
An Introduction to More Advanced Steganography

Abstract
Steganography has advanced tremendously in the last few years and simple concepts
have even been presented on mainstream TV. However, more sophisticated techniques
are less well-known and may be overlooked by forensic analysts and even Steganalysis
software.

This presentation will showcase several more advanced (and some unpublished)
steganographic techniques, some with a very high data hiding capacities. One
technique successfully hides 15% to 20% of data in a jpeg and YOU can't tell! That
means your 8 MB jpeg image may contain 1.6 MB of covert data! An audio CD contains
about 700 MB of data – even a modest 1% capacity allows for 7 MB of data.

This white paper presents several steganographic techniques illustrated by actual
software so YOU can decide the effectiveness for yourself. Can you see or hear it? Will
it be flagged by Steganalysis programs? We shall see … or not!

Steganography Overview
Information hiding is the science of concealing the existence of data even when it is
being sought. Cryptography may very well conceal the meaning of the data, but in some
cases, this is inadequate. Often times breaking “unbreakable” cryptography is as simple
as a gun to the head or a briefcase full of money … or both!

Steganography is a sub-discipline of the broader science of information hiding and
employs numerous technologies to achieve its goals: digital signal processing,
cryptography, information theory, data compression, math, and human audio/visual
perception, just to name a few.

Steganography has two primary goals: 1) Security – is the hidden data perceptible by
either a person or a computer, and 2) Capacity – how much data can be hidden in a
given cover file. These two goals are often in competition. The more data you hide, the
more likely it is to be found, i.e. it has less security and vice versa. A third goal,
robustness, is what separates steganography from watermarking (a 2nd sub-discipline of
information hiding).

Robustness is the resilience of your hidden data to image/audio manipulation such as
contrast, brightness, cropping, stretching, analog-to-digital-to-analog conversion, etc.
There is a large commercial interest in watermarking for digital rights management.
Since there is also a trade-off between robustness and capacity, steganographic

programs often do not attempt to be robust, and the techniques presented here are no
exception.

There are three levels of failure for steganography: 1) detection, 2) extraction, and 3)
destruction. When hidden data is detected, generally, game over. However, if the data
cannot be extracted, your objective may still be met. Extraction can be made more
difficult by encrypting and/or scrambling the message data.

Preventing destruction refers to maintaining the integrity of the hidden data without
significant damage to the cover file. Certainly, one could always delete or overwrite the
file in question, but preventing an opponent from destroying your data while keeping the
value in the digital work is a challenge. For steganography, once the algorithm is known,
you can use the same algorithm to insert randomized data into the same bits that carry
the message. Message destroyed, image no worse off.

Finally, for the purpose of discussion, we can rate the perceptibility in 3 easy levels: 1)
Indistinguishable, 2) can see/hear distortion when looking/listening closely for it, 3)
blatantly obvious to a casual observer.

Least Significant Bit (LSB)
Least Significant Bit techniques are the simplest and most widely known of the
steganographic techniques. I present them here for those readers who are not already
familiar with steganography, but if you already understand LSB, then you’ll only miss
some cool examples and brilliant writing by skipping ahead.

Image Background

Images are composed of picture elements, i.e. pixels. There are three major classes of
images: 1) black and white – each pixel is composed of a single bit and is either a zero
or a one, representing either white or black; 2) Greyscale – each pixel is composed of 8
bits (in rarer cases, 16 bits) which defines the shade of grey of the pixel, from zero
(black) to 255 (white); 3) Full color – also called 24-bit color as there are 3 primary
colors (red, green, blue), each of which is defined by 8 bits. There are over 16 million
possible colors.

There exist many other representations, but these three, by far, are the most common.
For the steganography techniques presented here, we will either use grayscale or 24-bit
color.

Considering 8-bit grayscale, each pixel has 28 = 256 possible levels of grey, ranging
from black to white. Each bit does not contribute the same amount of information. The
Most Significant Bit (MSB) contributes ½ the information, while the Least Significant Bit
(LSB) contributes 1/256th of the information. So, changing that LSB only affects 1/256th
of the intensity and humans simply cannot perceive a difference.

