
Fourteenforty Research Institute, Inc.

1

Fourteenforty Research Institute, Inc.

Black Hat Abu Dhabi 2011

Yet Another Android Rootkit
/protecting/system/is/not/enough/

Research Engineer – Tsukasa Oi

Fourteenforty Research Institute, Inc.

http://www.fourteenforty.jp

Fourteenforty Research Institute, Inc.

• Gaining Administrative Privileges in Android OS

– Normally, root cannot be used by Apps

– Gaining root Privilege using...

• Local Exploits (dangerous)

• Fake Firmware Updates (relatively safe)

• What for?

– Customization, Overclocking

– Malicious Use (e.g. DroidDream)

• root in Android platform works differently

– Permission Checks

– Software-based UID/PID checks

2

Introduction: rooting Android

Fourteenforty Research Institute, Inc.

• Vendors and Careers want to:

– Protect Users

– Protect Career-specific / Vendor-specific Services

– Ensure Smartphones are not Altered and “Radio Legal”

– Protect their Business Model

• Answer: “Protect Smartphones”

– Prevent Firmware Modification

– Patch Framework and Kernel in order to Secure the device

3

Introduction: Japanese smartphones

Fourteenforty Research Institute, Inc.

• rooting and Android Security

– Android Internals and Security Model

– Bypassing Security and Gaining Privileges

• Vendor-Specific Protection

– Kernel-based Mechanism

• Yet Another Android Rootkit

– User-Mode Rootkit Bypassing Vendor-Specific Protections

– Hook User Applications

• So what was wrong?

– Open source, Closed platform

4

Agenda

Fourteenforty Research Institute, Inc.

ROOTING AND ANDROID SECURITY
rooting Android is not the end of the story.

5

Fourteenforty Research Institute, Inc.

• Five known root exploits affecting unmodified version of Android

– CVE-2010-1185 (exploid)

– [no CVE number] (rage against the cage)

– CVE-2011-1149 (psneuter)

– CVE-2011-1823 (GingerBreak)

– [no CVE number] (zergRush)

• More of that: Chip/Vendor-specific Vulnerabilities

6

rooting is Sometimes Easy

Fourteenforty Research Institute, Inc.

• Logic Errors in suid programs

– Android Tablet [xxx]: OS command injection

rooting : Vulnerabilities (1)

7

The attacker can invoke arbitrary command in root privileges.

Fourteenforty Research Institute, Inc.

• Improper User-supplied buffer access

– Android smartphone [xxx]: Sensor Device Driver

rooting : Vulnerabilities (2)

8

The attacker write 0 or 7 (according to the sensor data) to arbitrary user memory, bypassing copy-on-write.

Modifying setuid function (which affects all processes) can generate root-privilege processes.

Fourteenforty Research Institute, Inc.

• Gaining Privileges in Android system

– root user in Android system is slightly different

– The attacker want to take over the whole system

• Vendor-Specific Protection

– DroidDream won’t work properly on some Japanese Android phones

– /system may be Read-Only

• Is it possible to take over the system in protected smartphones?

9

rooting isn’t the end

Fourteenforty Research Institute, Inc.

Android Internals: App Model

• Applications are contained in the Package

• Register how “classes” are invoked by Manifest

– System calls application “classes” if requested

– Activity, Broadcast, ...

10

Package.apk

Activity

Broadcast Receiver

Invoke Application

Callback on Event

AndroidManifest.xml
Android
System Install

Fourteenforty Research Institute, Inc.

Android Internals: Package

• Package itself is only a ZIP archive

• AndroidManifest.xml (Manifest)

– Application information, permissions

– How classes can be called (Activity, BroadcastReceiver...)

11

APK File (ZIP format)

AndroidManifest.xml
(Manifest)

classes.dex
(Program)

lib/armeabi/*
(Native code)

...

Fourteenforty Research Institute, Inc.

Android Internals: App Model in File System

12

root file system (/)

init

init.rc

vendor/

data/

system partition (/system)

system/

bin/

app_process

linker

app/ lib/

libdvm.so

framework/

etc/

vendor/ (symlinked to /vendor)

app/ lib/

data directory (/data)

app/ lib/

app-private/ data/

build.prop

...

default.prop

...

... ...

Data

Contains Dalvik Code

Contains Native Code

...

Dalvik host process

Dalvik VM Library

Trusted by App System

Dynamic linker

Fourteenforty Research Institute, Inc.

• Important Processes are:

– init (The root of all processes)

– Zygote Daemon (The root of Android Apps)

– System Server (serves many System Services)

13

Android Internals: App Model in Lower Layer
init Process Launches
some Native Services

Service 1 Service 2 ...

init (PID=1)

System Server

App 1 App 2 App 3 ...

