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Android

The platform

I Google purchased the initial developer of the software,
Android Inc., in 2005

I The unveiling of the Android distribution on November 5,
2007

I October 2008: Android Market

I 295.000 applications on the Android Market, 6 billions
downloads

I Percentage of apps that are free : 60%

A. Desnos, G. Gueguen 2 / 120



Android

The platform

I Android runs 52% of smartphones sold (Gartner)
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Android

The platform

I Third party applications written in Java, executed on the
Dalvik Virtual Machine

I Java bytecode converted in Dalvik bytecode (stack-based
machine vs register based machine)

I Applications are packaged in the APK format

I A virtual machine (Linux user-based protection) per
application

I Permissions per application
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Android

APK

I ZIP format

I classes.dex: Dalvik Executable Format

I ressources: images, strings ...

I assets: raw ressources

I native libraries

I manifest file: what to do with all the top-level
components (specifically activities, services, broadcast
receivers, and content providers) and specifies which
permissions are required in an application
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Android

Disassembling Dalvik bytecode

I Instructions use registers,

I Impossible to change the bytecode on the fly,

I Less than 0xff instructions,

I Instruction format:
I nop, move*, invoke*, goto*, cmp*, *-switch, add*, sub* ...
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Android

Dalvik bytecode
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Android

Manifest file

I Activities, services, content providers, and broadcast
receivers

I Permissions:
I Camera functions
I Location (GPS) functions
I Bluetooth functions
I Telephony functions
I SMS/MMS functions
I Network functions

I Before the installation of an application, all permissions
are asked and detailed to the end user
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Android

Proctecting Your Applications

I Obfuscators like ProGuard (GPL), Dasho,

I Works mainly at the java bytecode level,

I Techniques:
I names obfuscation,
I optimization,
I CFG obfuscation.
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Android

Problem

I A major problem in the Android market is the theft of
applications:

I download an application (free or not) on the official
Android Market

I crack/re-package/infect it by using
smali/baksmali/apk-tool

I push it (free or not) on the market
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Android

Is it your application ? :)

I Kevin Baker (an android developer, Neolithic Software),
interviewed by The Guardian about his application:
Sinister Planet

I "I have a game on the market called Sinister Planet which
was released about eight months ago"

I "One of my customers emailed me three weeks ago, and
informed me that another company was selling a version
of my app - pirated and uploaded as their own. Of course I
contacted Google right away. It took Google two days to
take the app down. This publisher was also selling other
versions of pirated games. [...] You’d think [Google] might
have a hotline for things like that!"
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Android

Is it your application ? :)
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Android

Is it your application ? :)
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Android

Is it your application ? :)

I ElectricSleep (Jon Willis)
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Android

Is it your application ? :)
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Android

Is it your application ? :)
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Android

Is it your application ? :)

I HTCHEN
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Is it your application ? :)
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Is it your application ? :)
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Android

Reverse Engineering

I Reverse engineering tools like IDA Pro (not free),
Baksmali (free), Androguard (free)

I Decompiler better than DED, jd-gui ...

Plagiarism

I It is very time consuming and inefficient

I =⇒ Automated approaches ?
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Analysis

Control Flow Graph

I In each method, you have a list of basic blocks
I one entry point, meaning no code within it is the

destination of a jump instruction anywhere in the
program;

I one exit point, meaning only the last instruction can cause
the program to begin executing code in a different basic
block.

I Modification of the control flow :
I "if*", "goto*", "return*", "packed*", "sparse*"
I exceptions
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Permissions

Where ?

I Useful to know where a specific permission is used in the
application,

I You must search specific API in the bytecode,

I Adrienne Porter Felt, Erika Chin, Steve Hanna, Dawn
Song, David Wagner (UC Berkeley): create a permission
map:

I SEND_SMS: sendTextMessage
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Permissions

Where ?
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AndroidManifest.xml

What ?

I "Every application must have an AndroidManifest.xml file
(with precisely that name) in its root directory",

I Essential information about the application :
I activities, services, broadcast receivers,
I permissions,
I package name...

