/protected-view-in-office-2010.aspx
http://blogs.technet.com/b/office2010/archive/2009/08/13/protected-view-in-office-2010.aspx
http://developer.apple.com/library/ios/documentation/Security/Conceptual/Security_Overview/Concepts/Concepts.html#//apple_ref/doc/uid/TP30000976-CH203-SW1
http://developer.apple.com/library/ios/documentation/Security/Conceptual/Security_Overview/Concepts/Concepts.html#//apple_ref/doc/uid/TP30000976-CH203-SW1
http://developer.apple.com/library/ios/documentation/Security/Conceptual/Security_Overview/Concepts/Concepts.html#//apple_ref/doc/uid/TP30000976-CH203-SW1
http://www.chromium.org/developers/design-documents/sandbox
http://www.chromium.org/developers/design-documents/sandbox
http://blogs.cisco.com/security/the_cisco_secure_development_lifecycle_an_overview/
http://blogs.cisco.com/security/the_cisco_secure_development_lifecycle_an_overview/
http://msdn.microsoft.com/en-us/library/ms995349.aspx
http://msdn.microsoft.com/en-us/library/ms995349.aspx
http://msdn.microsoft.com/en-us/library/bb430720.aspx
http://msdn.microsoft.com/en-us/library/bb430720.aspx
http://trailofbits.com/2010/01/24/one-exploit-should-not-ruin-your-day/
http://trailofbits.com/2010/01/24/one-exploit-should-not-ruin-your-day/

	Introduction
	Overview
	Usage
	Implementation: Userspace
	Implementation: Kernel
	Sandbox.kext
	AppleMatch.kext

	Acknowledgements
	Software
	Manpages
	sandbox-exec
	sandbox_init

	References

