
Bochspwn: Identifying 0-days via
system-wide memory access

pattern analysis

Mateusz “j00ru” Jurczyk

Gynvael Coldwind

Google Inc.

• Software instrumentation in security
– what? why? how?

– what about kernels?

• Bochspwn and double fetches
– Microsoft Windows

– Linux

– BSD

• Other projects
– Bochspwn:msan sneak peek

• Future work

Agenda

D E M O
WINDOWS 7 SP1 32-BIT

ELEVATION OF PRIVILEGES

SOFTWARE INSTRUMENTATION
TRIVIA

The basics of instrumentation

Program state

CPU context

Memory
address space

Resources

Program state

CPU context

Memory
address space

Resources

Program state

CPU context

Memory
address space

Resources

Program state

CPU context

Memory
address space

Resources

Program state

CPU context

Memory
address space

Resources

Program state

CPU context

Memory
address space

Resources

Program state

CPU context

Memory
address space

Resources

Program execution flow

Program state

CPU context

Memory
address space

Resources

monitor()

Program state

CPU context

Memory address
space

Resources

examine()

Program state

CPU context

Memory address
space

Resources

change()

Program state

CPU context

Memory address
space

Resources

• Instrumentation only operates on existing program
states.

– doesn’t generate new ones, we can only „feed” it.

– the pros: can reason about real software behavior and
identify real bugs.

– the cons: limited to actual code coverage.

• We end up with two separate problems

– the more different states

– the better instrumentation

Important points

the more knowledge about
program logic

• User-mode instrumentation widely spread nowadays

– DBI
• extensible frameworks: Intel Pin, DynamoRIO

• run-time program verification projects: the valgrind suite,
Microsoft Application Verifier

– compile-time solutions
• {Address, Memory, Thread} Sanitizer

• IOC

• gprof

• stack / heap protectors are kind of, too.

Existing technology

• Code coverage analysis
– corpus distillation, exploring program state tree, various

“smart fuzzing” techniques

• Detection of security-relevant conditions
– memory corruption, out-of-bounds access (ASan, valgrind)

– dynamic allocator issues, e.g. double free (ASan, valgrind)

– use of uninitialized memory (MSan, valgrind)

– data races (TSan, valgrind)

– integer overflows (IOC)

– API misuse (AppVerifier)

Known applications in security

• Fault injection

– stability testing, e.g. failing every nth allocation
(AppVerifier)

– in-memory fuzzing

• Detection of active exploitation (malware pipelines)

– running code outside of executable images and JIT regions
→ shellcode indicator

– no CALL before RETN → ROP indicator

– etc.

Known applications in security

• Coverage-based corpus distillation helped Google
find tons of bugs
– proprietary: Adobe Flash, Adobe Reader, Chrome PDF

Reader, ...

– open-source: FFmpeg, FreeType2, libexif, libtiff, ...

• AddressSanitizer contributed, too:
– 1000+ vulnerabilities in Chromium, WebKit, Mozilla,

webrtc, Perl, PHP, ...

• Too many to list them all.

Results in examples

... why not apply it to whole operating
system kernels instead of individual

programs?

e.g. for vulnerability discovery.

If it works so well…

Driver Verifier

• Microsoft tool.

• Tests device drivers for
common mistakes.

• Limited subset of detectable
bad states.
– mostly API misuse.

Well, there is something...

Not much beyond it, though (for Windows at least).

NOT ENOUGH.

(feels like a highly underestimated potential)

• If there is a buffer overflow or double free(), the
kernel will crash anyway...

but
• It turns out there are a number of vulnerability

classes which don’t explicitly manifest themselves in
the kernel.
– even though they’re triggered all the time.

• We could detect them!

Motivation

• Kernels do have vulnerabilities.
– mostly local (elevation of privileges)

– these are becoming an important component in remote
exploit chains (sandbox escapes)

• Kernel-wide instrumentation is a largely unexplored
area.

• Vulnerability hunting automation is cost effective.
– especially for bugs otherwise difficult to find with manual

auditing.

Motivation (cont’d)

Approach: extending fuzzing

examine()

Program state

CPU context

Memory address
space

Resources

is_violation()

Program state

CPU context

Memory address
space

Resources

• Normally, is_violation() would be is_exception()

– here, we add several additional checks.

– memory corruption doesn’t always result in immediate
crash.

– smart is_violation can pinpoint the precise point of
failure.

Approach: extending fuzzing

examine()

Program state

CPU context

Memory address
space

Resources

is_violation()

Program state

CPU context

Memory address
space

Resources

• For a kernel, program execution flow includes:
– booting up

– execution of all active device drivers in addition to the kernel

– coverage from normal operation (running services, shell etc.)

– artificially provoked code paths

– system termination

• Memory corruption
– {stack, heap, static} oob {reads, writes}, use-after-free

• Double memory fetch from ring-3
– (a.k.a. time-of-check-to-time-of-use, tocttou)

• Use of uninitialized memory
– stack variables, pool/heap allocations and so forth.

• Copying uninitialized memory to user-mode
– disclosure of potentially sensitive information processed by the

kernel.

Detection: cross-platform kernel bugs

Breaking core security assumptions being part of the

operating system design or making incorrect ones.

Windows examples:

• Referencing user-mode pointers while “Previous Mode” is
KernelMode.

• Calling ObReferenceObjectByHandle with Type=NULL in non
handle type-agnostic contexts.