I XML file converted in a specific binary xml file.
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Analysis

Signature

I Create a signature in order to identify a particular
method in a set of methods (not exactly the same
method, but also variants of this method),

I Based on a paper of Silvio Cesare: Fast Automated
Unpacking and Classification of Malware,

I It’s a simple grammar which used: Control Flow Graph,
Fields, Packages, Strings and Exceptions.
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Analysis

Signature

I Severals signatures :
I V0: no specific information about string, packages, fields,
I V1: V0 + but with the size of strings,
I V2: V0 + filtering android packages names,
I V3: V0 + filtering java packages names,
I V4: V0 + filtering android/java packages.
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Analysis

Signature Example
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Analysis

Signature Example
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Analysis

Signatures Similarity

I How to know if two strings are similar ?

Signatures Similarity

I Hamming distance,

I Levenshtein distance,

I Jaccard distance,

I Cosine similarity,

I Locality sensitive hashing,

I Normalized compression distance.
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Analysis

NCD

I Designed to be an effective approximation of the
noncomputable but universal Kolmogorov complexity
between two strings.

I The NCD of two elements A and B is defined as
dNCD(A,B). We can compute

I C(A) and LA = L(C(A));
I C(B) and LB = L(C(B));
I C(A|B) and LA|B = L(C(A|B));

I where A|B is the concatenation of A and B, C is the
compressor, and L is the length of a string.
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Analysis

NCD

I Then dNCD(A,B) is defined by :

dNCD(A,B) =
LA|B −min(LA, LB)

max(LA, LB)
. (1)
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Analysis

NCD

I A compressor C is normal if the following four axioms are
satisfied up to an additive O(log n), where n is the
maximal binary length of the elements involved in the
inequalities:

1. Idempotency: C(xx) = C(x), and C(ε) = 0, where ε is the
empty string.

2. Monotonicity: C(xy) > C(x).
3. Symmetry: C(xy) = C(yx).
4. Distributivity: C(xy) + C(z) 6 C(xz) + C(yz).
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Analysis

NCD

I If you take three elements:
I X ("HELLO WORLD") and the length of the compression Y

= C(X) = 6,
I X’ ("HELLO WOORLD") and the length of the compression

of Y’ = C(X’) = 7,
I X” ("HI !!!") and the length of the compression of Y” =

C(X”) = 3.

I the compression of C(XX’) will be similar to C(X) whereas
the compression of C(XX”) will not be similar to C(X).
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Analysis

NCD

I The compression rate is not a determining factor for the
choice of the compressor if it complies with the following
rules:

1. C respects the four inequalities,
2. C(x) is calculated within an acceptable amount of time.
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Analysis

NCD: compressor ?

I Compressor: compressed datas, time (s)

I LZMA: 900, 1.45565796

I XZ: 1824, 0.72005010

I ZLIB: 894, 0.00037599

I BZIP2: 1294, 0.00088286

I Snappy: 1208, 0.00010705
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Analysis

NCD: Snappy compressor

I Snappy is a compression/decompression library (Google),

I It does not aim for maximum compression, or
compatibility with any other compression library; instead,
it aims for very high speeds and reasonable compression,

I Based on text by Zeev Tarantov,

I LZ77-type compressor with a fixed, byte-oriented
encoding,

I Fast: Compression speeds at 250 MB/sec and beyond,
with no assembler code,

I Stable: Over the last few years, Snappy has compressed
and decompressed petabytes of data in Google’s
production environment.
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Analysis

Similarity

I Identify identical methods,

I Identify exact/similar methods,

I Identify new methods,

I Identify deleted methods.
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Analysis

Similarity: attributes associated with a method

I the entropy, based on the raw binary data,

I a buffer which represents the sequence of instructions,
with useless information removed from it,

I a unique checksum (or hash) based on the previous
buffer,

I a signature.
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Analysis

Signature Example
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Analysis

Similarity: remove identical methods by using hash
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Analysis

Similarity: find exact/similar methods between two
applications
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Analysis
Similarity: Identify new methods between two
applications
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Analysis

Plagiarism/Rip-Off indicator

I By using previous algorithms:
I we can calculate an indicator (between 0.0 to 100.0) to

indicate whether the application has been stolen

I 0.0 to a perfect identical method,

I value of the NCD for a partial identical method,

I value of the NCD for the general information of the
application (strings, constants, etc.).
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Analysis

Plagiarism/Rip-Off indicator: two different applications
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Analysis

