Escaping The Sandbox

Blackhat Abu Dhabi

Stephen A. Ridley
Senior Researcher Matasano Security

stephen@sa7ori.org
@s7ephen (Twitter)
http://www.dontstuffbeansupyournose.com

matasano

Monday, October 4, 2010

mailto:stephen@sa7ori.org
mailto:stephen@sa7ori.org
http://www.dontstuffbeansupyournose.com
http://www.dontstuffbeansupyournose.com

Stephen A. Ridley
Senior Security Researcher (Matasano)

Previously: Senior Security Architect at McAfee, founding member of
Security Architecture Group

Prior to that: Researcher at leading Defense contractor. Directly supported
U.S. Defense and Intelligence communities in realm of software exploitation
and software reverse engineering

Columnist for/interviewed by IT magazines (Wired, Ping!, Washington Post)
Kenshoto DetfCon CTF organizers for a few years
blog: http://www.dontstuffbeansupyournose.com

Guest Lecturer/Instructor (New York University, Netherlands Forensics
Institute, Department of Defense, Google, et al)

My Focus: software reverse engineering, software development, software
exploitation, software security, Kernels (Microsoft ones for now).
Increasingly interested in embedded systems and mobile devices

Monday, October 4, 2010

What am | talkin’ ‘bout today?
% Sandboxing Overview (very brief ;-)

* @Qoals, Sandbox Architecture (Chrome)

 Sandboxes from a User-space Perspective
* Securable Objects and SID apertures
* Patches/Hooks/Interception
® user3Z issues

% Sandboxes from a Kernel-space Perspective
* Between User-space and Kernel-space

* Kernel supported “Quasi Securable Objects”, Native AP
* Job Objects handle the rest, or do they?

% Tools/Techniques/Demos

* SandKit Toolkit (code injection, copymem, memdift, hookfix,
sa/shell, bincompare, dumptoken, tokenbrute, handlebrute)

Using Sandbox PoC Project (from Google)

Using kernel debugger while attacking Chrome
Triggering Chrome Bugs and where to start

Monday, October 4, 2010

Presentation Focus

Sandbox implementations are (by their nature) strongly
coupled to the Operating System

¥ This presentation focuses on Microsoft Windows

Operating Systems and the NT Kernel (XP and Vista)

* Side Note: Check out OSX’'s DAC/Sandbox. (“man sandbox-exec”,
“Is /usr/share/sandbox”) It's pretty awesome! Scheme-like rules sent to
a DAC engine with a Scheme-like interpreter in the Kernel! Nice ideal

% This presentation uses Google Chromium because it's
the most popular of the Sandbox implementations.

¥ Focus on blackbox/reversing approach to sandboxing
technologies (less source source audit of IPC
mechanisms, etc). For that approach see Azimuth
Security’s excellent “The Chrome Sandbox” series)

Monday, October 4, 2010

Sandboxing Overview

The Goal of the Sandbox

% Localize the damage by “containing” potentially
malicious code

Y Trapping malicious code is nuanced and tough but
from a high level it consists mostly of:

Locking down all IPC mechanisms

Perform process monitoring

Basically not trusting any code within the Sandbox to
do anything on the system without it first being
checked by some authority

Monday, October 4, 2010

Chromium Sandbox Architecture

A great number of resources currently exist on the architecture and

design of sandboxes in general, especially for Google Chromium. Not
going to echo-chamber.

Mark Dowd and the team at Azimuth Security began releasing

Sandboxing papers that happened to coincide with my talk and paper:

http://blog.azimuthsecurity.com/2010/05/chrome-sandbox-part-1-of-3-
overview.htm|

Google Chrome Design Documents: http://www.chromium.org/
developers/design-documents

The Chromium Design Docs are all you really need, but other small bits
can be gleaned from Infosec bloggers and research papers (Robert
Hensing, David Leblanc, Nicolas Sylvain, and others). Not much

actual code/tools/techniques/examples have been released though,
this talk hopefully will help with this.

Monday, October 4, 2010

http://blog.azimuthsecurity.com/2010/05/chrome-sandbox-part-1-of-3-overview.html
http://blog.azimuthsecurity.com/2010/05/chrome-sandbox-part-1-of-3-overview.html
http://blog.azimuthsecurity.com/2010/05/chrome-sandbox-part-1-of-3-overview.html
http://blog.azimuthsecurity.com/2010/05/chrome-sandbox-part-1-of-3-overview.html
http://www.chromium.org/developers/design-documents
http://www.chromium.org/developers/design-documents
http://www.chromium.org/developers/design-documents
http://www.chromium.org/developers/design-documents

Chromium Sandbox Architecture

.
\A =i thraasm
J\-‘-.l..»c..’-"- ...

ResourceDispatcher ; Browser
Host '

Filter RenderProcessHost RenderViewHost

Channel ~ RenderProcessHost

RenderViewHost

RenderView

%

fnnni| RenderProcess

L —] ResourceDispatcher

' Renderer

IPC '
ARRRRRRRRIRRRRI N l4 RenderProcess T RenderView

-
=
=
-
=
=
-
-
=
v
L

[

; L | ResourceDispatcher
-Renderer

redit: Gartner and Google Chrome

Monday, October 4, 2010

Locking down IPC and IO

The Operating System is what does all the “hard work”
for permissions and restrictions. Developers don’t need
to reinvent this technology these days.

% In the NT Kernel this is handled by using the DACL
system built into the Object Manager and Security

Reference Manager

 These two components of the NT kernel implement

and enforce the permissions system for “NT Securable
Objects” like:

* Files

* Processes

e Shared Memory Regions

* Lots more...

Monday, October 4, 2010

Locking down IPC and IO

% 10 and IPC on Windows is performed predominantly
using these NT Objects. | really realized this more, the
more kernel stuff | began doing.

* “Almost everything in userspace is an NT Object, or is
at some point supported by one.”....but there are still
gaps. “Quasi-securable Objects”

% Most of the functionality for interfacing with/

manipulating these NT Objects is implemented within
the Native API

* Think: OpenFile, OpenProcess, CreateFile, CreateProcess,
CreateThread, or basically anything in ntdll or kernel32)

% There are some other public techniques for performing
faux-IPC. (we will review these and some less popular
ideas/techniques)

Monday, October 4, 2010

Sandboxes from a User-space
Perspective

As malicious code, what would you
first?

% Accessing Out of Proc COM Servers?

% Accessing WMI Interfaces?

Y Writeable locations on the disk?

¥ Injecting into Other processes (reading/writing other
process memory)?

% Loading Drivers?

% Accessing LPC/RPC/LRPC endpoints?
% Accessing NamedPipes?

¥ Accessing RunAs Service?

¥ sending User32 messages?
Y ...lots of other stuff?

% Let's See Why Most of this Won't Work!

Monday, October 4, 2010

% These things are all good places to start. In fact we
will demonstrate a new tool in the SandKit that you
can use to assist with these kinds of tests. In other
implementations you will mostly likely find bugs here.

% HOWEVER, virtually all of these operations under the
hood are (or are supported by) Securable Objects
which fall under the purview of the Object Manager
and Security Reference Manager.

% Therefore, the proper restrictions on security
descriptors will kill access to these in one fell swoop!

Monday, October 4, 2010

As malicious code, what would you
first?

% Aceessing-OutofProe COM-ServEOM is NamedPipes
* Acecessing WMHWINIERSEOM which is LPC/NamedPipes
* W%H%@Hﬁ?ﬁdﬁ%%ﬁhﬁo objects are securable.

eslThreadslIO objects are securable
. . Manager is all LPC/NamedPipes also
oad Driver” token perm covers it
1 Df‘ /D D(‘ / "
{PEIERPEIRPT sit on NamedPipes

55555:” 9 lE“"eTtlgﬁ'neﬁaPlpes are obviously securable
runas”) is LPC/NamedPipe to LSASS

8132 partitioned by “Desktop” and user32
handles are restricted by Job Object (XP) UAC

(Vista)

Monday, October 4, 2010

Bootstrapping the Sandbox

“The beginning is a very delicate time...”
Frank Herbert's Dune

¥ The Broker starts all the Sandbox processes.

 The "Broker” process is the Overseer, he starts the
"Sandbox” processes.

% The Broker performs “privileged” actions on behalf of
Sandbox processes via code hooks and IPC mechanisms.

* Let's review the steps the Broker goes through when
bootstrapping the Sandbox.

Monday, October 4, 2010

Bootstrapping the Sandbox

1. Betfore spawning Sandbox, the Broker process creates a
restricted token using: CreateRestrictedToken() with the

‘SidsToRestrict’ array populated.