In fact, it is difficult to perceive a difference in 1/16th of an intensity change, so we can
alter the 4 LSBs with little or no perceptible difference. Below is a mandrill with a lion
hidden in it.

Figure 1 –Left, original image, right, 3 bits hidden

Figure 2 – Left, 4 bits hidden, right, 5 bits hidden

The lion with the mandrill hidden is not quite as effective at 5 bits as the mandrill’s eyes
are easily visible.

Figure 3 –Left, original image, right, 3 bits hidden

Figure 4 – Left, 4 bits hidden, right, 5 bits hidden

Even though the embedded images are not perceptible to humans at 3 bits, and difficult
at best, at 4 bits, they are easily detected via a histogram. Next is a histogram of the
original mandrill image and the mandrill with 3 bits hidden. Histograms for natural
images tend to be smooth, but not so much with hidden data.

Figure 5 – Left, histogram of original, right, histogram with 3 bits hidden

For color images, the results are largely the same, except each color plane is hidden
within each corresponding color plane. The level of perceptibility and detectability is
comparable.

As an additional point, this type of LSB hiding is less common, as we are limited to
hiding one image, of the exact same size and type, into another image. It is good for
illustrative purposes, but an actual LSB implementation would read the message file as
a sequence of bits, and replace the cover image’s bits with those.

Bit Plane Complexity Segmentation (BPCS)
BPCS is another substitution type method, but rather than replacing specific bits, BPCS
scans for complex areas of an image, and replaces those with the message data. The
idea is that a human cannot distinguish between one complex patch and another
complex patch.

Figure 6 – Randomized data patches

Certainly, looking at these images side-by-side and comparing you can see differences.
But, if you were to look at one as a small piece of a larger image, and it was later
replaced by the other, you would likely not notice a difference. These images are large,
512 x 512, but the BPCS algorithm uses 8 x 8 patches, making perceptible detection
even less likely.

BPCS segments an image into bit planes, and in each plane, the value is either zero or
one. Then BPCS scans an 8x8 patch and determines the “complexity.” How much
change is there? For instance, a pure black or pure white patch has zero complexity, i.e.
no change. A checkerboard pattern of alternating black and white, has the maximum
complexity – there are 112 changes when scanned by row, then by column. A simply
complexity measure is to divide the number of changes in the image sample, by the
maximum, and get a value from 0 to 1.

Experimentally, a good threshold was determined to be 0.3. (It MUST be less than 0.5)
So, if there are at least 34 changes (34/112 = 0.305), then the image sample is complex
and we can hide our data there. If the threshold is not met, BPCS continues to the next
8x8 matrix and leaves that patch unchanged.

Next, the 64 bits are replaced by the message data. Now the problem is this: What if the
message data is not complex? During extraction, the program will skip this bit plane.
The solution is to “conjugate” the data by exclusive or’ing it with a checkerboard pattern.
The conjugate complexity is always one minus the complexity of the non-conjugate
data. This is why the threshold MUST be less than 0.5, otherwise the conjugation
solution would not work (if the threshold is 0.7, and the message data’s complexity is
0.6, you cannot conjugate it to meet the threshold.

Now, you must indicate which data is conjugated. The solution in the original paper was
to use one bit in the 8x8 matrix to indicate if it is conjugated. Other solutions have been
proposed, but this one is simple and effective.

Figure 7 – Conjugation Example, P is non-complex data, Wc is checkerboard
pattern, and P* is the result of conjugation

The following images illustrate BPCS in action. The histograms show that this technique
can be easily detected statistically.

Figure 8 – Original image, image with hidden data and a threshold of 0.3

Figure 9 – Image with hidden data and a threshold of 0.2 and 0.1 respectively

Figure 10 – Original image histogram, image with a threshold of 0.3 histogram

Better complexity measures have been developed since the original inception. These
reduce capacity, but prevent highly patterned patches from being considered complex.
For instance, a checkerboard pattern is complex, but if modified, humans will perceive
the change in pattern.