Plagiarism/Rip-Off indicator: identical applications
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Analysis

Plagiarism/Rip-Off indicator: quite identical applications
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Analysis

Plagiarism/Rip-Off indicator: stolen application
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Analysis

Plagiarism/Rip-Off indicator: The Wars
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Analysis

Plagiarism/Rip-Off indicator: DailyMoney(HTCHEN)

I Timothy Armstrong (Kasperksy Lab):
I Pay-Per-Install library was added to the original code,
I The library comes as part of an SDK from a company

called AirPush.
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Analysis

Plagiarism/Rip-Off indicator: DailyMoney(HTCHEN)

I Timothy Armstrong (Kasperksy Lab):
I different types of advertisements to end users

I The developer is paid every 1.000 impressions (CPM: Cost
Per Mille, "It is used in marketing as a benchmark to
calculate the relative cost of an advertising campaign or
an ad message in a given medium").
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Analysis

Plagiarism/Rip-Off indicator: DailyMoney(HTCHEN)
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Analysis

Evaluation of Android obfuscators

I Problem: transformation of the source code in bytecode,

I Android developers use obfuscators frequently such as
proguard or dasho to prevent the reverse engineering of
their software,

I It can be easily reversed by using a classical decompiler
like jad, jd-gui or dava, with varying degrees of reliability,

I Moreover virtual machines do not allow code modification
on the fly (but dynamic code loading) and it is a real
problem for classical packers.
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Analysis

Evaluation of Android obfuscators

I the obfuscator can use several techniques to protect a
Java/Android application:

1. change names of classes, methods, fields,
2. modify the control flow,
3. code optimization,
4. dynamic code loading,
5. change instructions with metamorphic technique.
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Analysis

Evaluation of Android obfuscators

I Blackbox evaluation with our previous similarity
algorithms

I If this distance is close to 100 then the obfuscator did a
poor job ...
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Analysis

Evaluation of Android obfuscators

A. Desnos, G. Gueguen 62 / 120



Analysis

Malware

I We can extract automatically new methods: it is the case
of an injected malware in the Android official or unofficial
markets,

I The malware writer injects his "evil" code in the
application and propagates the new application in
different markets.

I It is possible to isolate the malware quickly if we know the
original application, which is an easy task because the
malware writer does not generally modify it.
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Analysis

Malware
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Analysis

Axelle Apvrille(Fortinet): Clarifying Android DroidKungFu
variants
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Analysis

Diffing

I Calculate the differences between two versions of an
application to identify modifications:

I security bugfix,
I reverse engineering.

I The idea is to detect classical modifications in a method
including:

I modification of codes in a basic block,
I addition of new basic blocks.

I Bindiff, patchdiff2, ...
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Analysis

Diffing

I Isomorphism problem: graph comparing

I Find identical/similar methods in order to extract
modifications of instructions from basic blocks

I Identification of identical basic blocks by using NCD,
I Extraction of added/removed instructions by using the

longest common subsequence algorithm.
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Analysis

Diffing: Identification of basic blocks

I It is the similarity algorithms but it is just a different level
of granularity
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Analysis

Diffing: Find exactly/partially the same basic blocks
between two methods
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Analysis

Diffing: Find new basic blocks between two methods
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Analysis
Diffing: Find added/removed instructions from a basic
block
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Analysis

Diffing: Skype android application

I The 15th April 2011, AndroidPolice released a new
security vulnerability in Skype (version 1.0.0.831) for
Android,

I This vulnerability exposes the users’ name, phone
number, and chat logs to all installed applications,

I The security bug is very simple, it is an incorrect usage of
permissions to open files,

I A few days after this vulnerability, Skype release a new
version (1.0.0.983) which fixed this security bug.
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Analysis

Diffing: Skype android application

I exactly identical: 8038,

I partialy identical: 165,

I new: 14,

I delete: 7.
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Analysis

Diffing: Skype android application

I searching methods related to file permissions (by using
the Java API or directly with chmod program)

I most of them are related to simple constant modification
but we can identify a method really close to another one
(with the same name) which manipulate files:

I Lcom/skype/ipc/SkypeKitRunner; run ()V with
Lcom/skype/ipc/SkypeKitRunner; run ()V 0.269383959472
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Analysis

