
Android: From Reversing to Decompilation

Anthony Desnos, Geoffroy Gueguen
ESIEA: Operational Cryptology and Virology Laboratory

desnos@esiea.fr, gueguen@esiea.fr

Current section

Android

Analysis
Static Analysis
Visualization

Demos

Conclusion

A. Desnos, G. Gueguen 1 / 120

Android

The platform

I Google purchased the initial developer of the software,
Android Inc., in 2005

I The unveiling of the Android distribution on November 5,
2007

I October 2008: Android Market

I 295.000 applications on the Android Market, 6 billions
downloads

I Percentage of apps that are free : 60%

A. Desnos, G. Gueguen 2 / 120

Android

The platform

I Android runs 52% of smartphones sold (Gartner)

A. Desnos, G. Gueguen 3 / 120

Android

The platform

I Third party applications written in Java, executed on the
Dalvik Virtual Machine

I Java bytecode converted in Dalvik bytecode (stack-based
machine vs register based machine)

I Applications are packaged in the APK format

I A virtual machine (Linux user-based protection) per
application

I Permissions per application

A. Desnos, G. Gueguen 4 / 120

Android

APK

I ZIP format

I classes.dex: Dalvik Executable Format

I ressources: images, strings ...

I assets: raw ressources

I native libraries

I manifest file: what to do with all the top-level
components (specifically activities, services, broadcast
receivers, and content providers) and specifies which
permissions are required in an application

A. Desnos, G. Gueguen 5 / 120

Android

Disassembling Dalvik bytecode

I Instructions use registers,

I Impossible to change the bytecode on the fly,

I Less than 0xff instructions,

I Instruction format:
I nop, move*, invoke*, goto*, cmp*, *-switch, add*, sub* ...

A. Desnos, G. Gueguen 6 / 120

Android

Dalvik bytecode

A. Desnos, G. Gueguen 7 / 120

Android

Manifest file

I Activities, services, content providers, and broadcast
receivers

I Permissions:
I Camera functions
I Location (GPS) functions
I Bluetooth functions
I Telephony functions
I SMS/MMS functions
I Network functions

I Before the installation of an application, all permissions
are asked and detailed to the end user

A. Desnos, G. Gueguen 8 / 120

Android

Proctecting Your Applications

I Obfuscators like ProGuard (GPL), Dasho,

I Works mainly at the java bytecode level,

I Techniques:
I names obfuscation,
I optimization,
I CFG obfuscation.

A. Desnos, G. Gueguen 9 / 120

Android

Problem

I A major problem in the Android market is the theft of
applications:

I download an application (free or not) on the official
Android Market

I crack/re-package/infect it by using
smali/baksmali/apk-tool

I push it (free or not) on the market

A. Desnos, G. Gueguen 10 / 120

Android

Is it your application ? :)

I Kevin Baker (an android developer, Neolithic Software),
interviewed by The Guardian about his application:
Sinister Planet

I "I have a game on the market called Sinister Planet which
was released about eight months ago"

I "One of my customers emailed me three weeks ago, and
informed me that another company was selling a version
of my app - pirated and uploaded as their own. Of course I
contacted Google right away. It took Google two days to
take the app down. This publisher was also selling other
versions of pirated games. [...] You’d think [Google] might
have a hotline for things like that!"

A. Desnos, G. Gueguen 11 / 120

Android

Is it your application ? :)

A. Desnos, G. Gueguen 12 / 120

Android

Is it your application ? :)

A. Desnos, G. Gueguen 13 / 120

Android

Is it your application ? :)

I ElectricSleep (Jon Willis)

A. Desnos, G. Gueguen 14 / 120

Android

Is it your application ? :)

A. Desnos, G. Gueguen 15 / 120

Android

Is it your application ? :)

A. Desnos, G. Gueguen 16 / 120

Android

Is it your application ? :)

I HTCHEN

A. Desnos, G. Gueguen 17 / 120

Android

Is it your application ? :)

A. Desnos, G. Gueguen 18 / 120

Android

Is it your application ? :)