Detection: system-specific bugs

In theory, we could target any wrong behavior or
system state, as long as there is a simple model we

can use to detect it.

The simpler the model, the better.

Detection: other kernel bugs

Or just gather information and save it

instead of active state examination.

• Regular code coverage techniques can be applied to
kernels similarly to client applications.

• Imagine:

– instrumenting kernel file format parsing for corpus
minimization.
• win32k.sys with bitmaps, fonts, metafiles, …

• nt and keyboard layouts.

– instrumenting nt / win32k.sys to find coverage improving
syscall invocations (paired with a guest ring-3 fuzzer).

Performance instrumentation

• All other techniques originating from user-mode also
apply.

– e.g. the implementation of different valgrind utilities could
be ported to kernel-mode*

Basically, sky is the limit.

* not necessarily trivial

Sky is the limit

KERNEL INSTRUMENTATION

• Instrument software platforms
– Microsoft Windows

– Linux

– FreeBSD, OpenBSD, NetBSD

– possibly Mac OS X

• Hardware platform: x86 and / or x86-64.

• Instrumentation granularity:
– per instruction

– per basic block

– per memory access

– per execution of instruction at a specific address („breakpoints”)

Initial assumptions

There are several options.

How do you instrument?

Software emulators ()

Pros

• Full access to the CPU logic

– including the ability to change

– 100% control over the

execution environment.

• Ease of development.

• Ease of debugging.

Cons

• Extremely, painfully slow.

• Even slower with additional

instrumentation running.

• Limited to virtual (emulated)

hardware.

Hardware

User land

Thin hypervisor

Operating system

Kernel land
Instrumentation

ring 3

ring 0

ring -1

Virtualization: VT-x or SVM

VMM - thin hypervisor

Pros

• Extremely low overhead.

– compared to emulators.

• Running on real hardware (and

their device drivers).

Cons

• Tricky implementation.

• Difficult debugging.

• Partially system-specific.

– e.g. kernel module running the VMM

• CPU-specific.

– might require at least model “x” from

manufacturer “y”

• Limited ability to change CPU logic.

External scripted debugger
(e.g. WinDbg via 1394)

External scripted debugger

Pros

• Relatively easy to implement.

– depending on debugger scripting

language. WinDbg + Python is

easy.

• Relatively low overhead.

• Real hardware (in case of

physical debugging).

Cons

• Slower than VMM

• System-specific (WinDbg vs

kgdb vs ...)

• Limited ability to change the

CPU logic.

Kernel execution flow

...

mov edi, edi

push ebp

mov ebp, esp

mov eax, [ebp+arg_0]

mov edx, [ebp+arg_4]

push esi

mov esi, eax

sub esi, edx

...

#DB

#DE

NMI

IDT

#BP

#DB

#DE

NMI

#BP

system

system

system

system

system

system

DBI reset TF system

DBI reset INT3 system

x86 trap hijacking

x86 trap hijacking

Pros

• Low overhead.

• Real hardware.

• Debuggable.

Cons

• Tricky implementation with

lots of pitfalls.

• Not very elegant.

• Partially system-specific.

• Limited ability to change CPU

logic.

IA-32 hardware debugger

IA-32 hardware debugger

Pros

• Nearly native speed.

• Real hardware.

Cons

• We don’t have a hardware

debugger 

• Significantly more expensive than

other solutions discussed.

• Unsure about scripting

capabilities.

• Still unable to modify some

internals of the CPU 

• Bochs is a full IA-32 and AMD64 PC emulator.

– CPU plus all basic peripherals, i.e. a whole emulated computer.

• Written in C++.

• Supports all latest CPUs and their advanced features

– SSE2, SSE3, SSSE3, SSE4, SSE5, AVX, both SVM & VT-x etc.

• Correctly hosts all common operating systems.

• Provides extensive instrumentation API.

• A-W-E-S-O-M-E!