Figure 11 –Histograms of images with a threshold of 0.2 and 0.1 respectively

High Capacity Hiding in JPEG Images (JPEG)
Jpeg files require a completely different hiding approach than altering bits in the cover
file, as these bits will be distorted by the lossy compression process. Before discussing
hiding, a brief overview of the compression process is required. Jpeg is designed to
work best with 24-bit natural color images, but can also work with grayscale images too.

Jpeg examines an image in 8x8 blocks of pixels, does a color plane conversion from
RGB (red, green, blue) to YCrCb (luminance and chrominance), applies a discrete
cosine transform, quantizes the results (primary source of loss is right here), and
entropy encodes the rest.

Figure 12 – Jpeg compression process

DCT

Quantizer

Quantization	 Table

Entropy	 Encoder

(Huffman)
Run-‐Length	 Encoding

8	 X	 8	
Image	
Block

(0,0)

Color	 Plane	
Conversion

	

	 	 	 	 	 	 	

	
	

	
	

	
	

	
	

	

In order to preserve the message data we insert, we must hide after the lossy part of the
compression. Since this is after quantization, we choose to hide in the resulting
quantized DCT components. This technique boasts a solid capacity of 15 to 20% for a
high quality jpeg image. Interestingly, at lower qualities, the alterations are easily
noticed as is illustrated by the sample images.

This technique is essentially an adaptive LSB method, for the DCT coefficients. The log2
of the value of the magnitude of the DCT coefficient is compared to the log2 of an alpha
factor times the corresponding value in the quantization table. The lesser of these two
values is the number of bits that can be hidden.

That number of bits in the DCT is replaced by an equal number of bits from the
message. There are a couple of additional considerations. The DC component of the
DCT results is altered less, as it is more significant and therefore we don’t want to
change it as much. We also employ a block classification routine to increase capacity.
By finding blocks that are less uniform (i.e. more complex), we can adapt the number of
bits to hide – a busy picture is still a better cover file than a uniform one. However, the
results are not nearly so pronounced as in the LSB or BPCS techniques.

Both of the next two images have roughly 22% of their data replaced with message
data. Can YOU tell there is anything amiss? Large images are presented so you can
take a really close look.

Figure 13 – Mandrill with 22% hidden data, 95% quality

Figure 14 – Dalmatian with 22% hidden data, 95% quality

The quality of the jpeg image is an important consideration with this technique. IT works
well roughly down to 60 – 65% quality, lower than that, there is noticeable distortion.
The next image has only 18% of hidden data at 50% quality.

 Figure 15 – Boxer with 18% hidden data, 50% quality

In order to detect this type of steganography, you must examine the DCT coefficients
themselves, a simply histogram of the file is not effective, as seen next. There is nothing
distinct about the histograms with or without the hidden data.

Figure 16 – Boxer with 18% hidden data, 50% quality

	

Hiding in the Silence of Sound (HISS)
Hiding in the Silence of Sound is a misnomer as this technique actually hides in low
amplitude portions of an uncompressed wave file. The HISS technique works with both
8-bit and 16-bit samples at any sampling rate for either one or two channels. This
includes the 16-bit, stereo, 44.1KHz audio CD format.

HISS scans a wave file, finds the length of audio samples within a user-specified
threshold, and alters that length based on the message data. It is adaptive in the sense
that longer periods of low amplitude samples allow for a greater number of bits to be
embedded. The low order bits of the new length of samples within the threshold are the
message.

There are 4 input parameters: Amplitude Threshold (2% to 24 %), Minimum Length (8 –
64 samples), Max bits to hide (1 – 9), and Capacity Factor (1 – 5). These parameters
affect the capacity and security of the resulting stego-wave file. The limits have been
determined empirically and allow for a capacity with some level of perceptibility.

