
 



 
 



 Motivation

 Flash Attack Surface

 Flash Victims

 Flash Security Options

 Introduction of Blitzableiter

 

 Flash Internals

 Blitzableiter Internals

 Adobe Virtual Machine 1

 AVM1 Code Analysis

 Enforcement of
Functionality



 Results from a project initiated in late 2008 by the German Federal Office
for Information Security (Bundesamt für Sicherheit in der
Informationstechnik) showed Adobe Flash to be the weakest Rich Internet
Application technology

 Adobe Flash runtime unfixable (at least for a third party)

 Traditional detection mechanisms (AV/IDS) #fail

 The constant surfacing of new attacks against Flash requires a defense
approach that doesn’t depend on attack signatures

 We didn’t want to build yet another AV

 The goal still is to be done with it at some point in time, once and for all.





 Flash files (SWF) is a container format for:
 Vector graphics data (shapes, morphing, gradients)

 Pixel graphics formats (various JPEG, lossless bitmaps)

 Fonts and text

 Sound data (ADPCM, MP3, Nellymoser, Speex)

 Video data (H.263, Screen Video, Screen Video V2, On2 Truemotion VP6)

 Virtual machine byte code for the Adobe Virtual Machines (AVM)

 All data structures from file format version 3 until the current version 10 are
still supported

 The parser is completely written in unmanaged languages (C/C++)





 End user’s Flash Player can be triggered by any web page

 Commonly exploiting parser vulnerabilities (e.g. CVE-2007-0071*, CVE-
2010-2174), yielding direct code execution within the victim’s browser
process

 DNS rebinding attacks

 CSRF-style attacks including additional HTTP headers (e.g. UPNP)

 Exploit toolkits with Flash frontend: Determining exact OS and browser
versions, then downloading the appropriate exploit.

 97% of all web browsers report Flash installed



 



 The vast majority of exploits use intentionally malformed Flash files to
trigger a vulnerability

 End users need a verification or enforcement mechanism to ensure
Flash files are well-formed

 Technically, a property the Flash Player must ensure, but that’s exactly
where the problem is

 Preferably integrated into web browser or proxy server

 End users require said mechanism to perform well, i.e. not taking too
long or requiring too many resources





 Advertisement Networks are forced to accept pre-compiled
Flash content from Ad-Agencies as banner material
 Submitted content is manually inspected (if at all)

 No way to verify or enforce contractual requirements

 Flash byte code sometimes changes behavior after the banner was
accepted: It pulls trigger or additional code from remote server.

 Malicious advertisements have hit major news sites
 NYTimes.com, Handelsblatt.de, Zeit.de, Heise.de, etc.





 Ensuring the Flash file is well-formed and does not carry an exploit is
only partially sufficient for web site operators
 It helps, however, to protect the review people from Flash exploits

 Desired is the ability to define rules mapping contractual requirements
 E.g.: a banner advertisement can only forward the user’s browser to the

previously agreed campaign URL

 E.g.: a social network site widget is not allowed to load additional content
from a third party server

 Computational expense is of less concern, thoroughness is
 Processing happens upon submission of the content, on the server side





(this slide is intentionally left blank)





 Very limited settings within the Flash Player configuration page, using
an actual Flash file

 Camera and microphone access, local storage limits, hardware video
acceleration, “older security system”, DRM licenses

 Much more useful settings can only be made in mms.cfg, a local user
specific configuration
 AutoUpdateDisable, AllowUserLocalTrust, LocalFileLegacyAction,

LegacyDomainMatching, ThirdPartyStorage, FileDownloadDisable,
FileUploadDisable

 There is no proof of origin for Flash files (i.e. no digital signatures)





 Flash malware is not very well detected by anti-virus software

 AV software epically fails when the malware is uncompressed

Sample Detection Detection
(uncompressed)

Simple generic downloader 18/41 (43.91%) 16/39 (41.03%)
Gnida.A 29/41 (70.73%) 8/40 (20.00%)
SWF_TrojanDownloader.Small.DJ 21/39 (53.85%) 11/41 (26.83%)

 



 

 Straight command-line filter program

 “Blitzableiter” is the German term for lightning rod, since it turns dangerous
lightning into a harmless flash

 Implemented in fully managed C#, targeting the .NET 2.0 runtime

 Binary compatible with the Microsoft CLR as well as Mono 1.2

 Receives a potentially malicious Flash file (SWF) as input

 Grossly malformed files are rejected

 Produces a (hopefully) non-malicious Flash file as output

 Well-formed input files produce functionally equivalent output files



 

 Giorgio Maone introduced support for external filters in his popular
NoScript add-on for Mozilla Firefox
 MIME-Type based filtering using external programs

 Required some serious design and code changes to allow for processing in
background threads

 Current versions (1.9.9.x and above) already support external filters,
development versions (2.0rc2 and above) provide additional information to the
filter (origins of page and content)

 We would like to thank Giorgio very much for his support!
 His extraordinary willingness to cooperate, responsiveness, speed and quality

of implementation should be an example for many others.