. The Broker uses CreateProcess() with the fdwCreate
argument set to CREATE_SUSPENDED and the restricted

token to start sandbox “frozen”.

. It is during this suspended time that the Broker then
further restricts the Sandbox process by:
1. Installing hooks (we will review these shortly)
2. Pertorming some other setup

We'll see later that the Broker also continues to “debug” the Sandbox process,
catching his exceptions! Annoying for your fuzzing huh? ;-)

Monday, October 4, 2010

Bootstrapping the Sandbox

. The Broker further adjusts the Sandbox’s Token with
AdjustTokenPrivileges)

. The Broker places the Sandbox into a very restrictive
Job Object by setting restrictive members of
JOBOBJECT_BASIC_UI_RESTRICTIONS when calling
SetinformationJobObject()

. The Broker can then place the Sandbox into its own
Desktop (depending on which “type” of Sandboxed
process it is) if XP, or on Vista set low integrity token

and use User Interface Privilege Isolation (UIPI which
is just "UAC" stuff)

. The Broker does other stuff | probably didn’t notice
(or am forgetting ;-) and then resumes the Sandbox’s
main thread.

Monday, October 4, 2010

Bootstrapping the Sandbox

Example from “Sandbox PoC"” in Chrome Source Code

(/home/chrome-svn/tarball/chromium/src/sandbox/sandbox_poc/main_ui_window.cc)

sandbox: :TargetPolicy* policy = broker ->CreatePolicy();
policy->SetJobLevel (sandbox: : JOB LOCKDOWN, 0);
policy->SetTokenLevel (sandbox: :USER RESTRICTED SAME ACCESS,
sandbox: :USER LOCKDOWN) ;
policy->SetAlternateDesktop(true);
policy->SetDelayedIntegrityLevel (sandbox: : INTEGRITY LEVEL LOW);

e el i =~ I~
Ww N = O W

5.
5.
S
-
-
-

// Set the rule to allow the POC dll to be loaded by the target. Note that
// the rule allows 'all access' to the DLL, which could mean that the targe
k] 4 modi NS 1 i .
policy->AddRule(sandbox: :TargetPolicy: :SUBSYS FILES,
sandbox: :TargetPolicy: :FILES ALLOW ANY, dll path .c str())

sandbox: :ResultCode result = broker ->SpawnTarget(spawn target .c str(),
arguments, policy,
&target);

b U wm
N N NN
> WON) -

Monday, October 4, 2010

Restricted Token

¥ The restricted token pretty much will handle restricting
the vast majority (~95%) of the things malicious code
will try to do:

COM Interfaces
Files

Processes

Shared Memory Regions

Named Pipes

_oad Drivers (access Drivers)
* LPC/LRPC endpoints

When implementing a sandbox however, this doesn't
mean all the work is done for you, you still have to
build strong “filter” policies for the Policy Engine!

% A hole in your SID filters and the whole sandbox falls
apart!

Monday, October 4, 2010

Restricted Token ::CreateRestrictedToken()

/home/chrome-svn/tarball/chromium/src/sandbox/src/restricted_token_utils.cc
case USER_NON_ADMIN: {
sid exceptions.push back(WinBuiltinUsersSid
sid exceptions.push back(WinWorldSid);
sid exceptions.push back(WinInteractiveSid);
sid exceptions.push back(WinAuthenticatedUserSid)? All these “SIDs” defined in:
privilege exceptions.push back(SE CHANGE NOTIFY NAME);
break: WELL_KNOWN_SID _TYPE
} NUM (see MSDN for more
case USER_INTERACTIVE: { infO)
sid exceptions.push back(WinBuiltinUsersSid);
sid exceptions.push back(WinWorldSid);
sid exceptions.push back(WinInteractiveSid);
sid exceptions.push back(WinAuthenticatedUserSid);
privilege exceptions.push back(SE_CHANGE NOTIFY NAME);
restricted token.AddRestrictingSid(WinBuiltinUsersSid);
restricted token.AddRestrictingSid(WinWorldSid);
restricted token.AddRestrictingSid(WinRestrictedCodeSid);
restricted token.AddRestrictingSidCurrentUser();
restricted token.AddRestrictingSidLogonSession();
break;
}
case USER _LIMITED: {
sid exceptions.push back(WinBuiltinUsersSid);
sid exceptions.push back(WinWorldSid);
sid exceptions.push back(WinInteractiveSid);
privilege exceptions.push back(SE CHANGE NOTIFY
restricted token.AddRestrictingSid(WinBuiltinU
restricted token.AddRestrictingSid(WinWorldSid
restricted token.AddRestrictingSid(WinRestrictedCodeSid);

o on o n
~S o DN e W

w

W N = O W

-~ O U W&

5
5
6
6
6
6
6
6
6
6
6
6

o W o

~ “~ ~J
> W N -

~

d ~J
O W O ~

D 0 ~

b2

Monday, October 4, 2010

The Job Object: SetinformationJobObject()

The restrictions on the Job Object will generally handle

restricting the "“other” ~4.999% of things malicious code
might try to do:
Accessing/Writing Clipboard (JOB_OBJECT_UILIMIT_READCLIPBOARD)

Switching/Accessing other Desktops (JOB_OBJECT_UILIMIT_DESKTOP)

Accessing other USER32 Handles (JOB_OBJECT_UILIMIT_HANDLES) This
kills all user32 messaging basically and techniques: SetWindowsHookEx,
OpenWindow(), PostMessage(), SendMessage(), PeekMessage())

The Job Obiject restrictions also breaks some less
popular techniques:
* SendMessageCallback()

e GlobalAtom access (JOB_OBJECT _UILIMIT_GLOBALATOMYS)
* ChangeDisplaySettings)

Monday, October 4, 2010

The Separate Desktop

¥ Placing the sandboxed application on a separate

desktop is mostly an “XP" (pre-UAC/UIPI

technique)

% On XP, user32 functions take only “window

handles” as arguments.

Y Window Objects are grouped in “Desktops”, so
intra-Desktop messaging by Objects, was not

possible w/out switching.
¥ Vista UIPI/UAC fixes this

Monday, October 4, 2010

SendMessage Function

Sends the specified message to a window or windows. The Senc
specified window and does not return until the window procedur

To send a message and return immediately, use the SendMessi
a message to a thread's message queue and return immediately
function.

Syntax

| T —

__in WPARAM wParam,
__in LPARAM lParam

);

Atom Tables & GlobalAtoms

Y What is the deal with Atom Tables? (InitAtom(),
AddAtom(), FindAtom(), etc)

% Designed originally to support Microsoft DDE (Dynamic
Data Exchange).

¥ Essentially is a "kernel supported” key/value storage
mechanism for simple primitives (strings and integers)

 Atom Tables are generally stored on “per process” basis
But you can create “Global Atoms” which are accessible

by any process. (GlobalAddAtom(), GlobalFindAtom(),
etc)

Note: Sample code for Atoms included in SandKit

Monday, October 4, 2010

GlobalAtoms: (excerpt from Sandkit tool)

Found GlobalAtom at ATOM: 492153 named: StdExit

Found GlobalAtom at ATOM: 49154 named: StdNewDocument

Found GlobalAtom at ATOM: 492155 named: StdOpenDocument

Found GlobalAtom at ATOM: 492156 named: StdEditDocument

Found GlobalAtom at ATOM: 492157 named: StdNewfromTemplate
Found GlobalAtom at ATOM: 492158 named: StdCloseDocument
Found GlobalAtom at ATOM: 492159 named: StdShowltem

Found GlobalAtom at ATOM: 492160 named: StdDoVUerbltem

Found GlobalAtom at ATOM: 49161 named: System

Found GlobalAtom at ATOM: 49162 named: OLEsystem

Found GlobalAtom at ATOM: 49163 named: StdDocumentName

Found GlobalAtom at ATOM: 49164 named: Protocols

Found GlobalAtom at ATOM: 49165 named: Topics

Found GlobalAtom at ATOM: 492166 named: Formats

Found GlobalAtom at ATOM: 492167 named: Status

Found GlobalAtom at ATOM: 492168 named: EditEnvitems

Found GlobalAtom at ATOM: 4921692 named: True

Found GlobalAtom at ATOM: 492178 named: False

| GlobalAtom at ATOM: 49171 named: Change

| GlobalAtom at ATOM: 492172 named: Save

| GlobalAtom at ATOM: 49173 named: Close

| GlobalAtom at ATOM: 49174 named: MSDraw

| GlobalAtom at ATOM: 49175 named: CC32SubclassInfo

| GlobalAtom at ATOM: 49176 named: ThemePropScrollBarCtl
| GlobalAtom at ATOM: 49177 named: UxSubclassInfo

| GlobalAtom at ATOM: 492178 named: BltPropThisL

| GlobalAtom at ATOM: 492179 named: BltPropThisH

| GlobalAtom at ATOM: 492180 named: PROGMAN

| GlobalAtom at ATOM: 49182 named: ClipboardDataObjectInterface
| GlobalAtom at ATOM: 492183 named: OleDropTargetInterface
| GlobalAtom at ATOM: 49184 named: OleDropTargetMarshalHund
| GlobalAtom at ATOM: 492185 named: OleEndPointID

| GlobalAtom at ATOM: 49186 named: pszDesktopTitlell

ound
ound
ound
ound
ound
ound
ound
ound
ound
ound
ound
ound
ound
ound
ound

U T = - U = U - U T OO T

f;\data\CHECKOUTS\githuh\int3.cc\sandhox_research\sandkit\extras\globalatoms_tes

Monday, October 4, 2010

GlobalAtoms

 GlobalAtoms can thus be used a rudimentary form of
IPC.

