

Reverse and Simulate your Enemy Botnet C&C
Mapping a P2P Botnet with Netzob

Black Hat 2012, Abu Dhabi

georges.bossert@supelec.fr

frederic.guihery@amossys.fr

Abstract
Have you ever been staring at binary or hexadecimal data flows extracted from
an USB channel ? Don't you remember yourself searching for some patterns
and other similarities in this fuc***g mess of zeros and ones grabbed from a
binary configuration file ?

Did you know you were not a alone and that others including Rob Savoye
[Sav09] and Drew Fisher [Fis10] have already described the main difficulties
of the RE1 operations. Both of them have called for the creation of a tool
which would help the expert in its process. For about these last 2 years, we've
been working to respond to this call to create this kind of tool. Hence, this
article will describe a new semi-automated RE process based on Netzob2. This
tool simplifies the manipulation of binary flows, finds relations, deduce data
formats, infer grammatical definition and other few little things ;)

Introduction
There are many reasons why an I.T. Advance User would engage himself in
a RE operations. For example, some wants to understand how their favorite
game store their player's profile while others wants to use their USB device on
an originally unsupported OS. In addition to these common usages, security

1“RE” is a common acronym for Reverse Engineering.
2 See project website: http://www.netzob.org

1/21

http://www.netzob.org
http://www.netzob.org
http://www.netzob.org
http://www.netzob.org
http://www.netzob.org
http://www.netzob.org
http://www.netzob.org

auditors (and evaluators) often use RE process in their work. This article will
discusses usage of RE by security auditors and evaluators.

In recent years, the field of security analysis systems or software was
extended with new approaches and new tools based on the fuzzing. Compared
to more traditional techniques (static and dynamic analyzes binary, potentially
combined with the analysis of the source code) that require specialized
skills, resources and time, these new tools offer many advantages : relative
simplicity of implementation, semi-automated approach, rapid acquisition
of results, etc... . However, experience shows that to be truly effective, an
effective fuzzing analysis requires a good knowledge of the target, and in
particular of the communication protocol. This fact limits the effectiveness and
completeness of results obtained in the analysis of products implementing
proprietary protocols or undocumented.

On the other hand, in the analysis of security products such as firewall or
network intrusion detection (NIDS), an evaluator often needs to generate
realistic traffic in order to assess the relevance and reliability of the tested
product (that is, its ability to limit false positives and false negatives). This
operation is complex because it requires the complete characterization and
control over the generated traffic. Hence, an evaluator can't generate traffic if
he doesn't have access to the specification of the protocol.

This is to meet the many needs of reverse engineering protocols that Netzob
was developed. This tool is a framework to infer protocols. It supports the
expert in his reverse engineering work by offering a set of semi-automated
features to reduce the analysis time and ultimately improve its understanding
of the targeted protocol. We organize the remainder of the article as follows.
After presenting terminology and our assumptions in Section 2, we detail
Netzob's design and functionnalities in Section 3. We discuss it and provide a
real pratical example of its usages in Section 4 and conclude in Section 5.

Terminology and design assumptions
Few days of bibliography on the RE field illustrated the huge differences
between the academic world and the “applied” world. The first one regroups
multiple work and papers while in the applied world, experts are specialized
ninjas computing CRCs and other format trans-coding with their eyes.

On the academic field, most of the researchers consider A. Beddoe as the
initiator of the automated RE with its tool named PI3 published in [Bed04].
Following years brought multiple papers including those of W. Cui and
al. [Cal.06d][Cui07] and of C. Leita [LMD05]. Each of them include new
algorithms and next-gen complicated approaches, but none of them effectively
brought to the applied world a useable tool. This resulted to an important dis-
synchronization between the researchers and the security experts we'll try to

3See the “Protocol Informatics” Project : http://www.4tphi.net/~awalters/PI/PI.html

2/21

tackle with this article.

Definition of a Communication Protocol
A communication protocol can be defined as the set of rules allowing one or
more entities (or actors) to communicate. Applied to the field of computer
networking, protocols have been the subject of many standardization activities,
particularly from the OSI model, which establishes, among other things, the
principle of protocol layers. However, few studies have attempted to give a
formal and generic definition of a protocol. We refer here to the definition
provided by Gerard Holzmann in his reference book “Design and Validation of
Computer Protocols” [Hol91]. According to the author, a protocol specification
consists of five distinct parts:

1. The service provided by the protocol.
2. The assumptions about the environment in which the protocol is

executed.
3. The vocabulary of messages used to implement the protocol.
4. The encoding (format) of each message in the vocabulary.
5. The procedure rules guarding the consistency of messages exchanges.