 





 Web Site integration as post-processing step for upload
functionality is trivial

 Simply start Blitzableiter with the uploaded file as input

 If OS return value is 0, move the output to the intended destination

 If OS return value is < 0, present upload user with log output

 A Blitzableiter SOAP API is under consideration / construction





 This project is open source, so you can apply something like
Kerckhoffs’ Principle and verify its protection value yourself

 No yellow box solution that magically protects you

 We would love to see more integration in other software that
must deal with Flash files

 Bug reports are also very welcome







… what can possibly go wrong?





 Flash files (also called movies) follow the SWF (apparently
pronounced “swiff”) file format specification
 Version 3 to Version 10 are specified

 SWF files can be compressed using zlib methods
 Type-Length-Value structure

 The elements are called “Tags”
 The element ordering determines (partially) the rendering
 63 Tag types are documented for Version 10

 Data structures are heavily version dependent





 Control Tags manage general aspects of the file
 SetBackgroundColor, FrameLabel, Protect, End, EnableDebugger,

EnableDebugger2, FileAttributes, Metadata, …

 Display List Tags define and show graphic elements
 PlaceObject, PlaceObject2, PlaceObject3, RemoveObject, RemoveObject2,

ShowFrame, …

 Bitmap Tags hold bitmap graphics data
 DefineBits, DefineBitsJPEG2, DefineBitsJPEG3, DefineBitsLossless, …

 Buttons are special graphic objects that allow interaction (programming)
 DefineButton, DefineButton2, DefineButtonCxform, DefineButtonSound





 Every Tag type has its own data
structures, often deeply nested
ones

 Many data structures are
composed of lists of sub-
structures, great places for
integer overflows and
signedness issues

 The Tag to the right is what
caused CVE-2007-0071 by
using a negative SceneCount
and a missing allocation return
value check in Flash Player






1. Safely parse the complete SWF file

 Strictly verify all data structures against their specified properties

2. Discard the original file

3. Verify inter-Tag consistency and AVM byte code

 Potentially adjust the AVM byte code

4. Create a new, “normalized” SWF file for the final consumer
(e.g. the Flash Player)





 The Blitzableiter parser is completely managed code
 Out-of-bounds conditions and integer overflows are caught by the runtime and cause an

exception to be raised

 All TLV-style data structures are handled in individual memory streams, thus only
offering as much data as declared in the TLV header
 Trailing data is therefore discarded before parsing

 Parser modules ensure that all content of the TLV container is used

 The parser only accepts well-documented SWF data structures
 To provide the desired security level, this approach requires to parse every known data

structure within the SWF specification

 The parser also verifies version dependencies of data structures









Adobe Virtual Machines

 The Flash Player contains two virtual machines
 AVM1 is a historically grown, weakly typed stack machine with

support for object oriented code
 AVM1 is programmed in ActionScript 1 or ActionScript 2
 Something around 80% of the Flash files out there are AVM1 code,

including YouTube, YouPorn, etc.

 AVM2 is an ECMA-262 (JavaScript) stack machine with a couple of
modifications to increase strangeness
 AVM2 is programmed in ActionScript 3
 The Flash developer community struggles to understand OOP



The History of AVM1

 First scripting capability appears in SWF Version 3
 Something like a very simple click event handler

 SWF Version 4 introduces the AVM
 Turing complete stack machine with variables, branches and sub-routine

calls
 All values on the stack are strings, conversion happens as needed

 SWF 5 introduces typed variables on the stack
 Addition of a constant pool to allow fast value access
 Introduction of objects with methods



The History of AVM1

 SWF 6 fixes SWF 5
 New Tag type allows initialization code to be executed early
 Checking of the type of an object instance is added
 Type strict comparisons are added

 SWF 7 brings more OOP
 New function definition byte code
 Object Inheritance, extension and test for extension (implements)
 Exception generation and handling (Try/Catch/Finally)
 Explicit type casting



The History of AVM1

 SWF 8 never happened

 SWF 9 already brings the AVM2 into the format
 They call the byte code “ABC”

 SWF 10 is the currently specified standard

Keep in mind that all this is still supported!



AVM1 Code Locations in a Flash File

 A Flash file can contain AVM1 code in 5 different types of
locations
 DoAction Tag contains straight AVM1 code

 DoInitAction Tag contains AVM1 code for initialization

 DefineButton2 Tag contains ButtonRecord2 structure that can carry
conditional ButtonCondActions, which are AVM1 code

 PlaceObject2 and PlaceObject3 Tags can contain ClipActions whose
ClipActionRecords may contain AVM1 code

 Many tools, including security tools, only handle DoAction



AVM1 Code Properties

 AVM1 byte code is a variable length instruction set
 1-Byte instructions
 n-Byte instructions with 16 Bit length field

 Branch targets are signed 16 Bit byte offsets into the current code block
 Function declarations are performed using one of two byte codes inline

with the other code
 Function declarations can be nested
 Functions may be executed inline or when called

 Try/Catch/Finally blocks are defined by byte code similar to functions



Design Weaknesses in AVM1

 The byte offset in branch instructions allows:
 Jumps into the middle of other instructions
 Jumps outside of the code block (e.g. into image data)