System Server (serves Services) is
directly forked from Zygote Daemon

Zygote Daemon

All normal Apps are forked from
Zygote Daemon when requested

Fourteenforty Research Institute, Inc.

Android Internals: Zygote

14

Zygote (app_process)

Zygote Daemon

Preloaded Libraries
(including Dalvik VM itself)

System Server

App2

App3

fork and specialize
for new process

Invocation Request
(UNIX Domain Socket)

Shared Memory

/dev/socket/zygote
(POSIX permission: 0666)

Fourteenforty Research Institute, Inc.

• Android Permission and Protection

＋ Grant by Package Information (Permission Information)

－ Restrict by Package Location (System or User)

－ Restrict by Package Signature

＋ Grant by UID/PID (Backdoor?)

• Priorities of Activity (User-Interface Element)

＋ Grant by Package Information (Intent Filters)

－ Restrict by Package Location (System Only)

• Legacy Linux Security Model

– Grant/Restrict: UID/GID/PID...

15

Android Security: Model

Fourteenforty Research Institute, Inc.

• Abstract “Capability” in Android System

– More than 100 (Internet connection, retrieve phone number...)

• Permissions Checking

– Software Checks

– GID Checks (some permissions are associated with GIDs)

16

Android Security: Permission

App1 App2

Permission: INTERNET

The Internet

Fourteenforty Research Institute, Inc.

• Permission for User App is Restricted

– Some permissions are “protected”

• Protection Level

– Package Location (signatureOrSystem)

– Package Signature (signature, signatureOrSystem)

17

Android Security: Permission Protection

User App System App

INSTALL_PACKAGES permission

INSTALL_PACKAGES INSTALL_PACKAGES

Fourteenforty Research Institute, Inc.

• All Permissions are granted for root process

– Permission Checks are not really Performed

• GingerMaster (malware) utilizes this behavior

– GingerMaster calls pm command via root shell script

– pm is actually a Dalvik program

18

Android Security: Permission Protection

User App System App

INSTALL_PACKAGES permission

UID=0 (root) INSTALL_PACKAGES

Fourteenforty Research Institute, Inc.

Android Internals: Activity

• Activity = Unit of “Action” with User Interface

– Specifying object type (target) and action,
Activity is called by the system automatically

19

“Memo” App

(Choose Apps)

“Mail” App

“Twitter” App

Post to Twitter

Intent and multiple

applications (Activities)

startActivity

Fourteenforty Research Institute, Inc.

• Prevent Activity Hooking

– High-priority Activity can hide lower Activities

• Only System Packages can use Higher Priority

– e.g. Android Market (Vending.apk)

20

Android Security: Activity Priorities

P=0 P=100 P=999

User Activity System Activity User Activity

P=0 P=999 0 P=100

User Activity User Activity System Activity

High Priority Low

Fourteenforty Research Institute, Inc.

• Simply need to write System Locations

– /system/app, /vendor/app... (Normally write-protected)

• DEMO

21

Bypassing Security: Activity Priorities

P=0 P=0 P=999

User Activity System Activity SYSTEM Activity

Browser Hooks Real Web Browser

High Priority Low

Fourteenforty Research Institute, Inc.

• Write System Partition

– Overwrite Framework, Applications

• Use chroot

– Make fake root and make system partition virtually

• Use ptrace

– Inject Malicious Hooks

• root can spoil Android security mechanism.

– Or is it?

22

Breaking Security: root can simply...

Fourteenforty Research Institute, Inc.

VENDOR-SPECIFIC PROTECTION
AOSP is not the everything.

23

Fourteenforty Research Institute, Inc.

• Some Android devices have Additional Security Feature

– Restrict root privileges to prevent devices to be overwritten

• Modification to the Kernel

– NAND Lock

– Secure [Authenticated] Boot

– Integrity Checking

– Linux Security Modules (LSM)

24

Vendor-Specific Protection

Fourteenforty Research Institute, Inc.

• Reject all WRITE requests to important regions

– Boot Loader

– System Partition

– Recovery Partition

• Implemented as a NAND driver feature

• pros. Strong

– Prohibits ALL illegal writes in kernel mode

• cons. Does not Protect Memory

– Still can use ptrace

25

Vendor-Specific: NAND Lock

Fourteenforty Research Institute, Inc.