BX_INSTR_INIT_ENV

BX_INSTR_EXIT_ENV

BX_INSTR_INITIALIZE

BX_INSTR_EXIT

BX_INSTR_RESET

BX_INSTR_HLT

BX_INSTR_MWAIT

BX_INSTR_DEBUG_PROMPT

BX_INSTR_DEBUG_CMD

BX_INSTR_CNEAR_BRANCH_TAKEN

BX_INSTR_CNEAR_BRANCH_NOT_TAKEN

BX_INSTR_UCNEAR_BRANCH

BX_INSTR_FAR_BRANCH

BX_INSTR_OPCODE

BX_INSTR_EXCEPTION

Bochs instrumentation callbacks

BX_INSTR_INTERRUPT

BX_INSTR_HWINTERRUPT

BX_INSTR_CLFLUSH

BX_INSTR_CACHE_CNTRL

BX_INSTR_TLB_CNTRL

BX_INSTR_PREFETCH_HINT

BX_INSTR_BEFORE_EXECUTION

BX_INSTR_AFTER_EXECUTION

BX_INSTR_REPEAT_ITERATION

BX_INSTR_LIN_ACCESS

BX_INSTR_PHY_ACCESS

BX_INSTR_INP

BX_INSTR_INP2

BX_INSTR_OUTP

BX_INSTR_WRMSR

BX_INSTR_INIT_ENV

BX_INSTR_EXIT_ENV

BX_INSTR_INITIALIZE

BX_INSTR_EXIT

BX_INSTR_RESET

BX_INSTR_HLT

BX_INSTR_MWAIT

BX_INSTR_DEBUG_PROMPT

BX_INSTR_DEBUG_CMD

BX_INSTR_CNEAR_BRANCH_TAKEN

BX_INSTR_CNEAR_BRANCH_NOT_TAKEN

BX_INSTR_UCNEAR_BRANCH

BX_INSTR_FAR_BRANCH

BX_INSTR_OPCODE

BX_INSTR_EXCEPTION

Bochs instrumentation callbacks

BX_INSTR_INTERRUPT

BX_INSTR_HWINTERRUPT

BX_INSTR_CLFLUSH

BX_INSTR_CACHE_CNTRL

BX_INSTR_TLB_CNTRL

BX_INSTR_PREFETCH_HINT

BX_INSTR_BEFORE_EXECUTION

BX_INSTR_AFTER_EXECUTION

BX_INSTR_REPEAT_ITERATION

BX_INSTR_LIN_ACCESS

BX_INSTR_PHY_ACCESS

BX_INSTR_INP

BX_INSTR_INP2

BX_INSTR_OUTP

BX_INSTR_WRMSR

BX_INSTR_INIT_ENV

BX_INSTR_EXIT_ENV

BX_INSTR_INITIALIZE

BX_INSTR_EXIT

BX_INSTR_RESET

BX_INSTR_HLT

BX_INSTR_MWAIT

BX_INSTR_DEBUG_PROMPT

BX_INSTR_DEBUG_CMD

BX_INSTR_CNEAR_BRANCH_TAKEN

BX_INSTR_CNEAR_BRANCH_NOT_TAKEN

BX_INSTR_UCNEAR_BRANCH

BX_INSTR_FAR_BRANCH

BX_INSTR_OPCODE

BX_INSTR_EXCEPTION

Bochs instrumentation callbacks

BX_INSTR_INTERRUPT

BX_INSTR_HWINTERRUPT

BX_INSTR_CLFLUSH

BX_INSTR_CACHE_CNTRL

BX_INSTR_TLB_CNTRL

BX_INSTR_PREFETCH_HINT

BX_INSTR_BEFORE_EXECUTION

BX_INSTR_AFTER_EXECUTION

BX_INSTR_REPEAT_ITERATION

BX_INSTR_LIN_ACCESS

BX_INSTR_PHY_ACCESS

BX_INSTR_INP

BX_INSTR_INP2

BX_INSTR_OUTP

BX_INSTR_WRMSR

BX_INSTR_INIT_ENV

BX_INSTR_EXIT_ENV

BX_INSTR_INITIALIZE

BX_INSTR_EXIT

BX_INSTR_RESET

BX_INSTR_HLT

BX_INSTR_MWAIT

BX_INSTR_DEBUG_PROMPT

BX_INSTR_DEBUG_CMD

BX_INSTR_CNEAR_BRANCH_TAKEN

BX_INSTR_CNEAR_BRANCH_NOT_TAKEN

BX_INSTR_UCNEAR_BRANCH

BX_INSTR_FAR_BRANCH

BX_INSTR_OPCODE

BX_INSTR_EXCEPTION

Bochs instrumentation callbacks

BX_INSTR_INTERRUPT

BX_INSTR_HWINTERRUPT

BX_INSTR_CLFLUSH

BX_INSTR_CACHE_CNTRL

BX_INSTR_TLB_CNTRL

BX_INSTR_PREFETCH_HINT

BX_INSTR_BEFORE_EXECUTION

BX_INSTR_AFTER_EXECUTION

BX_INSTR_REPEAT_ITERATION

BX_INSTR_LIN_ACCESS

BX_INSTR_PHY_ACCESS

BX_INSTR_INP

BX_INSTR_INP2

BX_INSTR_OUTP

BX_INSTR_WRMSR

BX_INSTR_INIT_ENV

BX_INSTR_EXIT_ENV

BX_INSTR_INITIALIZE

BX_INSTR_EXIT

BX_INSTR_RESET

BX_INSTR_HLT

BX_INSTR_MWAIT

BX_INSTR_DEBUG_PROMPT

BX_INSTR_DEBUG_CMD

BX_INSTR_CNEAR_BRANCH_TAKEN

BX_INSTR_CNEAR_BRANCH_NOT_TAKEN

BX_INSTR_UCNEAR_BRANCH

BX_INSTR_FAR_BRANCH

BX_INSTR_OPCODE

BX_INSTR_EXCEPTION

Bochs instrumentation callbacks

BX_INSTR_INTERRUPT

BX_INSTR_HWINTERRUPT

BX_INSTR_CLFLUSH

BX_INSTR_CACHE_CNTRL

BX_INSTR_TLB_CNTRL

BX_INSTR_PREFETCH_HINT

BX_INSTR_BEFORE_EXECUTION

BX_INSTR_AFTER_EXECUTION

BX_INSTR_REPEAT_ITERATION

BX_INSTR_LIN_ACCESS

BX_INSTR_PHY_ACCESS

BX_INSTR_INP

BX_INSTR_INP2

BX_INSTR_OUTP

BX_INSTR_WRMSR

BX_INSTR_INIT_ENV

BX_INSTR_EXIT_ENV

BX_INSTR_INITIALIZE

BX_INSTR_EXIT

BX_INSTR_RESET

BX_INSTR_HLT

BX_INSTR_MWAIT

BX_INSTR_DEBUG_PROMPT

BX_INSTR_DEBUG_CMD

BX_INSTR_CNEAR_BRANCH_TAKEN

BX_INSTR_CNEAR_BRANCH_NOT_TAKEN

BX_INSTR_UCNEAR_BRANCH

BX_INSTR_FAR_BRANCH

BX_INSTR_OPCODE

BX_INSTR_EXCEPTION

Bochs instrumentation callbacks

BX_INSTR_INTERRUPT

BX_INSTR_HWINTERRUPT

BX_INSTR_CLFLUSH

BX_INSTR_CACHE_CNTRL

BX_INSTR_TLB_CNTRL

BX_INSTR_PREFETCH_HINT

BX_INSTR_BEFORE_EXECUTION

BX_INSTR_AFTER_EXECUTION

BX_INSTR_REPEAT_ITERATION

BX_INSTR_LIN_ACCESS

BX_INSTR_PHY_ACCESS

BX_INSTR_INP

BX_INSTR_INP2

BX_INSTR_OUTP

BX_INSTR_WRMSR

Performance (short story)

• On a modern PC (decent i7), non-instrumented
guests run at up to 80MHz.
– sufficient to boot up a system in reasonable time (<5

minutes)

– environment fairly responsive, at between 1-5 frames per
second.

• Instrumentation incurs a severe overhead.
– Performance can drop to 1-40MHz.