The amplitude threshold, input as a percentage, is the amplitude, below which we
consider “low”. Since some audio samples may not peak at the maximum, and the
negative peak may not equal the positive peak, we choose a percentage as opposed to
a raw sample value level. This way, for quieter music, we will not inadvertently use a
threshold higher than what actually exists in the audio sample! We scan the wave file,
find the positive/negative peaks, and scale the threshold accordingly.

The minimum length is the minimum number of samples that be within the amplitude
threshold in order to be used to hide data. The lowest value is 8. Given that the capacity
factor (discussed shortly) is at least one, HISS can hide 2 bits.

The maximum number of bits to hide limits how much time will be affected in extremely
long samples of low amplitude audio. Nine bits represents and change of +/- 512
samples which in real time is 11.6 milliseconds at 44,100 Hz. In practice there are not
many low-amplitude blocks of this length. We must have at least 1024 samples within
the threshold which is about 23 milliseconds.

The capacity factor is a user-specified parameter that affects how many bits are hidden
in each span of low amplitude. For 8 samples, the log base 2 is three. Hiding 3 bits in a
sample length of eight could increase the new length to 15, thus nearly doubling the
time. On the contrary, it could also reduce a length of 15 to 8, nearly cutting the time in
half. When the time is altered that much, it becomes easily noticeable. So, the capacity
factor is subtracted from the logarithm result to determine the actual number of bits to
hide. With 8 samples, we can hide 2 bits, resulting in a maximum change from 8 to 11
or 11 to 8 samples – roughly about 25%.

Supposing that the number of samples within the threshold is N=104. The floor of log2
104 is 6. From that we subtract the capacity factor (minimum is one) and get 5. This

means we can embed 5 bits of message data. We read the 5 bits of message data
(suppose they equal 20 in value, 0x14). Next we mask off the low order five bits from
the sample length (0x0068 bitwise AND 0xFFE0) resulting in the value of 96 (0x0060).
The message bits (20) are added to 96 to get the new length, 116. Now we need 116
samples within the threshold, as opposed to the original 104, so we insert 12 samples.

They are inserted uniformly throughout the 102 samples increasing the length to 116 so
that upon extraction, we find 116 samples within the threshold. The integer log2 116
(0x74) is 6. Subtract the same capacity factor of 1 to get 5. Note the low order 5 bits of
the hexadecimal value for 116 is 0x14.

In the sample wave diagram on the next page, there are 30 samples within the
threshold. Log2 30 is 4. Subtract 1 is 3. So we can embed 3 bits of the message data. If
the capacity factor were 2, then we would embed only 2 bits, and if it were 3, we would
embed only 1 bit.

Making the threshold lower decreases the number of samples within it, reducing
capacity, while increasing the threshold increases the number of the samples.

Figure 17 – Audio sample, a portion shown within a threshold

	

	

	 	

Removing samples to decrease the overall length within the threshold is a simple
operation. Using the overall length of the samples, delete the required number of
samples dispersed throughout. Start with the first sample and delete with an interval of
the original number of samples divided by the number of samples to remove. We must
be careful not to delete the only maximum or minimum peak value as that would distort
extraction.

Inserting the samples is more difficult since we must determine amplitude. The exact
amplitude value is not critical as long as it does not exceed the threshold. Determine the
insertion point and get the samples on either side, take the average amplitude of the
two samples to determine the new amplitude. This will always guarantee that the
max/min peak values will not be exceeded and will not introduce any high frequency
harmonics.

Stereo signals require another consideration: What if one channel is within the threshold
while the other is not? If one channel were to lengthen, the two would be out of
synchronization, which becomes easily noticeable. There are two approaches that have
been implemented for this scenario: 1) overlap - when both channels are within the
threshold, and 2) channel averaging – when the average of the two channels is within
the threshold.

Both approaches are successful, but as you might expect, the overlap technique has a
vastly reduced capacity (though security is increased) when compared to the averaging
technique.

Extraction requires that the same threshold and capacity factor are specified. The
stego-wave file is scanned, the threshold values determined, and then HISS scans the
file for sequences of samples within the threshold. The log base two of the length is
taken to determine the maximum number of bits embedded in the sequence, the
capacity factor is subtracted, and the resulting number of low order bits are added to the
message file. When the entire wave file is scanned, or the length of the message is
reached, extraction is complete. LATM stores the length in the first 4 bytes of the data
embedded, so there is a small overhead.