In our work, we seek to infer the three last elements of the specification since
there are mandatory to configure the fuzzing process and to generate valid
traffic. Subsequently, we consider protocol inference requires to learn both:

1. The set of messages and their format, also called vocabulary of a
protocol.

2. All the rules of procedure that we name grammar of a protocol.
These two parts of a protocol are detailed in the followings.

Definition of the Vocabulary of a Protocol
Within Netzob, the vocabulary consists of a set of symbols. A symbol
represents an abstraction of similar messages. We consider the similarity
property refers to messages having the same role from a protocol perspective.
For example, the set of TCP SYN messages can be abstracted to the same
symbol. An ICMP ECHO REQUEST or an SMTP EHLO command are other kinds
of symbols.

A symbol structure follows a format that specifies a sequence of
expected fields (e.g. TCP segments contains expected fields as sequence
number and checksum). Fields have either a fixed or variable size. A field can
similarly be composed of sub-elements (such as a payload field). Therefore,
by considering the concept of protocol layer as a kind of particular field, it
is possible to retrieve the protocol stack (e.g. TCP encapsulated in IP, itself
encapsulated in Ethernet) each layer having its own vocabulary and grammar.
The identification of the different fields allows to define the symbol format.

In our model, a field has different attributes: some of them concern every
fields, others are specific to the field type and only relevant for a visualization

3/21

purpose. The domain defines the authorized values of a field, under a
disjunctive normal form4. An element of the domain can be:

● A static value (e.g. a magic number in a protocol header).
● A value that depends on another field, or set of fields, within the same

symbol. We call this notion intra-symbol dependency (e.g. a CRC code).
● A value depending on another field, or set of fields, that are part of a

previous symbol transmitted during the same session. We call this notion
inter-symbol dependency (e.g. an acknowledgment number).

● A value depending on the environment. We call this notion environmental
dependency (for example, a timestamp).

● A random value (e.g. the initial value of the TCP sequence number field).
Besides, fields have some interpretation attributes, notably for visualization
and data seeking purposes. We associate a field content with a unit size
(the size of atomic elements that compose the field, such as bit, half-byte,
word, etc.), an endianness, a sign and a representation (i.e. decimal, octal,
hexadecimal, ASCII, DER, etc.). Optionally, a semantic may be associated to
a field (such as an IP address, an URL, etc.). As an example, the Illustration
1 depicts different format and visualization attributes of Botnet SDBot C&C
messages.

Illustration 1: Format of SDBot C&C messages. The first line depicts the
symbol format. The second line corresponds to the visualization attributes.
These attributes are optionally overloaded by semantic characteristics.

Definition of the Grammar of a Protocol
The grammar represents the ordered sets of messages exchanged in a valid
communication. Applied to the ICMP protocol, its grammar include a rule
which state that an ICMP ECHO REPLY TYPE 8 always follow an ICMP ECHO
REQUEST TYPE 8. Another example of a grammar is the set of rules which
describe the ordered symbols sent between two actors of a TCP session. These
rules can be represented using an automata which define the states

4A Disjunctive Normal Form (DNF) is a logical formula built with OR of AND : ((a AND b) OR (c
AND d)).

4/21

and the sent and received symbols on each transitions (see example on
Illustration 2).

Illustration 2: TCP State Transition Automata (http://www.ssfnet.org/
Exchange/tcp/tcpTutorialNotes.html)

Within Netzob, the grammar is defined with our own mathematical model
named Stochastic Mealy Machine with Determinist Transitions (an SMMDT).
This extension of traditional Mealy Machines allows to have multiple output
symbols on the same transition and to represent multiple answers to the same
command. In addition to this feature, our model also include the reaction
time for each couple of request and reply symbols. The interested reader can
contact us5 for any questions regarding the model, we've some nice equations
available ;)

Few Assumptions
Our objective is to infer the vocabulary and the grammar of a communication
protocol in order to audit (using fuzzing approaches) and to evaluate (using
traffic simulator). These operations do not require previous knowledge on the
protocol but still the followings assumptions are made :

5You can contact authors on contact@netzob.org.