• still acceptable for research purposes (not regular work).

– Simple logic and optimal implementation is a key to
success.

Performance (long story)

Having the technical ability to instrument any

operating system in any way... what shall we

start with?

DOUBLE FETCHES

Time-of-check-to-time-of-use

„Inconsistency between the checking of a condition
and the use of the results of that check.”

• Double fetch is a specific case of tocttou
– user address space is shared across ring0 / ring3.

– userland memory can be modified at any time by
concurrent ring3 thread.

– if the kernel assumes consistency of a userland value
between any two points in time, it’s (most likely) a bug.

Quick introduction

win32k!SfnINOUTSTYLECHANGE 6 months ago

.text:BF8C3120 mov eax, _W32UserProbeAddress

.text:BF8C3125 cmp ecx, eax

[...]

.text:BF8C3154 cmp [ecx+8], eax

.text:BF8C3157 jnb short loc_BF8C315C

.text:BF8C3159 mov eax, [ecx+8]

• 27 instances identified in win32k.sys in Q4 2012.

• Fixed in February 2013.

• Allowed for disclosure of arbitrary kernel memory to
ring-3.

Example and how it all started

• Double fetches occur within consistent code blocks.

– single system call, single IOCTL handler.

• Only local vulnerabilities (code execution required)

– Elevation of Privileges
• primarily buffer overflows and write-what-where conditions.

– Information Disclosure
• arbitrary reads and under-filled buffers.

– all sorts of Denial of Service
• due to failed exploitation of the two previous items.

Trivia

• They are race conditions after all – exploitation takes

some advanced CPU-delaying and scheduler feng

shui.

– Some exploitation techniques detailed by sgrakkyu and

twiz in 2007 [1].

– Check our SyScan 2013 slides [2], white-paper [3] and

follow-up post [4].

Exploitation

Step 1
Collect information about all memory accesses throughout the

operating system lifespan.

Step 2
Find pairs of kerneluser references such that both:
• are within the same thread.
• are within the same system call invocation.
• access the same memory location.

Step 3
Filter out known false positives and manually inspect remaining

reports in search of actual bugs.

Detection via instrumentation –
general idea

• Quite a lot of information is required to describe each access.
– linear address of accessed memory
– length of access ∈ {1, 2, 4, 8, 10, 16, 32}
– access type ∈ {read, write, read+write, execute}
– linear address of accessing instruction
– unique identifier of syscall invocation
– system call number
– process name
– unique thread id: (pid, tid, creation_time)
– complete callstack

• module name
• module base
• offset from base

– instruction disassembly (or opcode bytes)

Memory access characteristics

• Quite a lot of information is required to describe each access.
– linear address of accessed memory
– length of access ∈ {1, 2, 4, 8, 10, 16, 32}
– access type ∈ {read, write, read+write, execute}
– linear address of accessing instruction
– unique identifier of syscall invocation
– system call number
– process name
– unique thread id: (pid, tid, creation_time)
– complete callstack

• module name
• module base
• offset from base

– instruction disassembly (or opcode bytes)

Characteristics by purpose

double-fetch
detection logic

double-fetch
analysis

report uniquization

• Quite a lot of information is required to describe each access.
– linear address of accessed memory
– length of access ∈ {1, 2, 4, 8, 10, 16, 32}
– access type ∈ {read, write, read+write, execute}
– linear address of accessing instruction
– unique identifier of syscall invocation
– system call number
– process name
– unique thread id: (pid, tid, creation_time)
– complete callstack

• module name
• module base
• offset from base

– instruction disassembly (or opcode bytes)

Characteristics by source

BX_INSTR_LIN_ACCESS

BX_INSTR_BEFORE_

EXECUTION

guest system
memory

• Create a „memlog.bin” database of all memory
accesses by running OS through instrumented Bochs
for a few days.

• Split the file into thread-specific logs.

• Run the doublefetch utility over each of them.

• Symbolize the resulting reports.

Ready for manual examination.