Y MANY standard Microsoft APIls and DLLs use Atom
Tables.

% How many Third Party applications misuse them?

Y Misuse of AtomTables is like the misuse of User32
WM_USER: Insecure usage happens when
developers use it as a form of “quick and dirty” IPC.

Monday, October 4, 2010

The Lesson GlobalAtoms teach us:

% While GlobalAtoms are a known technique with a known
mitigation, the “pattern” is a lesson:

% GlobalAtoms are essentially just Kernel/Native API
supported storage mechanisms.

Y Are there more?

% If so, they can probably be found anywhere there is
something abstracted to be accessed via a “descriptor”
from userland functions.

Y Places to start?
NTOSKRNL export “names” list in IDA,
MSUICHE’s MSDN (http://msdn.msuiche.net),
ReactOS, Third-Party Drivers
lonescu’s “Native NT Toolkit code”
Gary Nebbett's Native AP| Reference
Break on ObCreateObject() and see who dynamically creates objects.

Monday, October 4, 2010

http://msdn.msuiche.net/winxpsp3_x86/
http://msdn.msuiche.net/winxpsp3_x86/

The Hooks: Call Interceptions

“-my one's and my two's got your whole town shook;
You betta listen to your corner, and watch for the hook!”

--Cool Breeze/Goodie Mob/Outkast
“Watch For the Hook"”

Y Intended as a mechanism to assist the Broker/
Sandbox Policy Engine NOT an enforcement
mechanism itself (so they say).

% In Chromium developer parlance the act of calling into
the Broker via IPC mechanisms is called a “CrossCall”.

 All library hooks generally reroute to stubs that
ultimately perform CrossCalls to the Broker

% The code responsible for “interceptions” is
implemented in the Interception Manager

Monday, October 4, 2010

Broker
Interception
Manager
IPC Service Policy Engine Policy
L o/

IPC Client

7 # | Policy Engine

Client
l Interceptions

[.

IPC Client

__’ olicy Engine
.

Client
Interceptions .

-

Monday, October 4, 2010

ldentifying Hooks

¥ Finding them is easy manually, but SandKit has tools to
help you do it automated. “memdift” in SandKit will
compare the same region of memory in two separate
processes and log differences.

Windbg .writemem command and simple Python/Ruby/
whatever script can do this as well. Something like the
following (in both the sandbox and broker Windbg
sessions):

navi-two:sandbox research s7ephen$ cat dump memory in range.wds
lm #to find ranges of ntdll and kernel32

.writemem kernel32 broker.dmp 0x7c800000 0x7c8£6000

.writemem ntdll broker.dmp 0x7c900000 0x7c9af000
navi-two:sandbox research s7ephen$ D

Monday, October 4, 2010

Atter dlffmg natlve library dumps you'll

l OEALOGO]O], 4
From NTDLL: Files differ at byte: 0xd796

. Files differ at byte: 0xd797
ZWCreateFl|e() Files differ at byte: 0xd798 ZwQueryFullAttributesFile
. Files differ at byte: 0xd799
NtOPen F||e() Files differ at byte: 0xd79b

D
ZwOpen rocess() ***x* Files differ at byte: 0x7b0b8 _NLG Destination
/wQOpenProcessToken() #**** riles differ at byte: 0x7b0b9

D
ZWO Oenrro CeSSTO ke n EX() Command - Pid 192 - WinDbg:6.5.0003.7

--F] 7c900000 7c9af000 ntdll {pdb symbols)
NtO Pen read () 7c9c0000 74147000 SHELL32 (deferred)
72410000 72421000 USER32 (deferred)

/wO pe nThreadToken () Baseiddrenss® (07 0o o8 ab000

AllocationBase: 7900000
NtOpenTh readTokenEx() AllocationProtect: 00000080 PAGE_EXECUTE WRITECOPY
R R e con
. . ate!
ZwQueryAttrlbutesFHe() Protect : 00000004 PAGE_READWRITE
Type 01000000 MEM_INAGE

ZwQueryFullAttributesFile() 500, vprot 7es0arst
AllocationBase: 7c900000

NtSetlnformation File() 4llocationProtect: 00000080 PAGE_EXECUTE_WRITECOPY
RegionSize: 0006000
State: 00001000 MEM_COMMIT

many many More 00000020 PAGE EXECUTE_REAL

P g@ perm|§’§ib°n§“kiﬁda |mply R

Many other libraries are hooked as well.

Monday, October 4, 2010

Suspend Take Snapshot Rollback Settings

l ModLoad: 71ab0000 71ac?000
\ModLoad: 71aa0000 71aa8000
ModLoad: 64940000 64969000
1(£34 ffc):

 intdll!DbgBreakPoint :
17c90120e cc

Windows XP Professional

s \WINDOUS\systemSZ\USZ 32 d<A
C:N\WINDOUS\system32\WSZ2HELP .

C:\Documents and Settings\Ad
Break instruction exception - code 80000003 (f
|leax=7ffdc000 ebx=00000001 ecx=00000002 ed=x=00000003 e=s1=0
leip=7c90120e esp=00ebffcc ebp=00ebfffd iopl=0 nv

} c==001b ===0023 ds=0023 e=s=0023

f==0038 g==0000
3

Uﬂﬂy

1p=7c90120e esp=029dffcc ebp=029dfffd4 10pl=0

=001b s=s=0023 ds=0023 e=s=0023 f==0038 g==0000
tdll ! DbgBreakPoint :

90120e cc 1 3

Full Screen

:013)> |
= & chiome.exe

I R e

Disassembly - Pid 2776 - WinDbg:6.5.0003.7

Offset: ntdll!NtOpenFile Previous

7c90d56f 90

i ntdll!ZwOpenEventPair:
1 7c90d570 b873000000
7c90d575 bal003fe?f
7¢90d57a ££12
\?c90d5?c o2 =0

7'f'NtO nFlle

£30d585 ba68001500
90dS8a ffe2
90d58c c21800
12258£f 90

Hntdll! Zwopeorpletion:
|7c90d590 b875000000

gon dll_ 1n]((t.01 . Py 3JbUE C
Ulltualﬂlloc d Locatlon

|,---———

+y Start r'. sysinternals27se, .

r.i,.’ Process Explorer..,

eax, 0x73
ed=x, 0x7{f£e0300
dvord ptr [edx]

My~

O8N L

edx, 0:-:15006
dx

eax, 0x75

tN\windows \systemdZspyloade
Axe hBAOH
- N

2

7c90d56c 2000 ret
7c90d56f 90 nop
ntdll ' ZwOpenEventPair:
7c90d570 b873000000
7c90d575 bal003fe7f
7c90d57a

7c90d57¢

7c90d57f 9

eax, 073
edx, 0x7f£fe0300
dword ptr [ed=x]

mnow
mowv

call

nop
edx, 0x7ffe0300
dword ptr [ed=z

7c90dsu. nop
ntdll | ZwOpenlo ompac v oo

7c90d590 b875000000
7~QNACAE haNNNF=7F

eax, 0x75
aedw Ne?ff=N23I0N

g | ol B e LB T S| Lol |

To direct input to this virtual machine, click inside the window or press #-G

Monday, October 4, 2010

[Te7 CwINDOWSts.., | % New Tab - Googl...

ro er

Ln0, ColD

0:<local> Proc000:ad3 Thrd 013:6e8

87 pid 2776 - WinD. .. r@ Pid 3892 - WinD...