5/21

http://www.ssfnet.org/Exchange/tcp/tcpTutorialNotes.html)
http://www.ssfnet.org/Exchange/tcp/tcpTutorialNotes.html)
http://www.ssfnet.org/Exchange/tcp/tcpTutorialNotes.html)
http://www.ssfnet.org/Exchange/tcp/tcpTutorialNotes.html)
http://www.ssfnet.org/Exchange/tcp/tcpTutorialNotes.html)
http://www.ssfnet.org/Exchange/tcp/tcpTutorialNotes.html)
http://www.ssfnet.org/Exchange/tcp/tcpTutorialNotes.html)
http://www.ssfnet.org/Exchange/tcp/tcpTutorialNotes.html)
http://www.ssfnet.org/Exchange/tcp/tcpTutorialNotes.html)
http://www.ssfnet.org/Exchange/tcp/tcpTutorialNotes.html)
http://www.ssfnet.org/Exchange/tcp/tcpTutorialNotes.html)
http://www.ssfnet.org/Exchange/tcp/tcpTutorialNotes.html)
http://www.ssfnet.org/Exchange/tcp/tcpTutorialNotes.html)
http://www.ssfnet.org/Exchange/tcp/tcpTutorialNotes.html)
http://www.ssfnet.org/Exchange/tcp/tcpTutorialNotes.html)
http://www.ssfnet.org/Exchange/tcp/tcpTutorialNotes.html)
http://www.ssfnet.org/Exchange/tcp/tcpTutorialNotes.html)

1. The inferring process requires initial input data. Hence the expert
must obtain examples of multiple communication channels hosting the
targeted protocols. It can be any data flow from an USB channel (e.g.
external devices) to network flows (e.g. Botnets' C&C) through inter-
process calls (e.g. API Hooking) or file protocols (e.g. configuration files,
…).

2. The input data should include the largest diversity of included
environmental values (IP addresses, pseudos and other user data,
hostnames, date and time, …).

3. The expert must have access to an implementation which uses the
targeted protocol. It must be possible to automate its execution and to
reinitialize it to its initial state. We recommend snapshot mechanism
included in VMWare or VirtualBox for this.

4. Naturally, the targeted protocol should not include encrypted or
compressed content. If some exists, the expert can use included entropy
measures to identify some of them and use solutions like API Hooking to
get the clear data.

Inferring Vocabulary and Grammar with Netzob
In this Section, we describe the learning process implemented in Netzob to
semi-automatically infer the vocabulary and the grammar of a protocol. This
process, illustrated in picture 3, is performed in three main steps:

6. Clustering messages and partitioning these messages in fields.
7. Characterizing message fields and abstracting similar messages in

symbols.
8. Inferring the transition graph of the protocol.

6/21

Illustration 3: Steps of protocol inference in Netzob

Step 1: clustering Messages and Partitioning in Fields
To discover the format of a symbol, Netzob supports different partitioning
approaches. In this article we describe the most accurate one, that leverages
sequence alignment processes. This technique permits to align invariants in
a set of messages. The Needleman-Wunsh algorithm [NW70] performs this
task optimally. Needleman-Wunsh is particularly effective on protocols where
dynamic fields have variable lengths (as shown on picture 4).

Illustration 4: Example of sequence alignment on FTP messages

When partitioning and clustering processes are done, we obtain a relevant
first approximation of the overall message formats. The next step consists in
determining the characteristics of the fields.

7/21

If the size of those fields is fixed, as in TCP and IP headers, it is preferable to
apply a basic partitioning, also provided by Netzob. Such partitioning works
by aligning each message by the left, and then separating successive fixed
columns from successive dynamic columns.

To regroup aligned messages by similarity, the Needleman-Wunsh algorithm
is used in conjunction with a clustering algorithm. The applied algorithm is
UPGMA [Smi58].

Step 2 : characterization of Fields
The field type identification partially derives from the partitioning inference
step. For fields containing only invariants, the type merely corresponds to the
invariant value. For other fields, the type is automatically materialized, in first
approximation, with a regular expression, as shown on figure 3. This form
allows to easily validate the data conformity with a specific type. Moreover,
Netzob offers the possibility to visualize the definition domain of a field. This
helps to manually refine the type associated with a field.