Our implementation

Bochspwn report
[pid/tid/ct: 00000049/00000049/0028fc4cf5dbe580] {init}
 00000003, 0000000b: READ of 950226c (7 * 4 bytes),
 pc = c12d89d1 [mov edx, dword ptr ds:[eax-3]]

 #0 0xc12d89d1 (kernel+002d89d1)
 __get_user_4 arch/x86/lib/getuser.S:69

 #1 0xc115a910 (kernel+0015a910)
 do_execve_common fs/exec.c:1553

 #2 0xc115aa27 (kernel+0015aa27)
 do_execve fs/exec.c:1621

 #3 0xc1019517 (kernel+00019517)
 sys_execve arch/x86/kernel/process.c:356

 ...

• Generic idea, largely system-specific implementation

– different distinction between „user” and „kernel” address
space

– different system structures to traverse

– different ways to generate code coverage

– different false positives in reports

– different results 

• Let’s look into each of them separately.

Platform differences

MICROSOFT WINDOWS

• Virtual address space divided in two (user / kernel)

– simple „less than” and „greater than” can be applied to Eip.

• Windows x86

– boundary 0x80000000, user land below, kernel land above

– can be 0xc0000000 for /3G switch, we didn’t use it

• Windows x86-64

– non-continuous address space

– below 0x000007ff00000000 user land.

– above 0xfffff80000000000 kernel land.

Memory boundaries

Process/thread structure traversal

KPCR ETHREAD Kernel
FS.base

EPROCESS

Image
FileName

Irql

KPCR

Current
Thread Cid

Unique
Process

Unique
Thread

KTHREAD

Process

CreateTime

Kernel
GS.base

x86

x86-64

Device driver list traversal

KPCR DBGKD_GET_
VERSION64

Kernel
FS.base KdVersion

Block
PsLoaded

ModuleList

x86

LDR_MODULE

BaseAddress

SizeOfImage

BaseDllName

Flink

Blink

LDR_MODULE

BaseAddress

SizeOfImage

BaseDllName

Flink

Blink

LDR_MODULE

BaseAddress

SizeOfImage

BaseDllName

Flink

Blink

x86-64

ntoskrnl.exe

PsLoaded
ModuleList

• Reports originating from the „System” process during
early boot-up

– the user/kernel boundary doesn’t apply yet.

– neutralized by ignoring the process entirely.
• i.e. discard memory accesses from pid=0 and pid=4

• also speeds up the guest significantly

• Reports from APC-related kernel routines

– Neutralized by reading Irql from KPCR and ignoring all
Irql=APC_LEVEL references.

Common false positives

• Reports originating from the CI.dll kernel module

(digital executable signatures)

– filtered out by removing all database entries with “CI.dll”

somewhere in the callstack in post-processing.

• Numerous false positives in messaging related routines in

win32k.sys

– filtered out by filtering the final logs against a black-list of

known bad functions.

Common false positives

• The Windows kernel has several ways to probe user
memory

– public ProbeForRead, ProbeForWrite API

– internal functions and macros (inlined in the code)

• Two most prevalent patterns

Memory probing

; ecx = user-provided address
mov eax, [ecx]
mov [ecx], eax

; ecx = user-provided address
mov al, [ecx]

• First pattern mitigated by:

– logging all 4-byte “write” accesses in addition to “read”

– implementing an anti-probe mechanism in doublefetch.cc

• if a “write” of the same (address, size) immediately follows a “read”,

discard the “read”.

• Second pattern mitigated by ignoring all reads of less

than two 2 bytes.

– extremely rare, ~99% of 1-byte reads is probing.

Memory probing

• Microsoft supports a “Debug Help” DLL – DbgHelp.dll

– has API for symbol resolving

– SymInitialize, SymLoadModule64, SymFromAddr

• Required PDB to be downloaded from Microsoft Symbol

Server

– http://msdl.microsoft.com/download/symbols

• Trivial to implement one’s own resolver.

Symbolization

• 89 potential new issues discovered

– part of the initial 27 bugs were also rediscovered

– all reported to Microsoft (November 2012 – January 2013)

• 37 EoPs officially addressed by MS13-016, MS13-017,
MS13-031, MS13-036, MS13-046

• 13 issues were classified as “Local DoS” only

• One big problem is still being worked on, and three cases
are under re-investigation.

• The rest were non-exploitable / non-issues / etc.

Results

• Microsoft were very receptive to the reports.

• There is evidence that extensive variant analysis was
performed.

– nt!ApphelpCacheQuery, win32k!NtUserDisplayConfigGet
DeviceInfo, examples are all around.

– also three of our original reports were fixed as variants with no
CVE.

– we have no idea how many internal discoveries were fixed, but
probably a few dozens.

• We also shared Bochspwn with MSFT, but have no official
confirmation on whether they use the code or concept.


The less official results

• We are releasing all valid Bochspwn reports from our
runs against Windows, Linux, FreeBSD.

– MSFT assessed a majority of the reports as DoS or non-
issue.

• we don’t have resources to investigate them all.

• let the larger collective confirm.

– Some Windows issues have not been fixed for 9 months
after the original reports. This is by far too long.

– Logs from other systems are released for reference, and
again, verification.

The logs are out

• Windows kernel is designed/written poorly with regards
to reading user land data

– no pointer annotations (in contrast to Linux __user)

– no dedicated fetch functions (in contrast to copyin / copyout)

– no strict data-fetching policies; everyone do as they will.

• Bugs are bound to occur.