A. Desnos, G. Gueguen 19 / 120

Android

Is it your application ? :)

A. Desnos, G. Gueguen 20 / 120

Android

Is it your application ? :)

A. Desnos, G. Gueguen 21 / 120

Android

Is it your application ? :)

A. Desnos, G. Gueguen 22 / 120

Current section

Android

Analysis
Static Analysis
Visualization

Demos

Conclusion

A. Desnos, G. Gueguen 23 / 120

Android

Reverse Engineering

I Reverse engineering tools like IDA Pro (not free),
Baksmali (free), Androguard (free)

I Decompiler better than DED, jd-gui ...

Plagiarism

I It is very time consuming and inefficient

I =⇒ Automated approaches ?

A. Desnos, G. Gueguen 24 / 120

Outline

Android

Analysis
Static Analysis
Visualization

Demos

Conclusion

A. Desnos, G. Gueguen 25 / 120

Analysis

Control Flow Graph

I In each method, you have a list of basic blocks
I one entry point, meaning no code within it is the

destination of a jump instruction anywhere in the
program;

I one exit point, meaning only the last instruction can cause
the program to begin executing code in a different basic
block.

I Modification of the control flow :
I "if*", "goto*", "return*", "packed*", "sparse*"
I exceptions

A. Desnos, G. Gueguen 26 / 120

Permissions

Where ?

I Useful to know where a specific permission is used in the
application,

I You must search specific API in the bytecode,

I Adrienne Porter Felt, Erika Chin, Steve Hanna, Dawn
Song, David Wagner (UC Berkeley): create a permission
map:

I SEND_SMS: sendTextMessage

A. Desnos, G. Gueguen 27 / 120

Permissions

Where ?

A. Desnos, G. Gueguen 28 / 120

AndroidManifest.xml

What ?

I "Every application must have an AndroidManifest.xml file
(with precisely that name) in its root directory",

I Essential information about the application :
I activities, services, broadcast receivers,
I permissions,
I package name...

I XML file converted in a specific binary xml file.

A. Desnos, G. Gueguen 29 / 120

Analysis

Signature

I Create a signature in order to identify a particular
method in a set of methods (not exactly the same
method, but also variants of this method),

I Based on a paper of Silvio Cesare: Fast Automated
Unpacking and Classification of Malware,

I It’s a simple grammar which used: Control Flow Graph,
Fields, Packages, Strings and Exceptions.

A. Desnos, G. Gueguen 30 / 120

Analysis

Signature

I Severals signatures :
I V0: no specific information about string, packages, fields,
I V1: V0 + but with the size of strings,
I V2: V0 + filtering android packages names,
I V3: V0 + filtering java packages names,
I V4: V0 + filtering android/java packages.

A. Desnos, G. Gueguen 31 / 120

Analysis

Signature Example

A. Desnos, G. Gueguen 32 / 120

Analysis

Signature Example

A. Desnos, G. Gueguen 33 / 120

Analysis

Signatures Similarity

I How to know if two strings are similar ?

Signatures Similarity

I Hamming distance,

I Levenshtein distance,

I Jaccard distance,

I Cosine similarity,

I Locality sensitive hashing,

I Normalized compression distance.

A. Desnos, G. Gueguen 34 / 120

Analysis

NCD

I Designed to be an effective approximation of the
noncomputable but universal Kolmogorov complexity
between two strings.

I The NCD of two elements A and B is defined as
dNCD(A,B). We can compute

I C(A) and LA = L(C(A));
I C(B) and LB = L(C(B));
I C(A|B) and LA|B = L(C(A|B));

I where A|B is the concatenation of A and B, C is the
compressor, and L is the length of a string.