• Prevent Unsigned Boot Loader / Kernel to be Executed

– Hardware Implementation:

• e.g. nVidia Tegra

– Software (Boot Loader) Implementation:

• e.g. HTC Vision (Qualcomm’s Implementation)

• pros. Hard to Defeat

– Haven’t defeated directly

• cons. Only Protects Boot Loader / Kernel

– Does not Protect On-Memory Boot Loader / Kernel

– Most implementations does not Protect System Partition

26

Vendor-Specific: Secure Boot

Fourteenforty Research Institute, Inc.

• Verify loaded packages / programs are legitimate

– Restrict some features if untrusted packages / programs are loaded

• Sharp Corp. : Sphinx (Digest Manager)

– Protected Storage in Kernel Mode

– Digest Verifier in User-mode (dgstmgrd)

• Exports Content Provider

• pros. Ability to use Digital Signatures

• cons. Easy to avoid if processes can be compromised

– e.g. ptrace

27

Vendor-Specific: Integrity Verification

Fourteenforty Research Institute, Inc.

• Security Framework in Linux Kernel

– Used by SELinux (for example)

• LSM to Protect Android System

• Sharp Corp. : Deckard LSM / Miyabi LSM

– Protect Mount Point (/system)

– Prohibit ptrace

– Prohibit chroot, pivot_root...

• Fujitsu Toshiba Mobile Communications : fjsec

– Protect Mount Point (/system) and the FeliCa [subset of NFC] device

– Prohibit pivot_root

– Path-based / Policy-based Restrictions

28

Vendor-Specific: Linux Security Modules (1)

Fourteenforty Research Institute, Inc.

• LSM (and NAND lock) Stops DroidDream

– DroidDream tries to remount /system read-write
but it is prohibited by the LSM

• pros. Mandatory and Strong

– Difficult to Defeat

– Capable to Hook System Calls

• cons. Difficult to Protect “Everything”

– ...unless you know all about Android Internals

– That could lead to LSM bypassing

• Some holes were fixed though...

29

Vendor-Specific: Linux Security Modules (2)

Fourteenforty Research Institute, Inc.

• Restrictions

– No Kernel-Mode

– No /proc/*/mem, /dev/*mem

– No ptrace

– No chroot, pivot_root

– No writes to system partitions (/system)

• But Assume if the attacker can gain root Privileges

– Possibility to take over whole system

• User-Mode Rootkit

30

Bypassing All Protections

Fourteenforty Research Institute, Inc.

YET ANOTHER ANDROID ROOTKIT
/protecting/system/is/not/enough/

31

Fourteenforty Research Institute, Inc.

Injecting Hooks: 0 out of 3

32

Having Fun!

Replace Class Modify Dalvik State Taint Zygote

Gaining root

Fourteenforty Research Institute, Inc.

• Facts:

– All normal Android Apps are forked from Zygote Daemon

– Zygote Daemon forks child on request through UNIX-domain socket

• Two plans:

– Plan A: Hooking UNIX-domain Socket

• Stealthy

– Plan B: Generating two Zygote processes

• Easy to implement

• Flexible

33

Injecting Hooks: Taint Zygote (1)

Fourteenforty Research Institute, Inc.

• Exploit race-condition during Initialization of Zygote Daemon

– Time until the first process is requested

– Window of Vulnerability is very wide (almost 2∼3 seconds)

34

Injecting Hooks: Taint Zygote (Plan A - 1)

Zygote Daemon System Server

/dev/socket/zygote

bind: T0

listen: T1

connect: T2

Fourteenforty Research Institute, Inc.

• Exploit race-condition during Initialization of Zygote Daemon

– Time until the first process is requested

– Window of Vulnerability is very wide (almost 2∼3 seconds)

35

Injecting Hooks: Taint Zygote (Plan A - 2)

init (PID=1)

Zygote Daemon

System Server

bind: T0

Pass file descriptor
to new Zygote Daemon

listen: T1

Start System Server
(it does not use socket)

connect: T2

Initialization
(Preloading Classes, GC...)

Window of Vulnerability

Fourteenforty Research Institute, Inc.

• Perform Man-in-the-Middle Attack

– System Server refers Rootkit’s Socket

• Rootkit Injector can restore original Socket to make it stealth

– New Apps are requested from one connection between System Server

36

Injecting Hooks: Taint Zygote (Plan A - 3)

Zygote Daemon

System Server

Rootkit Injector

Modify Request to Inject
Payload written in Java

/dev/socket/zygote
(moved)

/dev/socket/zygote
(new; infected)

Fourteenforty Research Institute, Inc.

• Pause original Zygote Daemon

• Launch Tainted instance of Zygote

– Many ways to launch tainted Zygote

• Replace socket with rootkit’s one

37

Injecting Hooks: Taint Zygote (Plan B)

Zygote Daemon

System Server Infected Zygote

Performs like original Zygote
(but can perform malicious)

/dev/socket/zygote
(new; infected)

/dev/socket/zygote
(moved or deleted)

Fourteenforty Research Institute, Inc.