Some intra-symbol dependencies are automatically identified. The size field,
present in many protocol formats, is an example of intra-symbol dependency.
A search algorithm has been designed to look for potential size fields and
their associated payloads. By extension, this technique permits to discover
encapsulated protocol payloads.

Environmental dependencies are also identified by looking for specific
values retrieved during message capture. Such specific values consist of
characteristics of the underlying hardware, operating system and network
configuration. During the dependency analysis, these characteristics are
searched in various encoding.

Step 3: inferring the Transition Graph of the Protocol
The third step of the learning process discovers and extracts the transition
graph from a targeted protocol. This step is achieved by a set of active
experiments that stimulate a real client or server implementation using
successive sequences of input symbols and analyze its responses.

Each experiment includes a sequence of selected symbols according to an
adapted version of Angluin's L* algorithm [Ang87] that originally applies
to DFA6 machines. This choice is justified by its effectiveness to infer a
deterministic transition graph in polynomial time. Its use on a protocol's
grammar requires:

● The knowledge of input symbols of the model (also called the
vocabulary).

6DFA stands for “Deterministic Finite Automaton” also known as “Deterministic Finite State
Machine”.

8/21

● That clients or servers fail in some obvious way, for instance by crashing,
if the submitted sequence of symbol is not valid.

● The capability of reseting clients/servers to their initial states between
experiment.

●That we can temporary ensure the protocol's grammar to be
deterministic.

The inferring process implies a Learner who initially only knows the input
symbols extracted from the previous step. It tries to discover L(M) that
represents the language generated by the model M by submitting queries to a
Teacher and to an Oracle.

Among the possible queries, the original algorithm considers the following:

● Membership queries, which consist in asking the Teacher whether a
sequence of symbols is valid. The Teacher replies yes or no.

● Equivalence queries, which consist in asking if the language of an
hypothesized model is equal to the language of the inferring model. If
not, the Oracle supplies a counterexample.

This algorithm progressively builds a hypothesized model based on results
brought by submitted membership queries. Once the learned model is
considered stable by the algorithm, an equivalence query is made. If the
query is successful, the model is considered equal to the inferred model,
otherwise more membership queries are submitted according to the returned
counterexample.

Finally, we consider that environmental variations may impact output symbols.
Therefore, we confine the client/server in a restrictive environment to limit
its indeterminism on output symbols. For example, we use network whitelist-
based filtering to limit Internet accessibility to only identified necessary
websites.

Netzob Implementation
This chapter presents the implementation-specific aspects of Netzob, which
is distributed under the GPLv3 license. At the time of writing (September
2012), the source code comprises about 33.000 lines of code, mostly in Python
some specific parts being implemented in C for performance purposes. All
algorithms described in this article have been reimplemented.

The source code is publicly available7 on a git repository and packages
for Debian, Gentoo, ArchLinux and Windows are provided. Currently, Netzob
works on both x86 and x64 architectures and includes the following modules
(as shown on picture):

7See: http://www.netzob.org

9/21

Illustration 5: Architecture of Netzob
● Import module: Data import is available in two ways: either by

leveraging the channel-specific captors, or by using the XML interface
format. As communication protocols are omnipresent, it is fundamental
to have the possibility to capture data in a maximum number of
contexts. Therefore, Netzob provides native captors and easily allow the
implementation of new ones. Current work focuses on data flow analysis,
that would permit to acquire clear messages before they get encrypted.
Besides, Netzob supports many input formats, such as network flows,
PCAP files, structured files and Inter-process communication (pipes,
socket and shared memory).

● Protocol inference modules: The vocabulary and grammar inference
methods constitute the core of Netzob.

● Simulation module: One of our main goal is to generate realistic
network traffic from undocumented protocols. Therefore, we have
implemented a dedicated module that, given vocabulary and grammar
models previously inferred, can simulate a communication protocol
between multiple bots and masters. Besides their use of the same model,
each actors is independent from the others and is organized around
three main stages. The first stage is a dedicated library that reads and
writes from the network channel. It also parses the flow in messages
according to previous protocols layers. The second stage uses the
vocabulary to abstract received messages into symbols and vice-versa
to specialize emitted symbols into messages. A memory buffer is also
available to manage dependency relations. The last stage implements
the grammar model and computes which symbols must be emitted or
received according to the current state and time.

● Export module: This module permits to export an inferred model of a
protocol in formats that are understandable by third party software or by
a human. Current work focuses on export format compatible with main

10/21

traffic dissectors (Wireshark and Scapy) and fuzzers (Peach and Sulley).