A. Desnos, G. Gueguen 35 / 120

Analysis

NCD

I Then dNCD(A,B) is defined by :

dNCD(A,B) =
LA|B −min(LA, LB)

max(LA, LB)
. (1)

A. Desnos, G. Gueguen 36 / 120

Analysis

NCD

I A compressor C is normal if the following four axioms are
satisfied up to an additive O(log n), where n is the
maximal binary length of the elements involved in the
inequalities:

1. Idempotency: C(xx) = C(x), and C(ε) = 0, where ε is the
empty string.

2. Monotonicity: C(xy) > C(x).
3. Symmetry: C(xy) = C(yx).
4. Distributivity: C(xy) + C(z) 6 C(xz) + C(yz).

A. Desnos, G. Gueguen 37 / 120

Analysis

NCD

I If you take three elements:
I X ("HELLO WORLD") and the length of the compression Y

= C(X) = 6,
I X’ ("HELLO WOORLD") and the length of the compression

of Y’ = C(X’) = 7,
I X” ("HI !!!") and the length of the compression of Y” =

C(X”) = 3.

I the compression of C(XX’) will be similar to C(X) whereas
the compression of C(XX”) will not be similar to C(X).

A. Desnos, G. Gueguen 38 / 120

Analysis

NCD

I The compression rate is not a determining factor for the
choice of the compressor if it complies with the following
rules:

1. C respects the four inequalities,
2. C(x) is calculated within an acceptable amount of time.

A. Desnos, G. Gueguen 39 / 120

Analysis

NCD: compressor ?

I Compressor: compressed datas, time (s)

I LZMA: 900, 1.45565796

I XZ: 1824, 0.72005010

I ZLIB: 894, 0.00037599

I BZIP2: 1294, 0.00088286

I Snappy: 1208, 0.00010705

A. Desnos, G. Gueguen 40 / 120

Analysis

NCD: Snappy compressor

I Snappy is a compression/decompression library (Google),

I It does not aim for maximum compression, or
compatibility with any other compression library; instead,
it aims for very high speeds and reasonable compression,

I Based on text by Zeev Tarantov,

I LZ77-type compressor with a fixed, byte-oriented
encoding,

I Fast: Compression speeds at 250 MB/sec and beyond,
with no assembler code,

I Stable: Over the last few years, Snappy has compressed
and decompressed petabytes of data in Google’s
production environment.

A. Desnos, G. Gueguen 41 / 120

Analysis

Similarity

I Identify identical methods,

I Identify exact/similar methods,

I Identify new methods,

I Identify deleted methods.

A. Desnos, G. Gueguen 42 / 120

Analysis

Similarity: attributes associated with a method

I the entropy, based on the raw binary data,

I a buffer which represents the sequence of instructions,
with useless information removed from it,

I a unique checksum (or hash) based on the previous
buffer,

I a signature.

A. Desnos, G. Gueguen 43 / 120

Analysis

Signature Example

A. Desnos, G. Gueguen 44 / 120

Analysis

Similarity: remove identical methods by using hash

A. Desnos, G. Gueguen 45 / 120

Analysis

Similarity: find exact/similar methods between two
applications

A. Desnos, G. Gueguen 46 / 120

Analysis
Similarity: Identify new methods between two
applications

A. Desnos, G. Gueguen 47 / 120

Analysis

Plagiarism/Rip-Off indicator

I By using previous algorithms:
I we can calculate an indicator (between 0.0 to 100.0) to

indicate whether the application has been stolen

I 0.0 to a perfect identical method,

I value of the NCD for a partial identical method,

I value of the NCD for the general information of the
application (strings, constants, etc.).

A. Desnos, G. Gueguen 48 / 120

Analysis

Plagiarism/Rip-Off indicator: two different applications

A. Desnos, G. Gueguen 49 / 120

Analysis

Plagiarism/Rip-Off indicator: identical applications

A. Desnos, G. Gueguen 50 / 120

Analysis

Plagiarism/Rip-Off indicator: quite identical applications

A. Desnos, G. Gueguen 51 / 120

Analysis

Plagiarism/Rip-Off indicator: stolen application

A. Desnos, G. Gueguen 52 / 120

Analysis

Plagiarism/Rip-Off indicator: The Wars

A. Desnos, G. Gueguen 53 / 120

Analysis

Plagiarism/Rip-Off indicator: The Wars

A. Desnos, G. Gueguen 54 / 120

Analysis

Plagiarism/Rip-Off indicator: DailyMoney(HTCHEN)

I Timothy Armstrong (Kasperksy Lab):
I Pay-Per-Install library was added to the original code,
I The library comes as part of an SDK from a company

called AirPush.

