
The Art Of Exploiting Logical
Flaws in Web Applications
Sumit Siddharth, 7Safe part of PA Consulting
Richard Dean, Portcullis Computer Security Ltd.

Blackhat Briefings Abu Dhabi - December 2012

I
n last 5 or so years we have seen a rapid
demand for web application security test-
ing. Often security testers gets blinded by

the traditional input validation flaws such as
Cross Site Scripting or SQL Injection and can
at times ignore the a critical part of the test
which is assessing for logical flaws. Over the
years we have identified some insane logical
flaws and we have decided to recreate some
of our best logical flaw hacks so that others
can learn from these. Logical flaws are often
difficult to find and anyone without an under-
standing of how the application is supposed
to function would be oblivious to their exis-
tence and potential impact. This paper will
takes you through some of the techniques and
key ideas used when trying to identify logic
flaws in applications as well give advice on
how to minimise the inclusions of these prob-
lems in the first place.

Introduction

It is important to first establish what we mean by
a logic flaw. In this instance we are referring to the
behaviour of an application within the set of bounds
defined by the original design. Moreover we are
talking about the workflows through an application,
you may be able to manipulate parameters to get a
a SQL server to do something unusual or be able to
inject code to get to your end game but it not these
type of flaws that this paper will deal with. We are

looking at the business logic of the application, so
the control statements, If this then that etc. We are
looking at corner and edge cases where the original
designer had not properly accounted for what the
user can do to manipulate the system.

Attack and Defence

As an attacker, the identification and exploitation
of these logic flaws can be very fruitful and pleasing.
Often many hours of hard graft need to be put in for
little success, but then something so mind-numbingly
stupid will emerge, that the effort seems worth it.
Logic flaws, like with so many things, become easier
to identify the more experience is gained. Not every
application will be susceptible to them, but as an
experienced tester you can fairly quickly get the feel
of an application and so know that you are or are not
likely to find any bugs. It is very difficult to explain
what you need to look for but it is hoped that this
paper and the associated presentation will highlight
the key areas that should be looked at and what
are the giveaways that constitutes the feel for an
experienced tester. Likewise from the development
point of view what can be done to minimise the
likelihood that your applications contain these type
of bugs. If you are protecting against SQL injection
you use parametrised queries if you are protecting
against XSS you use a layer like OWASPS ESAPI,
but for logic flaws there are not quick wins. You
need to have clearly defined what the application
needs to do.

Page 1 of 5



Key Axiom

“You cannot comprehensively test for logic flaws
unless you know what the application is supposed to
be doing”

If you have an application test, unless you under-
stand what it does and how a normal user would
interact with it, then it is very difficult to identify
what you are trying to look for in terms of logic
flaws. You can probably very successfully run an au-
tomated tool across the site and pick up most of the
parameter manipulation attacks, but you are very
unlikely to find any of the hidden logic flaw gems.

In a simple case you may have a banking appli-
cation with many different users, where each user
should be able to see their details but not those of
any other user. You can set up an automated crawler
to check all of the functionality and accessible pages
of user a, then do the same for user b. You may even
then be able to automatically find all of those pages
that are different for the users and check to make
sure that they cannot be replayed as the other user.
This way you are trying to find anything that is not
explicitly allowed for user a by forced browsing to
those requests from user b. Now without understand-
ing the details of the site you may be able to identify
a link that was not in user a’s profile but they can
see it. Now, have you found a problem? Unless you
know the context of the request you cannot tell. For
instance, it may that the application uses targeted
marketing to supply generally available resources to
customers that are likely to need them. There is no
business reason why user a should not be able to
see the link, just that it was not deemed they would
like to see it. There are many much more compli-
cated examples where a bug may be a feature and
vice versa, that without having a human eye with
an understanding of the business logic and security
controls would have not been identified.

Inspiration from Other Areas

Whilst putting together some examples to illustrate
logic flaws it was noticed that there were a number
of problems found that were quite similar to vulner-
abilities found elsewhere in other types of code. In
web applications it is very common to see an au-
thentication system ask for a selection of characters
from your password. This is done so that you never
expose the whole of your password to anyone that
can record these details. Two interesting by prod-

ucts of this are firstly that you can infer that this
section of your secret data is not saved in a hashed
format in the applications database and secondly it
may introduce a user enumeration vector. In a good
system the user should be asked the same characters
from their password until they get it right, it should
not change each time you get it wrong. So if the
app only asks for a username before you hit this first
stage of authentication you can infer legitimate user-
names. If you go to the same username twice and
you get the same password indices twice you have a
real account, if it changes you don’t. In order to get
around this problem we advise either have some form
a secret before you get to the indices question, or
that if the account is not real you create the indices
from username supplied. This way, if real you read
from a database so it is the same each time. If not
real you calculate from the data given so it will be
the same.