Practical example
In this section, we'll describe a typical use case of Netzob : “Modeling and
afterward simulating a Botnet”. After a very-short description of the scenario,
we'll explain step-by-step how you can infer a ZeroAccess P2P protocol and
afterward simulate it. The examples shown below are adapted for pedagogical
purpose.

The Scenario
You're a security evaluator and your boss has assigned you a new target.
If we forget CC8 evaluations and consider more “constrained time” security
evaluations (like French's CSPN9 for example), you only have few days to
verify it does its work.

Your target is an IDS/IPS or an Yet-Another-Hyper-Smart-Highly-Effective
Applicative Firewall and you want to verify if it detects botnets and other
malwares. Meaning you need to create a botnet in your lab using some
samples you've collected (on your spare time ?) and produce you're 100
infected hosts network and you're 5 networks of botnet supervision10.

But you don't have time for this, and want a solution to generate realistic
traffic which will allow you to evaluate your target. It's where comes Netzob.
With this tool, you'll be able to reverse the communication protocol of a
targeted botnet and afterward to simulate it. OK, we'll show you.

Reverse engineering ZeroAccess P2P protocol
First step is to capture some data from a real life botnet's communication. To
do this, you need your sample of the malware, your favorite sandbox system
and Wireshark.

Figure 6 show a set of UDP packets sent from your sandbox (“192.168.42.41”)
to the port 16464 of various distant IP (“76.179.7.70”, “115.22.87.69”, …).
This is the bootstrap procedure of our sample.

8CC stands for “Common Criteria”, an international standard (ISO/CEI 15408) defining a security
evaluation process.

9CSPN stands for “Certification de Sécurité de Premier Niveau” can roughly be translated in “First
level security certification level”.

10Makes me remember this famous XKCD sktech: http://xkcd.com/350

11/21

Illustration 6: Initial communications captured with Wireshark

All these packets have the same length (58 bytes) and seems rather static.
When a peer responds, it sends back a larger UDP packet which triggers the
creation of a TCP session between our sample and the remote peer, as shown
on figure 7.

Illustration 7: A peer answers which triggers the creation of a TCP session.

Since we're interested in the P2P protocol, we extract the UDP packets with
source or destination port : 16464. The obtained PCAPS can then be analyzed
in Netzob.

Downloading and Installing Netzob
Since Netzob is still in “beta” version, we recommend the use of the latest
available version you can get from the official git repository:

$ git clone https://dev.netzob.org/git/netzob.git/

Netzob follows typical python installation process which includes the use
of “setup.py” file:

$ python setup.py build

$ python setup.py develop

Once ready, we can start Netzob:

12/21

https://dev.netzob.org/git/netzob.git/
https://dev.netzob.org/git/netzob.git/
https://dev.netzob.org/git/netzob.git/
https://dev.netzob.org/git/netzob.git/
https://dev.netzob.org/git/netzob.git/
https://dev.netzob.org/git/netzob.git/
https://dev.netzob.org/git/netzob.git/
https://dev.netzob.org/git/netzob.git/
https://dev.netzob.org/git/netzob.git/
https://dev.netzob.org/git/netzob.git/
https://dev.netzob.org/git/netzob.git/
https://dev.netzob.org/git/netzob.git/
https://dev.netzob.org/git/netzob.git/
https://dev.netzob.org/git/netzob.git/

$./netzob

Configuring the Project
We create a new project named “RE_ZeroAccess”, and import in it the
captured PCAPS of UDP packets, with a dedicated importer (see figure 8). The
objective of our work will be to understand those messages.

Illustration 8: Import of PCAP in Netzob

Reversing the vocabulary
The first step consists in “playing” with the features of Netzob : partitioning
(sequence alignment, basic alignment, etc.), encoding and visualization
attributes (hex, octal, string, etc.), search of known pattern, splitting and
concatenation of fields, etc. We used these features (see figure 9) until we get
a first outline of the message format.

13/21

Illustration 9: Main panel of the vocabulary inference in Netzob

The first analysis shows some static and dynamic fields of fixed length. This
looks a good beginning. However, the field content appears quite awkward. An
analysis of the byte distribution (see figure 10) shows a probable encrypted or
obfuscated content.