A. Desnos, G. Gueguen 55 / 120

Analysis

Plagiarism/Rip-Off indicator: DailyMoney(HTCHEN)

I Timothy Armstrong (Kasperksy Lab):
I different types of advertisements to end users

I The developer is paid every 1.000 impressions (CPM: Cost
Per Mille, "It is used in marketing as a benchmark to
calculate the relative cost of an advertising campaign or
an ad message in a given medium").

A. Desnos, G. Gueguen 56 / 120

Analysis

Plagiarism/Rip-Off indicator: DailyMoney(HTCHEN)

A. Desnos, G. Gueguen 57 / 120

Analysis

Plagiarism/Rip-Off indicator: DailyMoney(HTCHEN)

A. Desnos, G. Gueguen 58 / 120

Analysis

Evaluation of Android obfuscators

I Problem: transformation of the source code in bytecode,

I Android developers use obfuscators frequently such as
proguard or dasho to prevent the reverse engineering of
their software,

I It can be easily reversed by using a classical decompiler
like jad, jd-gui or dava, with varying degrees of reliability,

I Moreover virtual machines do not allow code modification
on the fly (but dynamic code loading) and it is a real
problem for classical packers.

A. Desnos, G. Gueguen 59 / 120

Analysis

Evaluation of Android obfuscators

I the obfuscator can use several techniques to protect a
Java/Android application:

1. change names of classes, methods, fields,
2. modify the control flow,
3. code optimization,
4. dynamic code loading,
5. change instructions with metamorphic technique.

A. Desnos, G. Gueguen 60 / 120

Analysis

Evaluation of Android obfuscators

I Blackbox evaluation with our previous similarity
algorithms

I If this distance is close to 100 then the obfuscator did a
poor job ...

A. Desnos, G. Gueguen 61 / 120

Analysis

Evaluation of Android obfuscators

A. Desnos, G. Gueguen 62 / 120

Analysis

Malware

I We can extract automatically new methods: it is the case
of an injected malware in the Android official or unofficial
markets,

I The malware writer injects his "evil" code in the
application and propagates the new application in
different markets.

I It is possible to isolate the malware quickly if we know the
original application, which is an easy task because the
malware writer does not generally modify it.

A. Desnos, G. Gueguen 63 / 120

Analysis

Malware

A. Desnos, G. Gueguen 64 / 120

Analysis

Axelle Apvrille(Fortinet): Clarifying Android DroidKungFu
variants

A. Desnos, G. Gueguen 65 / 120

Analysis

Diffing

I Calculate the differences between two versions of an
application to identify modifications:

I security bugfix,
I reverse engineering.

I The idea is to detect classical modifications in a method
including:

I modification of codes in a basic block,
I addition of new basic blocks.

I Bindiff, patchdiff2, ...

A. Desnos, G. Gueguen 66 / 120

Analysis

Diffing

I Isomorphism problem: graph comparing

I Find identical/similar methods in order to extract
modifications of instructions from basic blocks

I Identification of identical basic blocks by using NCD,
I Extraction of added/removed instructions by using the

longest common subsequence algorithm.

A. Desnos, G. Gueguen 67 / 120

Analysis

Diffing: Identification of basic blocks

I It is the similarity algorithms but it is just a different level
of granularity

A. Desnos, G. Gueguen 68 / 120

Analysis

Diffing: Find exactly/partially the same basic blocks
between two methods

A. Desnos, G. Gueguen 69 / 120

Analysis

Diffing: Find new basic blocks between two methods

A. Desnos, G. Gueguen 70 / 120

Analysis
Diffing: Find added/removed instructions from a basic
block

A. Desnos, G. Gueguen 71 / 120

Analysis

Diffing: Skype android application

I The 15th April 2011, AndroidPolice released a new
security vulnerability in Skype (version 1.0.0.831) for
Android,

I This vulnerability exposes the users’ name, phone
number, and chat logs to all installed applications,

I The security bug is very simple, it is an incorrect usage of
permissions to open files,

I A few days after this vulnerability, Skype release a new
version (1.0.0.983) which fixed this security bug.