8:52 PM

' € 90EY

The Hooks: In the source.

Although the Chome Sandbox source (as a framework) is
BSD licensed and open as are all the policies and rules
used in the Chrome distribution.

It may not seem particularly evident when you look
through source because you will probably only see

references to Interception Manager in test code.
/home/chrome-svn/tarball/chromium/src/sandbox/src/interception_unittest.cc

172 InterceptionManager interceptions(target, true);

// Any pointer will do for a function pointer.

void* function = &interceptions;

interceptions.AddToUnloadModules (L"some01.d11");

// We don't care about the interceptor id.

interceptions.AddToPatchedFunctions(L"ntdll.d1l1l"”, "NtCreateFile",
INTERCEPTION SERVICE CALL, function,
OPEN_FILE ID);

181 interceptions.AddToPatchedFunctions(L"kernel32.d11l", "CreateFileEx",

182 INTERCEPTION EAT, function, OPEN FILE ID);

183 interceptions.AddToUnloadModules (L"some02.d11");

184 interceptions.AddToPatchedFunctions(L"kernel32.d11l", "SomeFileEx",
INTERCEPTION SMART SIDESTEP, function,
OPEN_FILE ID);

Monday, October 4, 2010

The Hook Catch22

% Google Chromium Team has long asserted that hooks
themselves are not to be relied upon a security
enforcement mechanism. This shows they “get it".

Hooks can be unhooked.

Y However one thing to note is the effectiveness of the

"VirtualProtect()/WriteProcessMemory() hook Catch 22"
which is:

Malicious code executing in the sandbox would have to use
GetCurrentProcess()/VirtualProtect()/WriteProcessMemory() to
“unhook”.

What if these functions are a
this might be a significant
deve

Monday, October 4, 2010

ready hooked? In my opinion,
nurdle to deter most exploit

opers.

The Hook Catch22

Y To circumvent the GetCurrentProcess()/VirtualProtect()/
WriteProcessMemory() catch 22 a malware author could
just use syscalls directly, and completely circumvent the
library hooks

+ FEATURE REQUEST? Why doesn’t Microsoft expose

functionality for Syscall restriction/filtering on per-
process bases? Other lesser sandbox technologies (like

those for *nixes and SandboxIE use this as the core)

* Win7/Vista already kinda has some close with the less known
EPROCESS.ProtectedProcess

% Does EPROCESS.ProtectedProcess prevent:
WriteProcessMemory(GetCurrentProcess()) ?

Monday, October 4, 2010

Finding Hooks Via Call Traces

% Although more annoying to do, you can find hooks using call tracing.

% | do my kernel call-tracing using custom tools or in Windbg:
bp /p <cid of target> kernel32!CreateFileW "du poi(@esp+4);.process;k;g"
Alternatively for Win7 targets you might have to: .process /I /r <cid of target> THEN
bp kernel32!CreateFileW "du poi(@esp+4);.process;k;g"
% If you are in user-space and want a “point and click” call-
tracer, | suggest the surprisingly unpopular but extremely

powerful: AutoDebugPro

=
@

BB Dgg BE x X § & O 4
| Trace (0] lines : Current ScrollPos = 0 | Source

B Monitor Filter

- ®I_ C:ADocuments and Settings‘\administrator\Local Settings\application D ata\Google\Chrome\&pplicationtchrome.exe - 2796 A | Sour
+ @I_ chrome.exe - (0x00400000 - 0x004D3000) M

- S ADVAPIZ2.dI - (0x77DD0000 - 0x77EEB000) o
A, vz (ot Checkboxes for functions
to filter on

£ A_SHAlnit - 0x0002B14D

£ A_SHaUpdate - 0200028141

£ [AbortSystemShutdownd, - 0x00064E 90
3 AbortSystemShutdowny - 0x0002D42B

Monday, October 4, 2010

Moving closer to kernel/user gap.

v As we tunnel down to observe the Native AP| hooks
put in place by the Broker we see that many of these
are the Zw* Nt*

% These are obviously the functions which are at the
"edge of the precipice” between userland and kernel,
one or two steps away from SysEnter/SysCall/INT 2e/
call gate/etc

% This is where things get interesting and is perfect
segue into how we can investigate Sandboxes from
up in the Kernel.

(Kernel space is so much more relaxing. Its”quieter”.)

Monday, October 4, 2010

Sandboxes from a Kernel-space
Perspective

Why Look at Sandboxes from Kernel?

% Perhaps investigating the relationship between
Userspace/Kernelspace will reveal new attack surface.

¥ It's so much “quieter” in the Kernel. It is a nice reprieve
from the hustle and bustle of User-space.

Y More control: Pause execution and the whole box
freezes. This means the Broker AND the Sandbox, no loss
of “sync”.

% Windbg Kernel Debugger (Kd) has commands we can't
use from User-space.

% Virtually everything on Windows is performed
oredominantl NT Obijects, all inspectable from Kd.

Monday, October 4, 2010

Write
v login
XWin 0 w‘;‘ b procedure
wow ¥
nel use 2 Security
\ Subsystem frueblue
“ \J '
Word /7 NTVDM
4 0s2 *
rm Subsystem
. POSIX il » - >
Subsystem Win32 S;bsyslem
user mode
kernel mode
: Sysiem Services
/0 Object Securily Process Local Virtual Graphics
Manager Manager = Reference | Manager = Procedure Memory | Subsystem
| Cache Mgr Manager Call Manager | Window
: Facility Manager
« | Filesystem Graphics
+ | Drivers Device
| Metwork Microkerel ertace
E orivers G'aonlcs
| Device Device
» | Drivers Hardware Abstraction Layer _drivers
(credit) Microsoft TechNet Hardware

Monday, October 4, 2010

Kernel Components (refresher!)

Object Manager (OB)

Security Reference Monitor (SE)
Process/Thread Management (PS)
Memory Manager (MM)

Cache Manager (CACHE)

Scheduler (KE)

/O Manager, PnP, power, GUI (1O)
Devices, FS Volumes, Net (DRIVERS)
_Lightweight Procedure Calls (LPC)
Hardware Abstraction Layer (HAL)
Executive Functions (EX)

Run-Time Library (RTL)
Registry/Consistent Configuration (CONFIG)

*
*
*
*
*
*
*
*
*
*
*
*
*

Monday, October 4, 2010

Kernel Components (refresher!)

% Object Manager (OB)
% Security Reference itor (SE)

/0 Manager For Sandboxing
\technologies, these

are mostly what we
care about.

*
*
*
*
*
*
*
*
*
*
*

Here's why OB/SE/IO matter most:

Object Types and Defining Subsystems

Deﬂnm ; Subsystem

Object Type

EventPair
Mutant
Semaphore

Represen

Dbject type object
Object namespace
Object namespace

ync fe]; 2 4 V L
Synchronization primitive
Synchronization primitive
Synchronization primitive

Windows StationLogin session

Desktop
Time
e File
loCompletion
Adapter
Controller
Device
Driver
Key
Port
Section
Process
Thread
Token
Profile

Monday, October 4, 2010

Windows desktop

Tracks open files

\J . Jit ¢
DMA resource
DMA controller
Logical or physical device
Device driver
Doorway to the Registry
Communications channel
Memory mapping
Active process
Active thread
Process security profile
Performance monitoring

Object Manager
Object Manage
ecutive
Executive
Executive
Executive
Win32
W|n32

I/O Manager

O Manager
/O Manager
/O Manager
/O Manager
I/O Manager
Configuration Manager
LPC Facility
Memory Manager
Process Manager
Process Manager
Process Manager
Kernel

The NT Object Manager (OB):

% Provides underlying NT namespace
% Unifies kernel data structure referencing
% Unifies user-mode referencing via handles/descriptors

% Central facility for security protection Provides device &
/O support

* Important Note: Objects are extensible. You can build
your own based on the primitives. Many kernel code
does just this dynamically.

credit: Dave Probert, Ph.D (Singapore 2006), Microsoft Corporation 2006

Monday, October 4, 2010

The Security Reference Monitor (SE):

Y Based on discretionary access controls
% Single module for access checks (e.g. SeAccessCheck())

Y Implements Security Descriptors, System and
Discretionary ACLs, Privileges, and Tokens

¥ Collaborates with Local Security Authority Service
(LSASS) to obtain authenticated credentials

% Provides auditing and fulfills other Common Criteria
requirements

credit: Dave Probert, Ph.D (Singapore 2006), Microsoft Corporation 2006

Monday, October 4, 2010

How OB and SE interact:

Security
Ref Monitor

Note:
A “Name” might be:

\\.\pipe\protected_storage Access checks
Name lookup

> Object

Manager

Returns refd ptr

L BE BN BN BN BN BN BN BN BN BE BN BN BN BN BN BN BN BN BN BN BN BN BN BN BN BN BN BN J
Data Objec
Refd ptr used until deref)

credit: Dave Probert, Ph.D (Singapore 2006), Microsoft Corporation 2006
© Microsoft Corporation 2006 15

Monday, October 4, 2010

Remember! Handles/Descriptors are just
userland abstractions!

user : kernel

Mapping
mechanism

Data
structure

credit: Dave Probert, Ph.D (Singapore 2006), Microsoft Corporation 2006
© Microsoft Corporation 2006

Handles and Descriptors are just Userland abstractions to
access Kernel structures.