Diffing: Skype android application

I This method has four modified basic blocks, but only
three basic blocks merit further investigation.
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Analysis

Diffing: Skype android application

I An integer value (it is the operating mode) of the method
openFileOutput, public abstract FileOutputStream
openFileOutput (String name, int mode) has been
changed from 3 to 0
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Analysis

Diffing: Skype android application

I In another basic block, the first argument of chmod has
been changed from 777 to 750
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Analysis

Diffing: Skype android application

I And in the last modified basic block, there is a new call to
a new method which fixes all files in the context directory
of the application:

I Lcom/skype/ipc/SkypeKitRunner; ([Ljava/io/File;) V
fixPermissions]

I which fixes all permissions (patch permissions from the
previous version) to:

I RWX — — for a directory,
I RW- — — for a file.
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Analysis

Decompilation

I Useful for static source code analysis.

I Current ways to decompile are not efficient enough.
I Source code unreadable
I Doesn’t compile back
I Decompilation fail
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Analysis
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Analysis
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Analysis
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Analysis

I Bytecode cotains high level information:
I operators are typed
I different functions calls depending on the method “type”
I . . .

I Code rewriting is not allowed.
I Once the code is analysed, we know it will not change

during execution.
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Analysis

Decompilation

Different phases (optimizations/compilation) :

I Intermediate representation

I Semantic analysis

I CFG generation

I Dataflow analysis

I Control flow analysis

I Code generation
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Analysis

Decompilation

I Intermediate representation
I Bytecode is already a kind of IR
I We “abstract” instructions with python objects
I Kind of SSA (Static Single Assignment)

I Semantic analysis

I CFG generation

I Dataflow analysis

I Control flow analysis

I Code generation
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Analysis

Decompilation

I Intermediate representation

I Semantic analysis
I Data type propagation

I CFG generation

I Dataflow analysis

I Control flow analysis

I Code generation
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Analysis

Decompilation

I Intermediate representation

I Semantic analysis

I CFG generation
I method divided into basic blocks
I each node of the graph represent a basic block

I Dataflow analysis

I Control flow analysis

I Code generation
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Analysis

Decompilation

I Intermediate representation

I Semantic analysis

I CFG generation

I Dataflow analysis
I refine the IR of the method

I Control flow analysis

I Code generation
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Analysis

Decompilation

I Intermediate representation

I Semantic analysis

I CFG generation

I Dataflow analysis

I Control flow analysis
I detect the high level constructs of the method

I Code generation
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Analysis

Decompilation

I Intermediate representation

I Semantic analysis

I CFG generation

I Dataflow analysis

I Control flow analysis

I Code generation
I write the source by traversing the AST
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Analysis

Control flow analysis

I Number nodes of graph in reverse post-order:
I number given when visited for the last time
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Control flow analysis

I We want to identify structures

I Build intervals to detect loops

I Nodes are flagged accordingly

I Switch and Conditionnal structures detected by
traversing the graph in reverse (from last to first node)
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Analysis
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Analysis

I Need to find the next element of a structure
I E.g: next of a conditionnal structure is the first common

node of both branches
I Special case with short circuit

I Write the code of the nodes by traversing it
I nodes are flagged : type of node, of loop, head of loop, . . .
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Application

Control Flow Graph

I Export like a classical graphviz picture,

I Export the CFG in Cytoscape.
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Control Flow Graph
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Application

Control Flow Graph
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Application

Control Flow Graph
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Application

Methods Call Graph

I Export methods call graph in .gexf format:
I Information about each node
I Add specific nodes (permissions, activities, ...)
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Application

Methods Call Graph
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Application
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Application

Methods Call Graph
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Application

Methods Call Graph
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Diffing

I Aureliano Calvo: Showing differences between
disassembled functions
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Diffing
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Usage of the reversing tools
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Usage of the decompiler
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Conclusion

Androguard

I LGPL framework/tools1

I Python/C(++)

I You’re Welcome !

1http://code.google.com/p/androguard/
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Conclusion

Future Works

I Improve plagiarism algorithm,

I Emulation of android bytecodes,

I Data tainting,

I Optimization phases of the decompiler.
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Conclusion

!

I Thanks to Blackhat

I Questions ?
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