• The only problem: generating coverage.

– imagine: we found ~40 and motivated the discovery of dozens
of further bugs by not much more than just booting the system
up.

Final thoughts

• What we did:

– system boot up

– typical navigation in the system: Internet Explorer,
Wordpad, Notepad, Registry Editor, Control Panel, builtin
games

– playing multimedia (video, audio)

– starting Starcraft 1

– running the Wine Conformance Tests

• Far too little.

Improving code coverage

• All further ideas are extremely welcome.

• We currently believe a moderately-smart system call

fuzzer should dramatically improve the coverage.

– in the works. new Windows double-fetch iterations will

follow soon. 

Improving code coverage

35.53%

29.46%

38.53%

48.93%

0.00%

10.00%

20.00%

30.00%

40.00%

50.00%

60.00%

ntoskrnl.exe percentage
coverage

win32k.sys percentage
coverage

boot + terminate

all tests

Coverage: instructions in base images

196

291

227

460

0

50

100

150

200

250

300

350

400

450

500

ntoskrnl.exe win32k.sys

boot + terminate

all tests

Coverage: system calls invoked

947
764

2836

1093

1683

4064

0

500

1000

1500

2000

2500

3000

3500

4000

4500

ntoskrnl.exe win32k.sys all modules

boot + terminate

all tests

Coverage: fetch instructions executed

LINUX

• And by Linux we mean:
Ubuntu Server 13.04 64-bit

• Stock kernel: Linux 3.5.0-23-generic

Bochspwn vs Linux

Linux: process and thread information

• Getting to thread-specific data.
– Step 1. Get kernel-mode stack pointer.

TR (Task Register)

TSS

Ring0 RSP lo

Ring0 RSP hi

RSP

Ring 3 Ring 0

Linux: process and thread information

• Step 2: Getting to thread_info.

Kernel
stack

struct
thread_info

(top of the stack)

Kernel-mode
RSP

thread_info

(struct thread_info *)
(RSP & ~(THREAD_SIZE – 1))

FFFFFFFFFFFFE000

Linux: process and thread information

• Step 3: Diving deeper.

thread_info

task

task

pid

comm

tgid

Linux: module information

• Getting to the modules

struct module

list

core

name

core_size

struct module

list

core

name

core_size

modules

...

Linux: callstack

Stock kernel is compiled with frame pointers (RBP)

Linux: callstack

• Callstack

– Sometimes missing second frame?

#0 0xc12d89d1 __get_user_4 getuser.S:69

#? ?????????? ???????????????? ????????:???

#1 0xc115a910 do_execve_common exec.c:1553

#2 0xc115aa27 do_execve exec.c:1621

#3 0xc1019517 sys_execve process.c:356

#4 0xc15e9eee ptregs_execve entry_32.S:730

Linux: callstack

• Callstack

– Sometimes missing second frame?

• Functions in .S do not preserve frame pointers.

• What can we do about it?

–Save (per thread) call stack – it’s slow.

– Limit it only to .S functions which trigger events.

–Record only the last one (.S is always #0).

Linux: callstack

• Callstack

– Sometimes missing a frame?

• Inline functions.

–Compile with ignoring inline requests.

–Actually a symbolization problem.

Linux: symbolization

• Stock kernel symbols available in repositories.
– Go to http://ddebs.ubuntu.com/pool/main/l/linux/ and

look for your kernel.

• GNU addr2line tool + a short python script.

Linux: coverage

• Getting decent coverage

– Fuzzers:

• iknowthis - https://code.google.com/p/iknowthis/

• Trinity - http://codemonkey.org.uk/projects/trinity/

• fsfuzzer

• other

– Tests

• Linux Test Project (ltp) - http://ltp.sourceforge.net/

21.21%

28.47%

0.00%

5.00%

10.00%

15.00%

20.00%

25.00%

30.00%

kernel image

boot + terminate

all tests

Coverage: instructions in base images

169

301

0

50

100

150

200

250

300

350

kernel image

boot + terminate

all tests

Coverage: system calls invoked

Linux: coverage statistics

• Log sizes:
78 MB to 189 GB

• Total unique threads in all runs:
c.a. 50k

• Double fetch logs (unfiltered):
 70 KB to 200 KB

Linux: results

Bochspwn vs GNU/Linux

Final result:

??? bugs found

Linux: results

Bochspwn vs GNU/Linux

Final result:

0?? bugs found

Linux: results

Bochspwn vs GNU/Linux

Final result:

00? bugs found

Linux: results

Bochspwn vs GNU/Linux

Final result:

000 bugs found

Linux: results

• Results:

– Nothing found.

• Why is that?! (a.k.a. documenting failure)

– Copy functions.

– Annotations.

– Overall design.

Linux: results

• User-to-kernel copy functions
– do_strncpy_from_user + do_strnlen_user

– __get_user_{1,2,4,8} and __get_user macro

– __copy_user_{zeroing | intel | nocache}

– copy_user_generic_unrolled,
copy_user_generic_string,
copy_user_enhanced_fast_string

– other? (copy_page)

Linux: results

• Annotations
 #define __user \

 __attribute__((\

 noderef, \

 address_space(1) \

))

Sponsored by sparse:

https://sparse.wiki.kernel.org/index.php/Main_Page

Linux: results

• Overall design
– No (or not too many) deep structures.

– Need to call a function to dereference user pointer.