The functions you pass the Handles and Descriptors into
(like fopen()) are userland “gateways” to the kernel

Monday, October 4, 2010

NT Objects (the object “primitives”)

Adapter File Semaphore

Callback loCompletion SymbolicLink

Controller Job Thread
DebugObject Key Timer

Desktop KeyedEvent Token

Device Mutant Type

Directory Port Waitable Port

Driver Process WindowsStation
Event Profile WMIGuid

EventPair Section

Monday, October 4, 2010

Listing/Investigating NT Objects

WinQObj (Syslnternals)
objdir.exe (DDK)

ntddk.h

Ob*() exports of ntoskrnl.exe
“Undocumented Windows

2000 Secrets” Chapter 7
(w2k_def.h)

dt nt!_object* (in Windbg
(kd))

lobject \ (in Windbg (kd))

Monday, October 4, 2010

*a WinObj - Sysinternals: www.sysinternals.com

File View Help
2]

=y

] ArcMame
NS
(_] Driver

+ [_] Device

+] Windows

+ (] Sessions
(1 RPC Control

+ [_] BaseMNamedObjects
(] KernelObijects
(] GLOBAL??

+__] FileSystem
&= | ObjectTypes
(] Security
(] Calback

(] KnownDlls

MName
ligh adapter
ligh Callback
ligh Controller
igh DebugObiject
igh Desktop
";’E Device
'ﬁﬁ Directory
ligh Driver
ighEvent
ighEventPair
ighFile
ligh Filter CommunicationPort
ighFilterConnectionPort
ligh IoCompletion
ligh 10b
ighKey
ighkeyedEvent
'ﬁ’: Mutant
ighport
ighProcess
igh Profile
figh section
ligh semaphore
ligh symbolicLink
igh Thread
ligh Timer
figh Token
igh Type

First things first...why go up here?

% Reasons for using kernel debugger to assist us with
investigating sandboxes:

. Sandboxes use many NT Objects that have helpful
Windbg commands that don’t work from userspace:
1. Jobs Objects for example! (!job)

2. LPC inspection (llpc)
3. better handle/descriptor visibility/tracking (thtrace)
. "System-Wide" breakpoints: Breaking on ntdll!

NtOpenkFile() will hit whenever any process on the system
calls it!

. There are also some other less popular benetfits to using
kernel debugger (will demonstrate these with Google
Chrome later :-)

Monday, October 4, 2010

Inspecting Securable Objects with

Kernel Debugaqger

Y !lprocess <cid> |
* .Sd see “Determining the ACL
of an Object” in the Windbg help

. for all the steps to obtaining a
* I h dain d | e <clI d > detailed security descriptor from

an object

¥ ljob Y lacl

Itoken Isid

*!tOkenﬁeldS *llpc

| b Side Note: bid you know you don’t need to use gflags.exe
* .0 JeCt to set pageheap/debugheaps? You can use Windbg'’s !gflag

Monday, October 4, 2010

Other useful commands

Y .tlist : This also lists processes but only by CID and
not process identifier.

¥ lprocess 0 O : List all cids/processes
Y .process
¥ .reload /user :Reload userspace symbols

Y .sympath symsrv*symsrv.dll*c:\\syms*http://
msdl.microsoft.com/download/symbols
* Autodownload of symbols you dont have... VERY USEFUL!

¥ Im u :list modules for userspace, needs a .process

Monday, October 4, 2010

http://msdl.microsoft.com/download/symbols
http://msdl.microsoft.com/download/symbols
http://msdl.microsoft.com/download/symbols
http://msdl.microsoft.com/download/symbols

A Note on Observing Hooks from

Lernel Debugger
¥ Important to remember: in the kernel only “one copy”
of libraries (like ntdll) ever get loaded.

* The “differences” between processes is all done via the
magic of Page Table Entries. You will probably not be
able to see installed library hooks if you don’t do the
following in Windbag:

* use the /p switch with the .process command to force the debugger to
update Page Table translation: .process /p <eprocess|cid>

% This is done so that when you view the virtual address
for NTDLL or Kernel32 or whatever, it correctly
references the physical page, which differ because of
the hooks.

% Note: you may also want to check out the Windbg .pagein

command. You might have to use this command as
another way to force Windbg to update PTE translation.

Monday, October 4, 2010

Observing Broker Behaviors

Y There are a number of functions critical to the
operation of Sandbox child processes that are

interesting and useful to observe the Broker calling.
Here are some suggestions:

Note: Most of these are “undocumented”.
Zw/NtDuplicateToken()
/w/NtCreateToken()
Z/w/NtSetInformationToken()
Zw/NtOpenProcess()
Zw/NtDuplicateObject()
DuplicateHandle()
/w/NtCreateProcess|()
Zw/NtSetSecurityObject()
NtQueryObiject(), NtSetSecurityObject(), NtQuerySecurityObject()

ExDupHandleTable()/ExDestroyHandleTable (process creation/destruction)
ExCreateHandle(), ExDestroyHandle()
user32!UserHandleGrantAccess()

Monday, October 4, 2010

Observing Sandbox Behaviors

Y Because the Sandbox is restricted we care less
about what he is doing, but there are a few
interesting things to watch for. Here are some
suggestions:

Note: Most of these are “undocumented”.

/wContinue(): the _NTCONTINUE function that is often hooked
by anti-debugging code (not that Chrome does it)

/wCreateFile()
/wWWriteFile()

Monday, October 4, 2010

A Neat thing about Kernel Debuggers

+ The kernel gets ALL exceptions first!

% Like virtually all Windows functionality, Usermode
debuggers rely heavily upon LPC messages.

% "Debugger” processes talk to CSRSS via LPC

% CSRSS receives all debug events for all processes from the
kernel and handles dispatching them debugger processes.

% When a Kernel debugger is attached, the Kernel never
passes these exceptions on to CSRSS’s waiting LPC
channel.

% The most important thing however is that the Kernel gets
all exceptions first, especially int 3, which is what Chrome
sandbox uses to taddle-tell back to the Broker :-)

¥ In Vista/Win7 this is different: see ZwCreateDebugObject()

Monday, October 4, 2010

Detecting Kernel Mode
Debuqggers from Userspace

% Once you know about how Kernel mode debuggers get
all exceptions first, the concept is simple:

Use RDTSC single-step detection technique with int3s
in-between to detect kernel debugger exception
handler timing.

% Furthermore, int3s fired at the “wrong time" break
things. See for yourself.

% If you dig a bit under the hood to understand the
process around ZwCreateDebugObject (XP+), how
CSRSS passes debug info, and stuff like
EPROCESS.DebugPort and \Windows\ApiPort you will
probably find better ways to detect Kernel debuggers
from userspace

Monday, October 4, 2010

Detecting Kernel Mode

Debuqggers from Userspace

et How it might look in C?

void start()({
timea = GetTickCount();

}i

void stop(){
timeb = GetTickCount();

How it might look In
DWORiixiZegztl:iI:ei)iimeb - timea; S AS M ?

printf("%d\n", timea); mov ecCXx, eax

printf("%d\n", timeb); :
time delta; int 3
bi rdtsc
int main(int argc, char* argv([]) { sub eax, ecXx
start();
__asm { //exception they have to j Cmp eax, 0x1000
L ja kernel debugger detected
stop():

(BeingDebugged()) {
MessageBox(NULL, "Don't be debugging me!?", "WTF!?", MB OK);
ExitProcess(0);
} {
(checktime() > 1){
MessageBox(NULL, "Hah! I can still see you are debugging me!", "WTF!2?", MB OK);
ExitProcess(0);

}

ExitProcess(0);

}

}:
Monday, October 4, 2010

If you fuzzed sandboxed processes and had
“success” you’ve probably seen this (I call it
“Chrome Mr. Yuck”):

Aw, Snap!
Something went wrong while displaying this webpage. To continue, press Reload or go to another page.