In bad implementations of this that we have seen
the developers have taken the quick route and do
not store this indices information in a database and
sometimes do not even store it in the session. In
the worst case, the client told the server which part
of the password it was supplying which the server
trusted. It was found that it was possible to supply
index values which were past the end of the stored
password therefore were null. So when the server
checked the supplied value which was null against the
saved version which was also null it allowed access.

This type of attack seemed very similar to the
mysql authentication bypass bug represented by
CVE-2004-06271. In this the client would tell the
server how long the password that it was sending
in the authentication packet was. From the original
advisory “The final loop compares each character in
the ’scrambled’ string against the string that mysql
knows is the correct response, until there are no more
characters in ’scrambled’. Since there are no char-
acters *at all* in ’scrambled’, the function returns
‘0’ immediately, allowing the user to authenticate
with a zero-length string’.’ In both of these cases the
server is trusting the user to supply some information
which it trusts which forms part for the bounds for
the authentication check. The fist getting the server
to check a value larger than the password length
with returns known value and the second forcing the
server to not do any checks at all. What can we
learn from this? Well as always you should not be
trusting the data supplied by the user. Both of the

1http://web.nvd.nist.gov/view/vuln/detail?vulnId=CAN-
2004-0627

Page 2 of 5



bugs occur because the server is changing a character
at a time and neither performed a sanity check on
the bounds before starting the operation.

Variable Reuse

Another analogy which we saw was related to a 2006
Black Hat talk by Halvar Flake, “Attacks on uninitial-
ized local variable”2 and also to a number of Kernel
bugs I’ve seen. This talk discusses the use of vari-
ables in a function before they have been initialised
and how this may lead to a security vulnerability
in the code. In the Kernel vulnerabilities case the
problem existed because the kernel checked that a
pointer was valid but the user could change it before
it acted upon it. This is a fairly common class of
bug called TOCTOU (Time of check, time of use).
When we started to discuss this topic an application
that we tested number of years ago came up, but at
that point we had not joined the dots. The bug was
in a very complicated application that without an in-
timate understanding of what the app was supposed
to do, or actually what the app was not supposed to
do we would not have spotted.

An example, put into a context that can be ex-
plained without having to have working knowledge
of the industry sector the original problem was found
in, has been used to illustrate the problem. In both
this bug, Halvar’s paper and the Kernel bugs vari-
ables were acted upon as if they were in a known
good state when in fact the user had been able to
control them. In the web application the error that
the developer has made is that there was a naming
overlap between two session variables used in two
sections of the application. It was possible to use
one set of application functions to control a session
variable then get a second function, which had al-
ready checked that the session variable, to act upon
it afterwards. In this example it allows the messag-
ing functionality of the application to alter a session
variable which is used by the user profile editing page
to decide which profile to edit. If done at the right
time in the work flow this allowed a low privilege
user to recover the details of all other application
users and even take control leveraging the forgotten
password functionality. Whilst the bugs context is
different to the real world find, the way it can be
detected is the same. Whilst analysing the site it was
noticed that two significantly different areas of the
application where using the same parameter names

2http://www.blackhat.com/presentations/bh-europe-06/bh-
eu-06-Flake.pdf

when submitting data to the server. With a leap
of imagination about variable name resue a useful
exploitation path was found a serious flaw in the
application was uncovered.

These are just two examples that have come from
the app side independently but put onto previously
know issues in other places. The important question
is are there more, are there classes of bug that have
yet to be coded into applications? With AJAX and
other asynchronous techniques used very widely now
there may well be more timing problems that in the
previous world a synchronous sites would never have
existed. Whilst we cannot speculate on the weird
and wonderful things that may be out there we can
look at where they are likely to exist if they do at
all.

Cracks In the Application

In the previous section we discussed a bug that was
detected due to a similarity across different sections
of a site. This is fairly uncommon, it is a lot more
common to find logic flaws in applications where
things are disjointed. These ‘cracks’ often exists
where development has happened in different phases
then brought together. This maybe because two sets
of devs have been working on the application, or
maybe because it has been developed at different
times. These cracks, if they can be detected, often
create bugs because code isn’t quite compatible or
someone doesn’t quite understand how it should be
integrated. There was recently (November 2011) a
Facebook problem which appeared to exists for this
kind of reason. Facebook for a long time had a (fairly)
strong access model for users images. Unless allowed
you should not be able to see other people pictures.
Then at some point it was decided that there should
be the ability to report abuse about a user. This
abuse maybe the result of a user placing obscene
images in their profile, if this was the case then the
reporter should be able to let the Facebook Team,
know which image was causing the problem. The
vulnerability that was introduced is that in allowing
for this abuse process to work as described, they
also allowed everyone to see everyone else’s images.
This functionality completely bypassed the access
control on the images if you wanted to report it as
an abusive picture. Whether this was a design or
implementation problem I do not know, but the end
result was that image access control was now could
be bypassed.