Illustration 10: Byte distribution of probably encrypted messages

Decryption of raw payloads
A previous analysis (by Kevin McNamee [KMN12]) provides the decryption
algorithm. Netzob allows us to create a “Mathematical Filter” which applies on
a message to transform its payload.

Hence, we provide the source code of the mathematical filter which is a specific
xor decryption routines. The initial key (“ftp2”) is bit shifted every 4 bytes and
used to xor the content of every exchanged data. Figure 11 shows the source

14/21

code of this specific Mathematical Filter.

Illustration 11: Add a xor-decryption filter

Partitioning of messages in fields
Then, we apply an alignment process on the clear messages using the
Sequence Alignment functionality (see figure 12). Our objective is to identify
common messages, to regroup them in dedicated symbols, and to obtain a
field partitioning of each identified symbol.

Illustration 12: Sequence alignment parameter

Once done, the alignment reveals only one symbol with all the messages
splitted in 47 fields. Such an amount of fields for a single type of symbol
is “unlikely”. It means we must continue the alignment process on this
particular symbol and try to split it in different symbols. So we incrementally
increase the “similarity threshold”. Around 70% of similarity, we obtain an
interesting result: two different symbols: the first one contains small messages
with three fields while the second one is made of 33 “small” fields alternatively
dynamic and static values and a huge static field at the end. We will not

15/21

consider this huge static field in this article, and will rather concentrate on the
first part.

When visualizing the messages as string, we can identify that the second field
corresponds to a botnet command. The first command is “getL”, as shown on
figure 13, and correspond to the first packet sent by the malware. It appears
that its message format is identical for each sample of the malware. We used
two samples of the malware to produce the partitioning shown on the figure
13.

Illustration 13: Message format of the first command : "getL"

Identification of environmental data
The second command is “retL”, and corresponds to the answer of a “getL”
request message. As we are studying a P2P protocol that retrieves IP
addresses of other peers, we then try to look for those IP in the payloads
of the “retL” message response. To do that, we leverage the search for
environmental dependencies functionality. We simply look for IP addresses
used during the networking communication of our malware sample.

After some searches, we are able to find many of these IP addresses in a
structured format :

[IP1] xxxx [IP2] xxxx [IP3] xxxx …
The IP addresses appears in reverse order due to endianness.

Identification of relations
We then launch another functionality of Netzob, which tries to find basic
relations between field of a symbol. As a result, Netzob finds that the fourth
field corresponds to the number of IP addresses found:

The resulting message format is therefore:

yyyy [command] 000..000 [NbIP] [IP1] xxxx [IP2] xxxx [IP3]
xxxxx ...

The message format and associated message of the “retL” command, as it
appears in Netzob, in shown on figure 14:

16/21

Illustration 14: Message format of the second command : "retL"

Modeling relations in Netzob
The message format, and especially the expected content of each field, can
also be represented as a tree, as shown on figure 15. This interface provided
by Netzob allows to specify relations between fields. For example, we have
seen that the fourth field corresponds to the number of IP addresses in the
payload. We can integrate this relation in Netzob through the tree interface.
Other kind of relation could also be represented (size field, CRC, sequence
number, etc.).

Illustration 15: Fields content representation

Another important relation we have previously discovered is that IP addresses
which appears in the payload are used to launch TCP connection. In Netzob,
this relation is modeled by associating the content of an IP field with the
metadata of a future network communication (the destination IP in our
example and the layer 4 protocol). This relation will be leveraged during traffic
simulation, as described below.

17/21

Reversing the grammar
As explained in the first part of the article, Netzob allows to reverse and to
model complex grammars. In our case and in order to make it simple, we've
only considered the two previous symbols (“getL” and “retL”). A complete
inferring process of the vocabulary would have highlighted other symbols
including “getF”, “retF”, “srv”, ….

Reversing the grammar is based on an active grammatical inferring process
conducted by an adaptation of the Angluin L* algorithm which includes the
stimulation of the malware. Between each stimulation (a.k.a experiments),
the malware is reseted to its initial state. This is achieved using the snapshot
solution provided by your favorite sandbox.

To be effective, this module needs to be highly customizable allowing to adapt
itself to the high diversity of cases. Netzob allows to :

● Infer the grammar of a network server or a network client.
● Infer communication channels over TCP and UDP.