Learn more

but when you attach your user-space debugger....nothing.
That’s because the Broker catches sandbox exceptions
and breakpoints first!

Monday, October 4, 2010

Google being snide about Broker-
handled Sandbox excer

On the Chromium website, down in some documentation
Google mentions this:

Miscellaneous

e Application Verifier is a free tool from Microsoft. For the tool to run, you must disable the sandbox (--no-sandbox) and run all app-verified processes in a debugger.
This means that you must run the renderer and plugin processes in a debugger or they will fail in mysterious ways. Use any of the methods mentioned above to attach to
the renderer processes when they run.

This is no mystery at all when you realize that the Sandbox
(the debuggee) is coded to intentionally whine to the Broker
by throwing exceptions which the Broker (as the debugger)
then “handles”.

GOOGLE DOES NOT USE THE OS’'S CRASH
REPORTING MECHANISMS (like WER in Windows or

Crash Reporter in OSX). It uses it's own custom one
called BreakPad.

Pro-tip: If fuzzing Chrome, be sure to set your ZoneAlarm/LittleSnitch/whatever to disallow
Chrome outbound. Or better yet, disable the NIC entirely for that VM ;-)

Monday, October 4, 2010

Example of Remotely Triggered (client side)
erflow (handled)

Suspeéend

&) Kernel ‘com:port=\.\\com1 ,baud=115200" -
Edit View Debug Window Help

Fie

Ze

=

@

Take Snapshot

@

Rollback

Setungs

WinDbg:6.5.0003.7

Windows XP Professional

Unity

Full Screen

Logperss e b
vy v

| O] BRS80|RE0| = 15 A R

Virtual: [0x12ef 2c

' Display format: |Long Hex

O

;:Ji Previous l

Néi]

0012ef 2c
0012ef6d
0012efSc
0012efdd
0012£00c
0012£044
0012£07c
0012£0b4
0012f0ec
0012£124
0012£15c
0012£194
0012f1lcc
0012£204
0012£23c
0012£274
0012f2ac

02423881
0088c2b0
0012£010
0084%ec8
03801869
00400129
0012£0b0
00e71dal
00d2£f641
oooo00002
00000000
02420b69
00849%eb8
00121228
00000000
00803440
0lcd48dbé

ommanc

024fcadc
00000000
0012£004
0084%ecc
00cfhS541
03832659
00000001
03801869
0000000c
00000002
00000000
0012f1be
00849£€8
00849%eac
01£32487
00843000
0084c000

024fca74
00000000
02468150
0084%ec4
00edbeld
00400129
00e80%ae
0000000c
00000000
0012f1bc
0082a001
0084 %eac
00824400
00845000
00000000
00845000
0012£470

0012efd4
00849%ec8
024al1fcO
0012£000
00d0c265
00d8589d
00000000
00d074bd
0012f12c
0244ce98
00000001
00849%b8
0D1£3406¢
00849000
D1£34£a2
fEfEEEEEE
0203cS500

0088c2bl
0084%ecc
0084%ec4
0012£f00c
00cf6541
03801845
000002b8
00cfhS41
00d21862
00e70120
0082528
00000000
0012f1€£4
00824400
0012£290
00000000
0012£530

02468100
oocoo0001
0012£010
00000001
0012£078
0012£0b0
0380188%
00cfeS541
00000000
00d8S7£S
0244cfes
00000000
0012£534
0082504c
01£44043
00000000
0012f4e0

Dlf2fcad
00000000
00cf6541
00d2018b
0012£058
00e80c38
00000000
00d0eg01
00000000
00cf6541
0012f1bc
0012£1bb
026deBSd
01f34c08
00748400
0080bS00
00000000

00000000
0088c2b0
01£8fb08
00000002
00000001
03801869
00cf6541
00400129
00000000
00000000
02513eec
00748400
00000029
00000000
0012£270
0012f2b4
0085000

00849ed0
02468100
00000000
0012£010
00eB81061
0000000a
00400129
00d857£S
00000000
00000000
00849%eac
0012£534
02725f1c
00849%eac
0012£530
0202c439
00001000

00849ed0
00849%ec4
00849%¢ec4
00000002
000000c8
03801875
00400129
03801e21
00d21828
00849%¢ac
00849eb8
00000000
00849008
0012£534
0012f2fc
0012f2a8
00000000

0012e£88
02468373
00849ff8
00000000
000002ba
00cf6541
00400129
0012f0f8
00000000
0012f1bc
00000000
00000000
0084900c
00849000
0082504c
0012£530
00000000

01f8fcl?
0012efbd
0012£001
0012eff0
038012bd
00cf6541
00d8589d
00d2f6b%
00000000
0012fl1fc
00000000
00824400
00000000
00849004
0012£400
0085=000
00000000

00849%ecc
0012=fd4
0012£010
0012£058
00000000
00d0e801
03801d£d
00cf6541
00cf6541
00849ebe
0012f£1bb
01£3£833
0012f24c
00000000
00001000
0012f£4b4
00000000

000000%e
00000002
oooooo02
00=81395
00cE6541
0012£104
0012£0dc
00d8S57£S
00000000
00849%ecO
00cE6541
00000001
D1£33f6f
00400155
00000000
0012£2f0
01cd43001

| g— .
chrome 130000 1ChromeMain
001b: -

kd> k

ChildEBP RetAddr

WARNING: Stack unwind information not available. Followin
0012ef54 & chrome_1c30000!ChromeMain+

0012e£88 02468373 chrome_1c30000!ChraneMain+

0084%ec4 00400129 chrome_1c30000

B O B - u

(first chance

'[kd> |

Thed 000:0

[@@ suwm

Ln0,Col0 Sys0:KdSrv:S Proc 000:0

’: start

Monday, October 4, 2010

" 8? Debugging Toals for ...

&7 Kernel ‘com:port=1}.\...

Tools & Techniques:

Introducing The SandKit

Ne===

The SandKit

A Collection of tools to assist with the investigation
and testing of Sandboxes.

(Also intended to give ideas about tools you might want to write yourself.)

Code Injection Techniques (vanilla dll injection, reflective dll injection, kernel-
to-userspace dll injection?)

CopyMem
MemDift

DumpMem
HookFix
Sa/Shell

BinCompare

DumpToken Redux

TokenBrute/HandleBrute

Sandbox_Poc (Google Chrome source “sub-project”)

. Download the Chrome source and find it in:
e /home/chrome-svn/tarball/chromium/src/sandbox/sandbox_poc/
. It comes with visual studio solution and everything!

Monday, October 4, 2010

Code Injection

Sandkit implements “Vanilla DLL injection” to inject a

DLL into a target process.

e This injection technique is the VERY common: OpenProcess()/
VirtualAllocEx()/CreateRemoteThread()->LoadLibraryA() technique.

% Reflective DLL injection

* for "harder” injection targets such as restricted processes or heavily
hooked executables.

* some minimal unhooking would still necessary
» Sandkit may eventually include this.

Kernel-to-userspace Injection?

Use documented APC Injection/Thread Notifier technique to have
kernel injected code run in a usermode Thread's context

Combine this with basic Reflective DLL injection technique

MANY caveats: accounting for PTE changes when injected code
executes (hooks still in place), modifying PTE for usermode context,

etc.

Monday, October 4, 2010

Copy memory from one process into another. This
tool is the basis for the HookFix application

-..000000 Welcome to 000o0o0o0...
SandKit
« « «000000000000000000000000. ..

SandKit>> ps chrome

ids of processes with names matching ’chrome’:
1864 : chrome.exe
2376 : chrome.exe
SandKit>> copymem 2376 Ox7c885000 5 1864 Bx/c885000
Attached to PID: 2376

Attached to PID: 1864

ANBBBBBA: 54 A1

AnRRABA: DE B8 EA B8 B4
PID 1864 at Bx7c88580808

ANARRABA: 54 A1 56 B1 B4

Detached from PID: 2376
Detached from PID: 1864
Detached from PID: 1864
SandKit>>

Monday, October 4, 2010

MemDiff

Take a look into memory in two different processes and compare it.
Log where the two regions of memory begin to differ.