1. Counting the argv [] list length (do_execve_common)

2. strlen () + memcpy ()

3. -ESTALE path resolving retry

4. writing to file in a ext4 file system

5. seeding the blocking/nonblocking random pools

6. usage of XSAVE / XRSTOR instructions

7. *_getsockopt implementations

Double fetch conditions (non-issues)

static int do_tcp_getsockopt(struct sock *sk, int level,
 int optname, char __user *optval, int __user

*optlen)
{
[…]
 int val, len;

 if (get_user(len, optlen))
 return -EFAULT;

 len = min_t(unsigned int, len, sizeof(int));

 if (len < 0)
 return -EINVAL;

Example of a non-issue (getsockopt)

 switch (optname) {
[…]
 case TCP_INFO: {
 struct tcp_info info;

 if (get_user(len, optlen))
 return -EFAULT;
[…]
 len = min_t(unsigned int, len, sizeof(info));
 if (put_user(len, optlen))
 return -EFAULT;
 if (copy_to_user(optval, &info, len))
 return -EFAULT;

Example of a non-issue (getsockopt)

 case TCP_CONGESTION:
 if (get_user(len, optlen))
 return -EFAULT;
 len = min_t(unsigned int, len, TCP_CA_NAME_MAX);
[…]

 case TCP_COOKIE_TRANSACTIONS: {
 struct tcp_cookie_transactions ctd;
 struct tcp_cookie_values *cvp = tp->cookie_values;

 if (get_user(len, optlen))
 return -EFAULT;
 if (len < sizeof(ctd))
 return -EINVAL;
[…]

Example of a non-issue (getsockopt)

FREEBSD

Bochspwn vs FreeBSD

• FreeBSD 9.1 64-bit

• Stock kernel (GENERIC)

FreeBSD: process and thread

• Getting to thread-specific data.
– Step 1. Get kernel-mode GS base.

MSR C0000102H
(MSR_KERNELGSBase)

pcpu->msr.kernelgsbase

Ring 3 Ring 0

GS.base

pcpu->get_segment_base(
BX_SEG_REG_GS)

FreeBSD: process and thread

• Getting to thread-specific data.
– Step 2. Diving deeper.

PCPU

currthread

thread

td_tid

td_proc

Kernel
GS.base

proc

p_pid

p_comm

FreeBSD: modules

• Getting to the modules

struct module

queue

name

file

modules

...

struct linker_file

pathname

address

size pathname[]

FreeBSD: modules

• Getting to the modules?

– by default there were 477 (sic!) registered modules.

– ... and all of them were in the kernel image.

– perhaps we can just ignore them? Yes.

• Linux emulation layer is an external module.

FreeBSD: callstack

• Callstack & symbolization

– Exactly the same as in Ubuntu:

• RBP present in most functions.

• Assembly function do not preserve RBP on stack.

– Stock kernel symbols available in:

/boot/kernel/kernel.symbols

FreeBSD: coverage

• Fuzzers

– lf6 and netusse - https://code.google.com/p/netusse/

– fsfuzzer

– Trinity

• Tests

– stress2 - http://people.freebsd.org/~pho/stress/index.html

– regression -
http://svnweb.freebsd.org/base/head/tools/regression/

FreeBSD: results

Bochspwn vs FreeBSD

Final result:

??? bugs found

FreeBSD: results

Bochspwn vs FreeBSD

Final result:

0?? bugs found

FreeBSD: results

Bochspwn vs FreeBSD

Final result:

00? bugs found

FreeBSD: results

Bochspwn vs FreeBSD

Final result:

000 bugs found

FreeBSD: results

• Documenting failure again.

• Nothing found.

FreeBSD: why nothing found?

• Copying functions again: fubyte/word/word32

and copyin/copyinstr

• Historically popular bug class.

FreeBSD: a false positive

• kern_select()

– Read no. 1: sys_generic.c:918 - fubyte

– Read no. 2: sys_generic.c:968 - copyin

FreeBSD: a false positive

• kern_select()

Read no. 1:
error = select_check_badfd(fd_in, nd, ndu, abi_nfdbits);

static int

select_check_badfd(fd_set *fd_in, int nd, int ndu, int
abi_nfdbits)

...

 res = fubyte(addr);

 if (res == -1)

 return (EFAULT);

FreeBSD: a false positive

• kern_select()

Read no. 2:
#define getbits(name, x) \

 ...

 error = copyin(name, ibits[x], ncpubytes); \

 ...

 getbits(fd_in, 0);

 getbits(fd_ou, 1);

 getbits(fd_ex, 2);

FreeBSD: a false positive

• kern_select() :

– Yes, there is a double-fetch.

– No, it has no security consequences in kernel-mode.

FreeBSD: other false positives

• execve and same address to binary name and
argv[0]

• syslog write to file and tty

• mutex implementation (has locks)

OPENBSD

Bochspwn vs OpenBSD

• OpenBSD 5.3 64-bit

• Customly compiled kernel (DEBUG) for symbols

• Work in progress.

Bochspwn vs OpenBSD

OpenBSD: process and thread

• Getting to thread-specific data.

– Step 1. Get kernel-mode GS base – exactly the same way

as in FreeBSD.

OpenBSD: process and thread

• Getting to thread-specific data.

– Step 2. Diving deeper.

cpu_info

currproc

proc

p_pid

???

Kernel
GS.base

???

???

p_comm

OpenBSD: modules

Oh. Actually there are no modules on OpenBSD.