A. Desnos, G. Gueguen 72 / 120

Analysis

Diffing: Skype android application

I exactly identical: 8038,

I partialy identical: 165,

I new: 14,

I delete: 7.

A. Desnos, G. Gueguen 73 / 120

Analysis

Diffing: Skype android application

I searching methods related to file permissions (by using
the Java API or directly with chmod program)

I most of them are related to simple constant modification
but we can identify a method really close to another one
(with the same name) which manipulate files:

I Lcom/skype/ipc/SkypeKitRunner; run ()V with
Lcom/skype/ipc/SkypeKitRunner; run ()V 0.269383959472

A. Desnos, G. Gueguen 74 / 120

Analysis

Diffing: Skype android application

I This method has four modified basic blocks, but only
three basic blocks merit further investigation.

A. Desnos, G. Gueguen 75 / 120

Analysis

Diffing: Skype android application

I An integer value (it is the operating mode) of the method
openFileOutput, public abstract FileOutputStream
openFileOutput (String name, int mode) has been
changed from 3 to 0

A. Desnos, G. Gueguen 76 / 120

Analysis

Diffing: Skype android application

I In another basic block, the first argument of chmod has
been changed from 777 to 750

A. Desnos, G. Gueguen 77 / 120

Analysis

Diffing: Skype android application

I And in the last modified basic block, there is a new call to
a new method which fixes all files in the context directory
of the application:

I Lcom/skype/ipc/SkypeKitRunner; ([Ljava/io/File;) V
fixPermissions]

I which fixes all permissions (patch permissions from the
previous version) to:

I RWX — — for a directory,
I RW- — — for a file.

A. Desnos, G. Gueguen 78 / 120

Analysis

Decompilation

I Useful for static source code analysis.

I Current ways to decompile are not efficient enough.
I Source code unreadable
I Doesn’t compile back
I Decompilation fail

A. Desnos, G. Gueguen 79 / 120

Analysis

A. Desnos, G. Gueguen 80 / 120

Analysis

A. Desnos, G. Gueguen 81 / 120

Analysis

A. Desnos, G. Gueguen 82 / 120

Analysis

I Bytecode cotains high level information:
I operators are typed
I different functions calls depending on the method “type”
I . . .

I Code rewriting is not allowed.
I Once the code is analysed, we know it will not change

during execution.

A. Desnos, G. Gueguen 83 / 120

Analysis

Decompilation

Different phases (optimizations/compilation) :

I Intermediate representation

I Semantic analysis

I CFG generation

I Dataflow analysis

I Control flow analysis

I Code generation

A. Desnos, G. Gueguen 84 / 120

Analysis

Decompilation

I Intermediate representation
I Bytecode is already a kind of IR
I We “abstract” instructions with python objects
I Kind of SSA (Static Single Assignment)

I Semantic analysis

I CFG generation

I Dataflow analysis

I Control flow analysis

I Code generation

A. Desnos, G. Gueguen 85 / 120

Analysis

Decompilation

I Intermediate representation

I Semantic analysis
I Data type propagation

I CFG generation

I Dataflow analysis

I Control flow analysis

I Code generation

A. Desnos, G. Gueguen 86 / 120

Analysis

Decompilation

I Intermediate representation

I Semantic analysis

I CFG generation
I method divided into basic blocks
I each node of the graph represent a basic block