Simple but time-saving tool for the detection of hooks
SandKit>> help

--.000000 SandKit Command 000oco0o0...
(for help, type: help {command>>

EQOF dumpmem help hook_fix memdiff pythonshell sa7shell
opy_mem exit hist ingectdll ps readmem

SandKit>> help memdiff

Compare two regions of memory in two different processes
and report where these regions of memory differ.

Usage:
mendiff <{pid-one> {address> <length in bytes> <{pid-two> <{address>

SandKit>> ps chrome
Pids of processes with names matching ’chrome’ :
2288 : chrome.exe
1848 : chrome.exe
SandKit>> memdiff 2288 0Ox7c885000 20 1840 Ox7c885040
Attached to PID: 2288
Attached to PID: 1840
Sizes of files are the same (280 hytes), a good start?
Files differ at byte: Ox0
Files differ at byte: BOx1
Files differ at bhyte: Bx2
Files differ at bhyte: B8x3
SandKit>>

Monday, October 4, 2010

DumpMem

% Similar to the .writemem command in Windbg. Just

write raw memory from a process to a file

SandKit>> memdiff 2288 Bx7c885008 188 c:\chrome_kernel32_memdump.dmp chrome_kernel32 memdump Prope

Incorrect number of arguments.

SandKit>> help dumpmem

Read memory from a process and write it to a file.

B
Usage: : _j
dumpmem <{pid> <address?> <length in bytes> {file to dump to> 2

SandKit>> ps chrome
Pids of processes with names matching ’chrome’:

2288 : chrome.exe Opens with:

1848 : chrome.exe
SandKit>> memdump 2288 0Ox7c88560008 1080 c:\chrome_kernel32_memdump.dmp

Location:
Bad command or» filename.’
BandKit>> dumpmem 2288 Bx7c885888 188 c:\chrome_kernel32_memdump.dmp Size:
Attached to PID: 2288
lrote 180 bytes to file ’c:N\chrome_kernel32_memdump.dmp’.
SandKit>>

Monday, October 4, 2010

Type of file:

Size on disk:

General Summary

chrome_kernel32_memdu

Crash Dump File

S Microsoft Visual C++ &

i
100 bytes (100 bytes)

4,00 KB {4,096 bytes)

WriteMem|[— =

- « .000000000000000000000000 . . .

SandKit>> ps notepad

o . ids of processes with names matching ’notepad’:

Write a string or (IRRIEITRe v moter

character array

direCtIy to the Urite a character array to a location in a process’s memory.

The SandKit "ps" command will list pids/processes.
The SandKit “"readmem' command can be used to display the memory regi
memory of a

process.

before and after.

Usage:
writemem <{pid> <{address> <string to write to memory>

Example:

writemem 2764 Bx7c?2800008 '“"\x?20\x920\x?20\x?8"
or

writemem 2764 Ox7c?92000808 “"This is a test."

Note: Please do "all or nothing"'. In other words, please
don’t mix and match excaped bytes with non—escaped
bytes in the string like: "\ x?BABCDEF\x28"

SandKit>> writemem 3768 Bx7c8850800 "“"\x920\x?20\x?280\x?28"
Attached to PID: 3760

ABRRRBA: 90 920 920 90

Detached from PID: 3760
SandKit>>

Monday, October 4, 2010

HookFix

 HookFix just uses CopyMem to fix the specific
hooks put in placed into the Sandbox by the

Broker.

% There is no magic here, we just:

Borrow the .text region of a “normal” process with our module
loaded (in this case the Broker).

L ocate the differences between the “normal” and modified .text
regions within the Sandbox

Save the Sandbox modules .text region first (for restoration).
Overwrite the Sandbox module’s .text region

Note: We have to just be careful to not to borrow stuff outside of .text,
because there
are “process specific” variables in the address space of dlls like ntdll.
Such as:
ntdll! security cookie

Monday, October 4, 2010

Sa7Shell

After using the Sandkit DLL injector, you get a

console window!

798 loader working on_wfloadLibraryAC) is @ : Bx7c801d7hb
pythonloaderdll § aunching SaZoriShell interactive from remote process

thonloadtest
erots console :\pythonloaderdll)

rubyloadtest
568 test.dll
test_dll
248 testloader.exe
»258 hbytes

H 1 < Y-v-

1%
>

If you can read this, a Console has been successfully allocated?

esting STDIN: type some text then hit <ENTER>
esting

ou entered: "testing
"

Py_Initialized() is (@ 1e@8f0hH
Py_Finalize() is (@ 1e08e860
PyRun_InteractiveLoop() is (@ 1e88f340
PyRun_SimpleString() is (@ 1e08f2d0

umping into the python dll.

his is a test print{(> from inside python.

Attempting to enter interactive mode of python...

a?>>>help

ype help(> for interactive help, or help{object> for help about object.
a?>>>dir

[’_builtins__’', ’_doc__', ’'_name__"’.,
a?’>>>

Monday, October 4, 2010

’

sys’]

Sa7Shell

Messing around inside the process (notepad.exe)
like Message Box popups!

- - .

If you can read this, a Console has been successfu’

SN YEA!

esting STDIN: type some text then hit <ENTER>
esting
ou entered: "testing

y_Initialize() is (@ 1eB8£f0hH

y_Finalize{() is (@ 1e0B8e860

yRun_InteractivelLoop() is (@ 1e#8f340

yRun_SimpleString(d is (@ 1eB8f2d0O

umping into the python dll.

I just PyRun_SimplyString(ded a string that ’touch’ed c:\sa?7.txt?
check that it is there.

est

>>> import ctypes

?))Bgtypes.windll.user32.NessageBoxﬂ(B, 'HELLO from INSIDE NOTEPAD?’ ., '’

Monday, October 4, 2010

Sa7Shell: How does it work?

% Inject the full Python interpreter into a target

process, and mess around with it internally!

* This may sound trivial to do with vanilla DLL injection and it (for the
most part is).

* However you have to handle special cases like: If your injected DLL
does printf()s, where does STDOUT go in a GUI app?

* Answer: AllocateConsole() and then my “handle shenanigans”

87 //0k, this is a lame trick but it seems to work! From testing, it looks like

B8 //GetConsoleTitle() is a cheap way to detect whether an app even has a

BS //Console created, it also seems to adequately test whether an app even has

90 //console capabilities. I tested this by injecting into a bunch of different apps
91 //and it seems to be reliable.

92 thang = (LPTSTR)GlobalAlloc(GMEM ZEROINIT, 2000);

93 if (GetConsoleTitle(thang,1999) == 0) //Console window does not exist

94 //so we have to create one.

95 MessageBox(NULL, "No Console Window exists. Creating one.”, "!", MB OK);
. else
7 MessageBox(NULL, pName, "A Console already exists. ", MB OK);

99 if (!AllocConsole())({

100 MessageBox(NULL, "Can not AllocConsole()!", "!", MB OK);
101 // return TRUE;

102 } else {

103 MessageBox(NULL, "AllocConsole() successful!”, "!", MB OK);
104 SetConsoleTitle("Sa7oriShell running in yer processeS...);

105 }

Monday, October 4, 2010

Sa7Shell: Handle Shenanigans

114 1StdHandle = (long)GetStdHandle(STD OUTPUT HANDLE) ;

] if (lstdHandle == (long)INVALID HANDLE VALUE)

116 MessageBox(NULL, "Could not get STD OUTPUT HANDLE", "!", MB OK);
117 //The next line causes process to exit with no exceptions when injected
//into remote process.

+
’
N n

L)

119 hConHandle = open osfhandle(lStdHandle, O TEXT);// O TEXT defined in

120 //#include <fcntl.h> and open osfhandle in io.h
121 1f (hConHandle == -1)

122 MessageBox (NULL, "Could not open STD INPUT HANDLE", "!", MB OK);

123 fp = fdopen(hConHandle, "w");

124 *stdout = *fp;

setvbuf(stdout, NULL, IONBF, 0);

}
r
oy DN

127 // redirect unbuffered STDIN to the console

128 1StdHandle = (long)GetStdHandle(STD INPUT HANDLE);

129 1f (1lStdHandle == (long)INVALID HANDLE VALUE)

130 MessageBox (NULL, "Could not get STD INPUT HANDLE", "!", MB OK);
131 hConHandle = open osfhandle(lStdHandle, O TEXT);

132 1f (hConHandle == -1)

133 MessageBox(NULL, "Could not open STD INPUT HANDLE", "!", MB OK);

134 fp = _fdopen(hConHandle, “r");
*stdin = *fp;
136 setvbuf(stdin, NULL, IONBF, 0);

!
!
N n

9 .