Injecting Hooks: 1 out of 3

38

Having Fun!

Replace Class Modify Dalvik State Taint Zygote

Gaining root

Tainted Process

Real Program

...

Rootkit Payload

Tainted Zygote
Taint Zygote to
make tainted processes

Fourteenforty Research Institute, Inc.

• Assume: The attacker can execute malicious Java class

• Modify Dalvik VM state to inject hooks

– Read/Write arbitrary memory required

– sun.misc.Unsafe class

• Dalvik VM (libdvm.so) exports many symbols

– Including its Global State (gDvm)

– Modifying gDvm enables hook injection

39

Injecting Hooks: Modify Dalvik State

libdvm.so

...

...

struct DvmGlobals

gDvm loadedClasses

...

...

struct HashTable

info: Class A

info: Class B

...

Dalvik VM Global State All Classes Information

Modify Class Metadata
to Inject Hooks

Fourteenforty Research Institute, Inc.

Injecting Hooks: 2 out of 3

40

Having Fun!

Replace Class Modify Dalvik State Taint Zygote

Gaining root

libdvm.so

...

...

gDvm

DvmGlobals

...

...

loadedClasses

HashTable

Real Class

...

...

Tainted Process

Real Program

...

Rootkit Payload

Tainted Zygote
Taint Zygote to
make tainted processes

Access Dalvik VM
State Directly

Fourteenforty Research Institute, Inc.

• Easy Implementation Plan: Swap two Classes

– e.g. WebView ⇔ FakeWebView

– Target = gDvm->loadedClasses

– Replacing classes must have exactly same methods

41

Injecting Hooks: Class Replacement/Swapping

struct HashTable

K1: WebView

K2: FakeWebView

...

in
h

e
ri

t

S
w

a
p

struct HashTable

...

K1: FakeWebView

K2: WebView

before replacement

after replacement

WebView

FakeWebView

Fourteenforty Research Institute, Inc.

HashTable

Real Class

...

Injecting Hooks: Complete!

42

Having Fun!

Replace Class Modify Dalvik State Taint Zygote

Gaining root

libdvm.so

...

...

gDvm

DvmGlobals

...

...

loadedClasses Fake Class

Real Class

...

Tainted Process

Real Program

...

Rootkit Payload

Tainted Zygote
Taint Zygote to
make tainted processes

Access Dalvik VM
State Directly

Replace class with
rootkit’s one

Fourteenforty Research Institute, Inc.

• By tainting Zygote,
we can hook many of activities including method calls

– Rootkit Payload can be implemented in Pure Java

• Most of implementation are not so difficult

– Be aware of these kind of attacks

43

Conclusion

Fourteenforty Research Institute, Inc.

DEMO
On-memory modification gives attackers ultimate flexibility.

44

Fourteenforty Research Institute, Inc.

BOTTOM LINE
Protecting system is not so easy.

45

Fourteenforty Research Institute, Inc.

• This Android “weakness” is not a vulnerability alone

• This malware is not a really advanced rootkit

– Easy to detect, Easy to defeat

• But it’s not the point.

46

This is not...

Fourteenforty Research Institute, Inc.

• Protection: LSM...

– Need to know Android Internals

• Difference: Security Requirements

– Some Japanese smartphones had higher security requirements

– Different than Google expects

47

So, what was wrong?

Fourteenforty Research Institute, Inc.

• Low Open Governance Index(1)

– Not everything is shared

• Vendor have to implement its own LSM and/or protection

– Compatibility Issues

– e.g. Deckard / Miyabi LSM prohibits all native debugging

• Can Google provide additional information to implement LSM?

– To Defeat Compatibility Issues

– To Make implementing Additional Security Easier

48

Android: Open source, Closed platform

(1) http://www.visionmobile.com/research.php#OGI

Fourteenforty Research Institute, Inc.

• Suggestion: Make policy guidelines to protect Android devices

• Suggestion: Understand what’s happening inside the Android system

• If the attacker can gain root privileges, the attacker can inject
rootkit hooks and monitor App activities

• This is easy to protect, but it implies many of other possibilities

– Advanced Android malware?

• Share the knowledge to protect Android devices!

49

Suggestions / Conclusions

Fourteenforty Research Institute, Inc.

50

Thank You!

Fourteenforty Research Institute, Inc.
http://www.fourteenforty.jp

Research Engineer – Tsukasa Oi

<oi@fourteenforty.jp>