OpenBSD: callstack

• Same situation as in FreeBSD/Linux:

– Stack pointer in RBP / preserved on stack

– ... but not for functions implemented in assembly.

• Symbolizing:

– No symbols available for stock kernel.

– Have to recompile the kernel (DEBUG).

– GNU addr2line-based script works with no changes.

OpenBSD: left to do

Prepare logs, look for bugs!

Bochspwn vs …

• There are still many systems to explore.

– NetBSD

– OSX

– Solaris

– other Linux-based distributions?

• And a lot of ground to cover.

– Dedicated tools for better coverage.

HYPERPWN

• Virtualization is still a great technology for
instrumenting memory accesses.

– all OS instructions execute natively.

– only instructions of desired type are intercepted.

– could be ran seamlessly on any (your) workstation.
• detect bugs while you work.

• only if you don’t use VMs, though.

• Not perfect for every instrumentation.

Hyperpwn considerations

• Start off with Joanna Rutkowska’s BluePill project [5]

– load a driver which sets up environment, puts OS in a “jail”
and run as a VMM.

Hyperpwn – initial concept

Hyperpwn – initial concept

source: J. Rutkowska, Black Hat USA 2006, © BlackHat

• Instrument only 32-bit operating systems.

• Modify kernel data segment descriptor
– LDT_ENTRY.ExpandDown = TRUE

– LDT_ENTRY.Base = 0x00000000

– LDT_ENTRY.Size = 0x80000000

• All kernel-mode access to 00000000-7fffffff yield a #GP
exception.

• VMM intercepts the #GP, performs instrumentation, restores
data segment, sets TF, continues.

• VMM intercepts #DB, sets LDT_ENTRY to instrumented, clears
TF, continues.

Hyperpwn – initial concept

Hyperpwn – initial concept

VMRUN

VMM loop

instrument restore ds: set trap flag

Bochspwn logic

#GP handling

ds: = instrumented clear trap flag

#DB handling

• No VT-x / SVM in Protected Mode 

• No memory segmentation in Long Mode 

• Revised idea: tamper with Page Tables instead of
GDT.

– clear the “Present” flag for all top-level user-mode entries.

– has the same effect, but more code required.

Hyperpwn – revised concept

Hyperpwn – revised concept

Page Table Page Table

Hyperpwn prototype – coming in Fall 2013
(or not)

• Instrument Mac OS X.

• Instrument Microsoft Windows with improved code

coverage.

– expect another flood of bugs (or not).

• Static analysis approach.

– symbolic execution model is fairly interesting.

– mixing static and dynamic: hint the static analyzer with known

user data fetch locations.

Double fetches – what else?

BOCHSPWN:MSAN

• Kernel instrumentation is really not just about double
fetches.

• Example: kernel memory taint tracking.

– 1 to 2GB wide kernel virtual address space on x86.

– easily up to 16 bytes of metadata per one kernel byte. that’s a
lot!

– how about tracking an “initialized” property for heaps/pools and
stack?

• Possible to detect use of uninitialized memory.

– similarly to user-mode MemorySanitizer.

Kernel memory taint tracking

• Also, feasible detection of leakage of uninitialized

kernel bytes to user-mode!

• We implemented a prototype of Bochspwn:msan …

• Ran it against Windows a week before BH USA 2013.

Kernel memory taint tracking

12 kernel  user pool bytes disclosure vulnerabilities

found in Windows 7 and 8.1 and reported to MSFT.

By just booting up the systems.

It works!

D E M O
WINDOWS 8.1 32-BIT

KERNEL POOL MEMORY DISCLOSURE 0-DAY

Bochspwn:msan – more on this later this
year

CONCLUSIONS

• We are releasing Bochspwn as open-source today.

– official name of the project: kfetch-toolkit

– instrumentation + post-processing tools

• Windows, Linux, BSD support included.

– Apache v2 license.

– https://github.com/j00ru/kfetch-toolkit

– read the README for instructions.

Bochspwn is out

• Kernel instrumentation potential is far from being exhausted.

– in fact, there are hundreds* of low-hanging fruit waiting to be found.

– so far it seems most are in Windows.

• Hack on kfetch-toolkit

– port to other platforms (more exotic?).

– find novel patterns, models or whole bug classes.

– improve coverage.

– test other presented approaches.

* personal estimate.

Further research

1. We really hope the subject will be picked up. 

2. If you do and have results (or problems), we’re

happy to hear from you!

3. Check our blogs for slides, double-fetch reports

from the past and updates.

Final words

Thanks for coming!

Mateusz “j00ru” Jurczyk

• j00ru.vx@gmail.com

• http://j00ru.vexillium.org/

• @j00ru

Gynvael Coldwind

• gynvael@coldwind.pl

• http://gynvael.coldwind.pl/

• @gynvael

Questions?

Thanks / shouts to:
 Halvar Flake, Solar Designer, Clement Lecigne, Oshogbo,

 Martynas Venckus, Tavis Ormandy, Vasily Kulikov, Alex Ionescu, ISE

[1] http://phrack.org/issues.html?issue=64&id=6#article

[2] http://vexillium.org/dl.php?syscan_slides.pdf

[3] http://vexillium.org/dl.php?bochspwn.pdf

[4] http://j00ru.vexillium.org/?p=1880

[5] http://invisiblethingslab.com/resources/bh07/IsGameOver.pdf

References