// redirect unbuffered STDERR to the console
139 1StdHandle = (long)GetStdHandle(STD ERROR HANDLE) ;
140 if (lstdHandle == (long)INVALID HANDLE VALUE)
MessageBox(NULL, "Could not get STD ERROR HANDLE", "!", MB OK);
hConHandle = open_osfhandle(lStdHandle, O TEXT);
1f (hConHandle == -1)
144 MessageBox(NULL, "Could not open STD ERROR HANDLE", "!", MB OK);
] fp = fdopen(hConHandle, "w");
146 *stderr = *fp;

’
W N

’
N N

147 setvbuf(stderr, NULL, IONBF, 0);
Monday, October 4, 2010

PythonShell command in Sandkit
C |rec.:f;' y into a python shell from Sandkit to fiddle:

[jﬂ - |00 X

f-\data\CHECKOUTS\glthub\Sandklt>c N\Python24\python.exe SandKit.py

«--.000000 Uelcome to 000000...
SandKit
. = «000000000000000000000000. . .

SandKit>> help pythonshell

Use this to drop BACK to an interactive python shell.
This can be used to then enter python code or import python
modules as you would with the normal python interactive shell.

SandKit>> pythonshell

»#3% llelcome to SandKit Interactive Python Console 6%
Break out with CTRL-Z.

>>> import bincompare as bc

>>2> import litedhg

>>> litedbg.hexdump{("Booyah Grandma?t'>
IBRABAA: 42 6F 6F 792 61 68 20 47 72 61 6E 64 6D 61 21 iBooyah Grandma? |

>>> bc .compare("Booyah Grandma?t!', "BooYah Grandmat?", @)
Sizes of files differ by 1 bhytes
Files differ at bhyte: 0x3

>>> *Z
SandKit>> help

-..000000 SandKit Command 000oo0o0...
(for help, type: help <command>)>

hook_fix memdiff pythonshell sa7shell
injectdll ps readmem

dumpmem help
opy_mem exit hist

SandKit>>

Monday, October 4, 2010

BinCompare (stand-alone)

% A standalone tool that does the same thing that memdiff
does but specifically for files instead of just memory.

% One of those stupidly simple things that is massively useful.

navi-two:sandbox research s7ephen$./bincompare.py --help

BinCompare
Compare two files starting at the first byte.

./bincompare.py <filel> <file2> tolerance

tolerance: the number of first "differences” to ignore.
if 0, dont stop until end of file.

navi-two:sandbox research s7ephen$ cat dump memory in_ range.wds
lm #to find ranges of ntdll and kernel32

.writemem kernel32 broker.dmp 0x7c800000 0x7c8£6000

.writemem ntdll broker.dmp 0x7c900000 0x7c9af000

navi-two:sandbox research s7ephen$./bincompare.py kernel32 broker.dmp kernel32 sandbox.dmp
==> Sizes of files are the same (1007616 bytes), a good start!
***xxx Files differ at byte: 0x85000

**xx* Files differ at byte: 0x85001

****x*x Files differ at byte: 0x85002

**xxx Files differ at byte: 0x85003

**xx* Files differ at byte: 0x85024

**xx*x* Files dj or at bvte: OxB5048

Monday, October 4, 2010

DUMPING Process primary token
This is a restricted token
Token type: vrimarv

Token ID:

Authentication ID:

DumpToken Redux

J J Token’s owner: STEPHEN-DD45233\Administrator <
A DII d and .h d Token’s source: User32 (Bx12dh3>
. Token’s user: STEPHEN-DD45233\Administrator dus
Token’s primary group: STEPHEN-DD45233\None (g3
version Of Matt Default DACL (84 bytes):

Conover’'s DumpToken Al

. o 0 Applies to: NT AUTHORITYN\RESTRICTED <{unknown:
tOOI Wlth addltlonal ACE inherited by: not inheritable

. Access permission mask = Bx188000000
native API helpers Aocess mode: grant access
Such as Applies to: STEPHEN-DD45233\Administrator <ur

ACE 1:
ACE inheritgd by: not inheritable
NtQueryObjeCt Access permission mask Bx1 80080808080
ObjectTypelnformation

Access mode: grant access
ACE 2:

Applies to: NT AUTHORITY\SYSTEM <{unknown>
ACE inherited by: not inheritable

Access permission mask = Bx18000000
Access mode: grant access

Token’s privileges (1 total):

? SeChangeNotifyPrivilege (Bx17> = [enabled by
The .h and .dll make it s siwitter otrtis
o o [B] BUILTIN\Users <(alias>
eaSIly I‘eusable N your [B] Group is: [enabled by defaultl]l [mandator:

[1] \Evervyone {(well-known group>

in.eCtable COde, [1] Group is: [enabled by default] [mandator:
j [2]1 NT AUTHORITY\RESTRICTED <(well—-known grouw)

[2] Group is: [enabled by defaultl] [mandator:

This screenshot is from code that has been injected into an

app using Sandbox PoC from Google Chrome.

TokenBrute/HandleBrute: A Token/

HJandle Sniper
Y Inspired by a part of Cesar Cerrudo’s (MS04-044)
PoC

% a DllI'd and .h'd tool that “snipes” or “steals” tokens

granted into a process by brute forcing token
handles

Not magic. surprisingly simple actually. Iterates 0 to

MAX_HANDLES (10,000 on XP) in separate thread.

% Also uses DumpToken Redux to display info if token
is found.

success getting Thread handle...

Starting Token handle search...

Found A TOKEN that let us SetThreatToken{> on it?

Token was at handle: This i1s a unrestricted token
Token type: impersonation

Impersonation level: identification

Token ID:

Authentication 1D:

Monday, October 4, 2010

Where do | get all this stuft?

How can | follow up after this talk?

Where to get it?

¥ Sandkit and this presentation is here:

http://s7ephen.github.com/
SandKit

Y Get these slides there.

% Follow on Github for updates. (As | package/sanitize
my private tools for public release | will be adding
them to the SandKit project.)

http://s7ephen.github.com/SandKit
http://s7ephen.github.com/SandKit
http://s7ephen.github.com/SandKit
http://s7ephen.github.com/SandKit

In a nutshell:

For Bug Hunters:
Things to look into.

For Sandbox Developers:
Things to look out for.

Notes for Sandbox Developers

% Auditing sandboxes is entirely a “configuration” audit
game.

Y Applications written without sandboxing in mind have
the worst trouble shoe-horning into a sandbox

% Exhaustively check everything from the inside of the
Sandbox out. Try to make these test cases integral parts
of your build/release process.

 Don't “cheat” and pass tokens/handles/etc into the
sandbox! Even for a “quick moment”.

 Merely having the sandbox doesn’t secure you. You
must should how to configure it (build PolicyFilters,
install your own Intercepts even!)

Monday, October 4, 2010

Notes for Sandbox Pen-testers/

% There are really two audits: Audit of the “Sandbox”

itself and Audit of the “Sandbox implementation”

* “Sandbox” bugs will be where the Sandbox meets the OS/Kernel or the
IPC channels back into the “Broker”. These are harder and higher
value ;-)

* “Sandbox implementation” bugs will be where the Sandbox meets the
application’s requirements. These are specitic to the app.

% Applications written without sandboxing from the
ground up will have difficulty shoe-horning into a

sandbox

* The larger the application, the higher probability something (a legacy
library, thread, etc) will require lax token restrictions and SID filters.

% If you have code execution inside the sandbox, don’t
be afraid to have your code “wait patiently” for the
proper execution environment.

Monday, October 4, 2010

Do you need any work like this?

Software Reverse Engineering?
¥ Penetration Testing?

% Source Code Auditing?

% Security Architecture Analysis?
% Embedded System Security?

¥ Security Consultation?

% Cryptography Implementations?
% Blackbox auditing of software/hardware?
 Whitebox auditing of software/hardware?

* Web application penetration testing?
Matasano does all of this!

Contact Me for more Info!
stephen@matasano.com

Monday, October 4, 2010

mailto:rfp@matasano.com
mailto:rfp@matasano.com
mailto:rfp@matasano.com
mailto:rfp@matasano.com
mailto:rfp@matasano.com
mailto:rfp@matasano.com

Special Thanks and Contact Info

SPECIAL THANKS

Stephen C. Lawler
Mathieu “"Sandwich” Suiche
Stephania Vu

matasano
S ECUWRITY

THANKS FOR Listening!
| hope this is helpful.

stephen@sa/ori.org
Twitter: s7ephen

mailto:stephen@sa7ori.org
mailto:stephen@sa7ori.org