HISS is especially sensitive to the cover file. Classical music, for example, which has
precise single tones, is a terrible cover medium. Even slight alterations are easily
noticed by a casual observer. Jazz is a little better, but not much. Typical pop and
country music are decent cover files. The best cover files for this technique are hard
rock and heavy metal, as my parents call it noise anyway.

HISS is not easily detectible. For one, the percentage able to be hidden with little or no
noticeable distortion is small one the order of 1%, so very little data is altered. Second,
there are no values of samples altered, but rather fake ones are inserted or legitimate
ones are removed.

A histogram comparison shows nothing unusual. The histogram on the left is a clean
sample, while on the right is a heavily modified sample, modified to the point of the
distortion being noticeable to even the casual observer.

Figure 18 –Histograms of clean and heavily modified audio

Conclusion
In 2005 I mined over 2200 steganography papers alone, and that number was a small
fraction of the number of papers on watermarking. Now, six years later, I am confident
there are 5000+ papers.

Several steganographic techniques have been presented in this paper, designed mainly
to raise your curiosity and intrigue. They can successfully hide/extract arbitrary data and
remain visually undetectable. The recent revelation that Russian spies used
steganography to communicate only highlights the need for continues research. These
programs are a stepping stone to truly sophisticated and nearly undetectable
steganography.

Bibliography

[1] Eiji Kawaguchi and Richard O. Eason, Principle and Applications of BPCS-
Steganography, Kyushu Institute of Technology, Kitakyushu, Japan – University
of Maine, Orono, Maine

[2] Michiharu Niimi, Hideki Noda, Bruce Segee, A Robust BPCS-Steganography
against the Visual Attack, Kyushuy Institute of Technology, University of Maine

[3] Hioki Hirohisa, A Data Embedding Method Using BPCS Principle with New
Complexity Measure, Kyoto University

[4] Tao Zhang, Zhaohui Li, Peipei Shi, Statistical Analysis Against Improved BPCS
Steganography, Nankai University, China

[5] Silvia Torres, Mariko Nakano, Ruben Vasquez, Robust Steganography using Bit
Plane Complexity Segmentation, Escuela Superior de Ingenieria Mecanica,
Mexico

[6] Michiharu Niimi, Hideki Noda, and Eiji Kawaguchi, 2011; An image embedding in
image by a complexity based region segmentation method. Department of E.E
and Computer Engineering, Kyushu Institute of Technology, Tobata, Kitakyushu
804 Japan.

[7] Maya, S.T.; Miyatake, M.N.; Medina, R.V.; "Robust steganography using bit plane
complexity segmentation," Electrical and Electronics Engineering, 2004. (ICEEE). 1st
International Conference on , vol., no., pp. 40- 43, 24-27 June 2004
doi: 10.1109/ICEEE.2004.1433845

[8] Niimi, M.; Ei, T.; Noda, H.; Kawaguchi, E.; Segee, B.; , "An attack to BPCS-
steganography using complexity histogram and countermeasure," Image Processing,
2004. ICIP '04. 2004 International Conference on, vol.2, no., pp. 733- 736 Vol.2, 24-27
Oct. 2004 doi: 10.1109/ICIP.2004.1419402

[9] Adel Almohammad, Robert M. Hierons, and Ghe-orghita Ghinea. High Capacity
Steganographic Method Based Upon JPEG. 2008 Third International Conference
on Availability, Reliability and Security, pages 544{549, March 2008.

[10] C Chang. A steganographic method based upon JPEG and quantization
table modification. Information Sciences, 141(1-2):123 -138, March 2002.

[11] Jessica Fridrich. Practical steganalysis of digital images: state of the art.
Proceedings of SPIE, 4675:1-13, 2002.

[12] Gregory K. Wallace. The JPEG still picture compression standard.
Communications of the ACM, 34(4):30-44, April 1991.