Once a crack is found there maybe may problems

Page 3 of 5



there to exploit, but finding the cracks is the hard
part. So what are the things that you should look
for? Conversely as a developer what are the things
that you should avoid doing?

As an attacker I am looking to try to identify the
joins an application, this is a gut feeling quite a lot
of the time but this stems from experience. The sort
of things that I look for are where obviously different
coding styles have been used, indicators are things
like the naming conventions of parameters, the way
elements are set out on a page, maybe even HTML
comments. You can often notice subtle changes in
the way certain work flows behave when trying to
circumvent them. You may have one section that
handles errors well, where in another you get verbose
messages back. Not only is this an indicator that
input handling ids not good, but also that there
maybe a crack which may lead to a logic flaw. Once a
suspected crack has been found you now need to look
at each side of it and see what functionality straddles
the crack. You may have a report generation system
on one side, and a secure repository on reports on the
other. Can you manipulate the creation functionality
to return more than just the report that you have
just generated? You may need to get ID’s and other
pieces of information from one side and use them in
the other. If it were one seamless app then probably
not, but if it feels like a bolt-on then there is every
chance that some weird combination of integration
techniques done by the dev team may leave things
open.

In order to try to combat these as developers you
should be making sure that you have a good SDL
and that when code is combined it is done so in a
way that they new code interacts nicely with the old.
Ideally you should be developing on a frame work.
This will mean that any new code is compatible,
and can be integrated smoothly with the application
base. All new pieces should have gone through both
security and functional testing. In the example of
Facebook this problem would have been picked up
a good security control document had existed for
the current functionality. This should have detailed
that none ‘Friends’ should not be able to see images
and under statements like this the functional and
security testing should have been done. Without this
documented control a functional tester may not have
detected the problem as they may be testing the
functionality in isolation. Also security testing may
not have picked it up an automated tool would have
seen this as legitimate functionality. Only by know-
ing the overall stance on this from the application
would you know that an issue even existed. Again

back to the point you can’t properly test unless you
know what is supposed to happen.

Know Your Tech

Another crack that seems to emerge quite regularly
is when developers do not fully understand the tech-
nologies that they are using. When integrating tech-
nologies such as external authentication or Windows
file systems problems can occur as these have un-
known features. In a test that we performed recently
we found that the development Team allowed admins
to control the location of the database backups. We’d
already bypassed a large number of access controls
to get this far in, and actually uncovered function-
ality and data in the application which indicated
that the supplier had been lying to us. But thats a
whole other story. The database backup could also
be initiated from the web interface and was saved to
a location of our choice. Because this was a windows
system we could pass it a UNC path. So we set up
a Samba listener and set off the backup passing it
our IP address as the UNC path and down came the
complete internal database. Unfortunately we could
not use this connection to re attack the system but a
copy of the database include all of the user accounts
and passwords was good enough.

If you are going to introduce tech because you need
a small amount if its functionality make sure there is
nothing hidden in what you expose. Similarity make
sure you are integrating technologies that you fully
understand. In an application we saw recently the
development Team had been told that they needed
to use salted hashes. They then went away and
used salted hashes in their authentication mechanism.
Unfortunately they had not understood why they
had been told to use salts and implemented a system
where they had in effect made the hash stored in the
database the authentication token rather than the
password. This meant that an attacker did not need
to know the original password to authenticate they
just merely needed to know the hash.

Conclusions

Hopefully you’ll appreciate the full circle we have
know come, if you know Windows well, you’ll know
how it’s authentication access and so be able to see
the analogy here with pass the hash techniques which
have been prevalent for over a decade3. Overall I’m

3http://corelabs.coresecurity.com/index.php?action=view&type=
page&name=Modifying Windows NT Logon Credentials

Page 4 of 5



a keen believer of automating things that can be
automated but knowing what cannot be. At this
point I do not think that we can do a good job
of automating the process of trying to find these
types of bugs. You need a good set of eyes to spot
when something is illogical, even if the systems meets
the functional design spec perfectly it may breach
other security controls documented else where. As a
developer you need to think carefully about the full
implications of introducing new functionality, it may
seem useful in the small sphere you are currently
working in, but may be bad for the bigger picture.
As a security tester you need to make sure that you
fully understand the bigger picture even if just testing
small sections of the application. As an attacker I
often find it very useful to ask “What if?”. Think
up a scenario then go an investigate it. I should not
be able to x, now if I were a developer how may I
have written the code for this sections of the app
and what may I have done wrong to allow me to do
x. How can I verify this hypothesis. It’s a scientific
approach but I find that it works.

There are four key things that I want to emphasise:

1. You cant build or test an application properly
unless you know what it is supposed to do.

2. Logic flaws very often exist in application cracks,
learn how to spot these or how to make sure
they are not created as port of a development
process.

3. Make sure you have a good SDL, integrating
security and continually testing at key stages
not just at the end

4. Make sure you understand the technologies that
you are using, or look for technology integration
as these ofter introduce cracks

Page 5 of 5