 The signed 16 Bit branch offset prevents large basic blocks
 The Adobe Flash Compiler emits illegal code for large IF statements

 Instruction length field allows hiding of additional data
 Length field is parsed even for instructions with defined argument sizes

 Argument arrays contain their own length fields after the instruction
length field



Design Weaknesses in AVM1

 The order of code execution appears to be non-deterministic
 Depends on the Tag order and type

 Depends on references to other Flash files

 Depends on the conditions set to execute

 Depends on the visibility of the object (z-axis depth)



AVM1 Code Verification performed by Blitzableiter

 Is the instruction legal within the declared SWF Version?
 Does the instruction have exactly the number of arguments

specified?
 Is the declared instruction length correct and completely used?
 Does the code flow remain within the code block?
 Do all branches, try/catch/finally and all function declaration target

addresses point to the beginning of an instruction?
 This is ensured using linear disassembly instead of code flow disassembly

 Do all instructions belong to one and only one function?



Countering Functional Attacks

 If done correctly and completely, the format normalization so
far leaves you with a representation of a nice and tidy SWF
file that you completely understand.

 Static analysis will provably not be able to determine what any
given code is actually doing.

 Emulation will cause a state discrepancy between your
emulation and the Flash player’s interpretation of the same
code.



Patching the Point of Execution

 In runtime analysis, you verify the arguments to the final API
call before the call is made.

 We are not part of the show when execution actually
happens.

 But we can introduce AVM1 code before the final API call that
inspects and verifies the arguments for us when executed.



Example: ActionGetURL2

 ActionGetURL2 is the most widely used action to forward
browsers to potentially dangerous targets

 When we handle the Flash file, we know the origin of it

 We introduce a Same Origin Test before the actual
ActionGetURL2 instruction is executed



Determining What Method Is Called

 Method calls are implemented in AVM1 as a sequence of:

 Therefore, we need to check if we are
dealing with an instance of the object
first and then determine the method:



 
 

 




 



 


 

 

Generically Cleaning Up The Stack



   
   
     
    
  

   
 
   
  
 
       
    
   
  
  
     
  
   
     

 



 Adding a function to the top of
the code sequence in order to
perform all the object and
method checks in one place

 Patching all ActionCallMethod
places to verify the call using
our check function

 One can easily see the
significant code blow-up
(~250% the original size)



 We can provably not determine all call arguments using static
analysis, therefore a code patch is the safer method

 But we can determine calls and arguments that are loaded directly
from the constant pool or static values on the stack

 In order to determine values, we need:

 Backward tracing of the virtual machine stack using code flow

 Code Flow Graphs in order to trace along basic blocks and edges

 E.g.: even the constant pool can be overwritten anywhere in AVM1 code





 The goal is to model:
“Does the 2nd argument of any call to ObjectA.MethodB begin with the
following string?”

 The current implementation uses a dual stack machine approach
 An internal stack machine performs individual static analysis operation steps to

model conditions we want to verify

 If the internal stack machine cannot deterministically continue, all basic
operations emit AVM1 code to perform the same operation within the file.

 The individual operations are of small granularity
 Example: ArgN determines the value of the n-th argument on the stack

 Easier to verify the equivalence of the internal and the AVM1 representation





 The AVM2 implementation is its own can of worms

 AVM2 is currently still incomplete in Blitzableiter 





 We are “eating our own dog food” and are happy so far
 YouTube and YouPorn work, and so do many other sites

 Just in case, you can switch individual Tag type parsers in the configuration file from
parsing and normalization to simple byte array copy mode

 Flash files with code obfuscation will in almost all cases be rejected for format
violations within the AVM byte code
 This also affects some larger sites, such as hulu.com

 Many third party SWF generators emit invalid Flash files
 Use of undocumented Tag types for unknown purposes

 Use of reserved fields or undocumented AVM byte codes

 Simply ridiculously broken files, which the Flash Player will accept anyway (the problem!)





 When a Flash file is rejected by Blitzableiter, you receive an error log
dialog (configurable)

 The dialog allows you to send the log to us, in case you are convinced the
Flash file in question was not malformed

 Please keep in mind that many non-malicious Flash files are nevertheless
malformed files and should be filtered

 We only store the API request and the log file content

 It’s HTTP, sniff it yourself if you don’t believe us

 We also want to know about Flash files that are visually or audibly different
from the not normalized input file. We need your help to fix those cases!





 We think that Blitzableiter shows the viability of signature-free
protections against file format based attacks using a managed
language parser and format normalization.

 Automated code property verification and enforcement allow
distributors of Flash content to enforce contractual regulations
and requirements right when they receive it.
 Not surprisingly, it’s also a fairly tricky area.

 We hope the tool is a useful addition to your browser
protection measures and we rely on your feedback!





 Robert Tezli for his commitment to the project

 Dirk Breiden for being an awesome team mate

 Mumpi for general awesomeness

 Thomas Caspers and Daniel Loevenich for their support