The expert provides the “script” which resets the malware to it is initial state. A
simple reset script which stop, clean and restart a sandbox based on virtualbox
looks like :

#!/bin/sh
vboxName="TargetWindowsXP"
vboxId="ab922c7e-1c88-404a-a9fa-87fd9d4ff59e"
snapshotId="NetzobReady"
First we stop the current instance of the virtualbox
vboxmanage controlvm $vboxName poweroff
Restore to the snapsot
vboxmanage snapshot $vboxName restorecurrent
restart the vm
vboxmanage startvm $vboxName --type headless

During the inferring process, emitted messages are generated following the
definition provided by the reversed vocabulary.

In our case, the grammar is computed in few minutes since we only used two
symbols “getL” and “retL”. Inferring larger grammar can takes hours.

18/21

Illustration 16: Example of the automatically inferred grammar
for “getL”/”retL” exchange.

Simulating traffic
The previous steps has presented how Netzob can be used to understand/
reverse an unspecified protocol. Once we modeled the vocabulary and the
grammar of a protocol, we can easily generate valid traffic using the dedicated
perspective in the tool.

Let's say we want to simulate a client which follows the inferred protocol to
communicate with a target. In few seconds, we can test its specifications
by creating a Netwok Actor. For example, figure 17 shows the parameters
required to create a ZeroAccess Bot which will connect on (udp://
115.22.87.69:16464) and initiates a communication described by the inferred
grammar and vocabulary.

19/21

Illustration 17: Creation of a ZeroAccess Bot Simulator

Once started, the created actor “navigates” in the grammar and executes the
transitions given the current state. If the initiated transitions is valid (meaning
the sent and received messages are valid) it changes of states. It exists three
main types of transitions :

1.“OpenChannelTransition” : opens the communication channel
following the specified protocol. Its parameters (ip_source, port_source,
ip_destination, port_destination) are extracted from the memory.

2. “CloseChannelTransition” : closes the current communication channel.
3. “SemiStochasticTransition” : Receives, parses (save obtained field

values in memory) and answer using the associated message. A typical
example is the transition which waits for “getL” message and answers
with the “retL” message.

A very simple bot simulator which uses the grammar described in Figure
initiates a communication to a first peer and after the simple “getL”/”retL”
exchanges closes the communication. 500 ms after, it re-opens the connect
with one of the peer he retrieved from the obtain list. This way, the simulator
can be used to map the botnet and to generate valid network traffic.

Conclusion
In this article, we introduced Netzob, an open source tool dedicated to the
reverse engineering and simulation of communication protocols. Besides

20/21

its original goal of inferring undocumented protocols, Netzob is also used in
operational contexts in a french security lab. The tool has been successfully
applied for the reimplementation of undocumented protocols and vulnerability
analysis of proprietary protocols. The project also receives regular external
contributions.

As future work, different directions are followed. We are currently addressing
advanced fuzzing as an extension of the traffic simulator module. We also aim
at generating NIDS rules, that would leverage model checking approach for
protocol recognition. This would allow a more efficient detection of botnets
than most current approaches, that are based on pattern matching. Netzob
will also be extended to support the generation of protocol parsers, allowing
the manipulation of inferred protocols in third-party-products. Finally, this
community project will continue to support up-to-date academic researches
while being available in operational context.

Bibliography
[Bed04] Beddoe, M. A. (2004): Network Protocol Analysis using Bioinformatics
Algorithms.
[Cal.06d] Cui, W., Paxson, V., Weaver, N. C. & Katz, Y.H. (2006): Protocol-
Independent Adaptive Replay of Application Dialog.
[Cui07] Cui, W. (2007): Discoverer: Automatic protocol reverse engineering
from network traces.
[LMD05] Leita, C., Mermoud, K. & Dacier, M. (2005): ScriptGen: an
automated script generation tool for honeyd.
Holzmann, G. J. (1991): Design and validation of computer protocols.
Prentice-Hall, Inc.
[NW70] Needleman, S. B. & Wunsch, C.D. (1970): A general method
applicable to the search for similarities in the amino acid sequence of two
proteins. Journal of Molecular Biology, 48, 443-453.
[Smi58] Sokal, R. R. & Michener, C.D. (1958): A statistical method for
evaluating systematic relationships. University of Kansas Scientific Bulletin,
28, 1409-1438.
[Ang87] Angluin, D. (1987): Learning regular sets from queries and
counterexamples. Inf. Comput., 75, 87-106.

21/21