I Dataflow analysis

I Control flow analysis

I Code generation

A. Desnos, G. Gueguen 87 / 120

Analysis

Decompilation

I Intermediate representation

I Semantic analysis

I CFG generation

I Dataflow analysis
I refine the IR of the method

I Control flow analysis

I Code generation

A. Desnos, G. Gueguen 88 / 120

Analysis

Decompilation

I Intermediate representation

I Semantic analysis

I CFG generation

I Dataflow analysis

I Control flow analysis
I detect the high level constructs of the method

I Code generation

A. Desnos, G. Gueguen 89 / 120

Analysis

Decompilation

I Intermediate representation

I Semantic analysis

I CFG generation

I Dataflow analysis

I Control flow analysis

I Code generation
I write the source by traversing the AST

A. Desnos, G. Gueguen 90 / 120

Analysis

Control flow analysis

I Number nodes of graph in reverse post-order:
I number given when visited for the last time

A. Desnos, G. Gueguen 91 / 120

Control flow analysis

I We want to identify structures

I Build intervals to detect loops

I Nodes are flagged accordingly

I Switch and Conditionnal structures detected by
traversing the graph in reverse (from last to first node)

A. Desnos, G. Gueguen 92 / 120

Analysis

A. Desnos, G. Gueguen 93 / 120

Analysis

I Need to find the next element of a structure
I E.g: next of a conditionnal structure is the first common

node of both branches
I Special case with short circuit

I Write the code of the nodes by traversing it
I nodes are flagged : type of node, of loop, head of loop, . . .

A. Desnos, G. Gueguen 94 / 120

Outline

Android

Analysis
Static Analysis
Visualization

Demos

Conclusion

A. Desnos, G. Gueguen 95 / 120

Application

Control Flow Graph

I Export like a classical graphviz picture,

I Export the CFG in Cytoscape.

A. Desnos, G. Gueguen 96 / 120

Application

Control Flow Graph

A. Desnos, G. Gueguen 97 / 120

Application

Control Flow Graph

A. Desnos, G. Gueguen 98 / 120

Application

Control Flow Graph

A. Desnos, G. Gueguen 99 / 120

Application

Control Flow Graph

A. Desnos, G. Gueguen 100 / 120

Application

Control Flow Graph

A. Desnos, G. Gueguen 101 / 120

Application

Methods Call Graph

I Export methods call graph in .gexf format:
I Information about each node
I Add specific nodes (permissions, activities, ...)

A. Desnos, G. Gueguen 102 / 120

Application

Methods Call Graph

A. Desnos, G. Gueguen 103 / 120

Application

Methods Call Graph

A. Desnos, G. Gueguen 104 / 120

Application

Methods Call Graph

A. Desnos, G. Gueguen 105 / 120

Application

Methods Call Graph

A. Desnos, G. Gueguen 106 / 120

Application

Methods Call Graph

A. Desnos, G. Gueguen 107 / 120

Application

Methods Call Graph

A. Desnos, G. Gueguen 108 / 120

Application

Methods Call Graph

A. Desnos, G. Gueguen 109 / 120

Application

Methods Call Graph

A. Desnos, G. Gueguen 110 / 120

Diffing

I Aureliano Calvo: Showing differences between
disassembled functions

A. Desnos, G. Gueguen 111 / 120

Diffing

A. Desnos, G. Gueguen 112 / 120

Current section

Android

Analysis
Static Analysis
Visualization

Demos

Conclusion

A. Desnos, G. Gueguen 113 / 120

Usage of the reversing tools

A. Desnos, G. Gueguen 114 / 120

Usage of the decompiler

A. Desnos, G. Gueguen 115 / 120

Current section

Android

Analysis
Static Analysis
Visualization

Demos

Conclusion

A. Desnos, G. Gueguen 116 / 120

Conclusion

Androguard

I LGPL framework/tools1

I Python/C(++)

I You’re Welcome !

1http://code.google.com/p/androguard/

A. Desnos, G. Gueguen 117 / 120

Conclusion

Future Works

I Improve plagiarism algorithm,

I Emulation of android bytecodes,

I Data tainting,

I Optimization phases of the decompiler.

A. Desnos, G. Gueguen 118 / 120

Conclusion

!

I Thanks to Blackhat

I Questions ?

A. Desnos, G. Gueguen 119 / 120

	Android
	Analysis
	Static Analysis
	Visualization

	Demos
	Conclusion