[13] Peter H. W. Wong. Data hiding technique in JPEG compressed domain.
Proceedings of SPIE, pages 309-320, 2001

[14] Ran-Zan Wang, Chi-Fang Lin, Ja-Chen Lin, Image hiding by optimal LSB
substitution and genetic algorithm, Pattern Recognition 34 (3) (2001) 671-683

[15] Chi-Kwong Chan, L.M. Cheng, Hiding data in images by simple LSB
substitution, Pattern Recognition 37 (2004) 469-474

[16] Andrew D. Ker, Resampling and the Detection of LSB Matching in Colour
Bitmaps, Oxford University Computing Laboratory, (2005) 1 – 15

[17] Rajanikanth Reddy Koppola, A High Capacity Data-Hiding Scheme in
LSB-Based Image Steganography, The Graduate Faculty of the University of
Akorn, (2009) 1 – 60

[18] Arup Kumar Bhaumik1, Minkyu Choi2, Rosslin J.Robles3, and Maricel
O.Balitanas4; “Data Hiding in Video” International Journal of Database Theory
and Application Vol. 2, No. 2, June 2009.

[19] Muhalim Mohamed Amin, Subariah Ibrahim, Mazleena Salleh, And Mohd
Rozi Katmin; “Information Hiding Using Steganography”; Universiti Teknologi
Malaysia Vol. 71847, 2003

[20] Anderson, R.J. and Petitcolas, F.A.P.: On the Limits of Steganography.
IEEE Journal of Selected Areas in Communications:

[21] Chang, C.C., T.S. Chen and L.Z. Chung (2002). “A steganographic
method based upon JPEG and quantization table modification.”, Information
Sciences, 141, 123–138.

[22] Fridrich, J., Goljan, M., and Du, R.: Steganalysis Based on JPEG
Compatibility. Proc. SPIE Multimedia Systems and Applications IV, Vol. 4518.
Denver, Colorado (2001) 275–280

[23] H. W. Tseng and C. C. Chang, “High capacity data hiding in jpeg-
compressed images”, Informatica, vol. 15, o. 1, pp. 127–142, 2004.

[24] Johnson, N., and S. Jajodia (1998). Steganalysis of images created using
current steganography software. In Proceedings of Information Hiding Workshop,
Portland, Oregon, USA, April, LNCS 1525. pp. 273–289.

[25] Umbarkar. A. Joshi, A. Jadhav. A. Buchade. A. “Wave Steganography
Approach by Modified LSB”, Second International Conference on Emerging
Trends in Engineering and Technology, ICETET – 09. 2009

[26] Dutta, Poulami. Bhattacharyya, Debnath. Kim, Tai-hoon. “Data Hiding in
Audio Signal: A Review”. International Journal of Database Theory and
Application Bol. 2. No. 2. June 2009

[27] Gopalan, Kaliappan. Wenndt, Stanley. “Audio Steganography for Covert
Data Transmission by Imperceptible Tone Insertion”. <
http://www.calumet.purdue.edu/engr/docs/GopalanKali_422_049.pdf>

[28] Cvejic, Nedeljko. Seppanen, Tapio. “Increasing Robustness of LSB Audio
Steganography by Reduced Distortion LSB Coding”. Media Team, Information
Processing Laboratory, University of Oulu, Finland.
<http://www.cl.cam.ac.uk/~rja14/Papers/jsac98-limsteg.pdf>

[29] Anderson, Ross. “Stretching the Limits of Steganography”. Cambridge
University Computer Laboratory.
<http://www.cl.cam.ac.uk/~rja14/Papers/stegan.pdf>

[30] Zamani, Mazdak. Manaf, Azizah A. Ahmad, Rabiah B. Zeki, Akram M.
Abdullah, Shahidan. “A Genetic-Algorithm-Based Approach for Audio
Steganography”. World Academy of Science, Engineering and Technology 54
2009 <http://www.waset.org/journals/waset/v54/v54-63.pdf>

